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Fluorescence intensity and squeezing in a driven three-level atom: Ladder case
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A theoretical study is made of the steady-state intensity and squeezing properties of the fluorescent
light from a three-level-atom system in a ladder configuration, which is subject to spontaneous-emission
decay to the electromagnetic-field vacuum. Two cases are examined: in the equispaced (ES) level case,
the two atomic transition frequencies are nearly equal and two photon absorption processes occur from a
single coherent laser field that couples both transitions and has a small detuning from each; in the non-

equispaced (NES) level case, the atomic transition frequencies are rather different and two photon ab-
sorption processes occur from two coherent laser fields, each coupled to a single transition and in near
resonance with it. In both cases, a situation of small two-photon detuning occurs. Optical Bloch equa-
tions for the atomic density matrix in rotating frames are given and matrix expressions for determining
the steady-state populations and coherences are obtained. Analytic expressions are also given for special
cases. The IIIuorescent intensity is obtained from the populations of the intermediate and upper states,
with the normally ordered variance (NOV) for quadrature components of the Auorescent field involving,
in addition, the atomic coherences. The Auorescent intensities are shown graphically as a function of
two-photon detuning for a variety of one-photon detunings and Rabi frequencies for the ES and NES
cases. In both cases, the fluorescent intensities show the well known resonances from the upper state at
zero two-photon detuning and from the intermediate state at zero one-photon detuning for the lower
transition. However, further resonances are also found. The intermediate-state intensity displays a reso-
nance at zero two-photon detuning. Also, the upper-state intensity shows a resonance at zero one-
photon detuning for the upper transition, but only for the NES case; evidently, the transfer rate from
upper to lower transition coherences destroys this resonance for the ES case. The time-averaged NOV is
also shown graphically as a function of two-photon detuning for a variety of one-photon detunings and
Rabi frequencies for the ES and NES cases. For the ES case, the quadrature frequency is chosen as the
single laser frequency and for the NES case, it is chosen as either the average of the two laser frequencies
or the lower transition laser frequency. Squeezing occurs near zero two-photon detuning for both ES
and NES cases, though only for the quadrature frequency equal to the average laser frequency in the
latter case. It also occurs near zero detuning for the lower transition for both cases, though only for the
quadrature frequency equal to the lower transition laser frequency in the NES case. The squeezing mini-
ma show a splitting effect for large Rabi frequencies corresponding to two-photon or one-photon Rabi
splitting of the dressed atom levels for the situation near two-photon or one-photon resonance, respec-
tively. The large squeezing near two-photon resonance for moderate Rabi frequencies and large one-
photon detuning corresponds to essentially pure three-level squeezing, while that near one-photon reso-
nance for weak Rabi frequencies involves two-level squeezing.

PACS number(s): 42.50.Dv

I. INTRODUCTIGN

There is a large number of theoretical and experimen-
tal studies that have been made on the subject of two-
photon absorption by three-level atoms in ladder, vee,
and lambda configurations, interacting with one or two
coherent laser fields. References [1—18] list some of these
together with reviews covering aspects of this subject.
For the ladder configuration which is the subject of the
present paper, phenomena involving two-photon absorp-
tion lead to a resonance in the population of the upper
states for zero two-photon detuning, even when the two
one-photon absorptions involved are well off resonance.
The particular interest of such a process consists of the
possibility of studying excited states whose dipole matrix

elements with the ground state are zero. In certain cases
[3,19,20], this process can lead to a population inversion
between the ground and upper excited states that could
be useful in the realization of a two-photon laser. Two-
photon correlated emission lasers [21—23] based on
coherent excitation of a three-level ladder system, for ex-
ample by two coherent laser fields, have been proposed
and are predicted to generate squeezed light. Two-
photon lasers operating at optical frequencies [24—26]
have been realized based on population inversion between
certain pairs of dressed states. These are associated with a
two-level atom driven by a strong single-mode field, but
the physics essentially involves a hierarchy of ladder sys-
tems.

Different perturbative approaches have been used to
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determine the population of the upper state in the three-
level atom [1—9], which is a measure of the two-photon
absorption probability. Perturbation solutions tend to be
very complex beyond the lowest-order approximations
and are only valid in certain parameter regimes, such as
when the intensities of the driving fields are relatively
low, and they do not describe saturation effects. Howev-
er, strong driving-field intensities are required to make
two-photon absorption significant, since the two-photon
absorption probability scales as the intensity squared in
the nonsaturation regime. In general, nonperturbative
methods involving the solution of optical Bloch equations
will be required. Experimentally, the two-photon absorp-
tion probability can be conveniently measured as the to-
tal fluorescence intensity from the upper state. As indi-
cated above [1—18], the fiuorescence intensity shows a
resonant behavior with regard to the two-photon detun-
ing with a maximum value on two-photon resonance and
a half width determined by the width of the upper state.
For the case of two driving laser fields, Salomaa [5] has
shown that for intensities such that the Rabi frequencies
and decay rates are comparable and with a large detuning
of one laser from the lower transition frequency, two
peaks appear in the upper-state fluorescence intensity
profile: one when the second laser is on resonance with
the upper transition frequency as well as the usual peak
when the lasers are on two-photon resonance. Kieu and
Dalton [27] considered a four-level system, with one
upper state and two intermediate states. The results can
be specialized to the ladder system by making certain
Rabi frequencies and decay rates zero. They find that not
only the upper state, but also the intermediate states, ex-
hibit a resonance behavior centered on zero two-photon
detuning, the intermediate state resonance being due to
spontaneous-emission processes from the upper state fol-

lowing resonant two-photon absorption.
In this paper, we make a detailed study of two-photon

absorption in a three-level ladder system, concentrating
on the squeezing properties of the fluorescent fie1d as well

as on its intensity. In one case (equispaced, ES) the atom-
ic transition frequencies are approximately equal and the
atom is driven by one laser field, which couples to both
transitions and has a small one-photon detuning from
each. In the other more usual case (nonequispaced, NES)
the atomic transition frequencies are rather different and
the atom is driven by two laser fields, each of which is

coupled to one transition only and from which it has a
small one-photon detuning. In both cases, the laser fields

are also close to two-photon resonance. In our model,
spontaneous-emission decay from the upper excited state
to the intermediate state and thence to the lower state
occurs and is thus restricted to the levels within the
ladder system. In real atoms, the situation would be
more complicated and the simple three-state model
would need to be extended to allow for other decay chan-
nels, laser-field couplings between various magnetic sub-

states, and so on. The model also does not allow for
Doppler effects, although Doppler-free situations can be
realized experimentally be applying the technique of trap-
ping single ions in a Paul trap [28]. Extensions of our
simple model to allow for real-atom effects, although

necessary in later work to describe actual experiments, at
this stage would tend to obscure the basic physical effects
described in this paper.

The previous work emphasizes effects of two-photon
absorption on the populations of the excited states. The
fluorescent intensity is treated in terms of the populations
of the intermediate and upper states of the ladder system.
In this paper, we emphasize the effects on atomic coher-
ences that are reflected in the squeezing properties of the
fluorescence field. As we will see, both one- and two-
photon coherences will be important. In this paper, we
discuss squeezing in terms of the variance of quadrature
components of the total electric field [29] rather than in
terms of the squeezing spectrum [30]. The latter, which
involves an experimental realization where the field is fre-
quency filtered and then homodyned with a local oscilla-
tor field, is used in many squeezing experiments. The
former involves an experimental process in which the to-
tal field is homodyned with the local oscillator field
without first frequency filtering. Although more dificult
experimentally, in this approach the squeezing properties
of the total field would show up as sub-Poissonian statis-
tics in the combined field, as has been outlined by Mandel
[29(a)]. The squeezing spectrum and the total field
squeezing give different information about the phase-
dependent noise in the electric field. As both are, in prin-
ciple, measurable we prefer here to use the total field
squeezing as being more closely related to the fundamen-
tal definition of what "squeezing" means in terms of vari-
ances of the total field quadrature components, where a
basic Heisenberg uncertainty principle relationship ap-
plies to quadrature components whose phases differ by
n/2 [29]. Squeezing associated with ladder systems has
been previously discussed in the context of the two-
photon correlated emission laser [21—23], where an exci-
tation process that generated atomic coherence between
the outer states of the ladder can result in squeezed light
in one- or two-mode laser cavity fields. Reversible spon-
taneous emission into one- or two-mode cavity fields from
coherently excited single-atom ladder systems has also
been treated [31,32] in a generalized Jaynes-Cummings
model approach and squeezed-light fields obtained. No
previous study of squeezing in the fluorescent light emit-
ted from ladder systems in empty space seems to exist.
Squeezing in resonance fluorescence has been predicted
for two-level atoms [29(a),33—35], three-level atoms of
the lambda type [36—38], and for the vee type [39]. In
two-level atoms, the steady-state squeezing is restricted to
a weak-driving-field regime, whereas in three-level lamb-
da systems the squeezing appears for weak as well as for
moderate intensities of the driving fields. For three-level
atoms of the lambda type, the steady-state fluorescence
squeezing that was shown appears when the decay rates
to the two lower states and the Rabi frequencies are
different. For these parameters, a single one-photon
coherence and the two-photon coherence are significantly
nonzero, and the squeezing has what shall be referred to
as a tivo level three level atom-char—acter -[40]. -

In a related work on squeezing for three-level atoms of
lambda, vee, and ladder configurations [40], we have con-
sidered the general question of classifying the types of
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squeezing (Fig. 9 below) that can occur for the light field
emitted from such three-level sources. This classification
is, of course, based on considering the squeezing in the
total field, where the variance of quadrature components
involves one-tine correlation functions that can be relat-
ed to populations and coherences of the atomic sources.
It would not apply to the squeezing spectrum [30], where
two-time correlation functions are involved. We have ob-
tained results for the optimum or largest squeezing that
can occur irrespective of the choice of quadrature corn-
ponent, and allowing for a/l possible states in which the
atom could be. For the particular process of resonance
fIuorescence studied here for ladder systems, the amount
of squeezing would be, in general, less than for this op-
timum case. In terms of this general analysis, we can see
that for lambda systems no purely three-level-atom
squeezing (in which only the two-photon coherences are
nonzero) can occur [40], basically since they do not ap-
pear explicitly in the expression for the normally ordered
variance, and the one-photon coherences need to be
nonzero if it is to become negative. However, for ladder
systems, it is possible that the squeezing could be of a
purely three leuel ato-m typ-e, since, as we will see below,
the two-photon coherences appear in the phase-
dependent terms of the normally ordered variance.

With appropriate selection of atomic parameters, we
will find cases of the resonance fluorescence from three-
level atoms in the ladder configuration exhibiting close to
pure three-level-atom squeezing. Not only do the two-
photon coherences appear in the expressions for the vari-
ance of the quadrature components, but they are also
significantly nonzero. Cases of essentially pure two-level
squeezing are also found. For an arbitrary choice of fre-
quency for the quadrature component, the variances os-
cillate even at long times. However, for the case of
equispaced levels driven by' one-laser field, choosing a
quadrature component frequency the same as that of the
driving field will result in a time-independent variance
after a long time. For the case of nonequispaced levels
driven by two-laser fields, no choice of quadrature fre-
quency produces time-independent variances at long
times. However, if the quadrature frequency is chosen ei-
ther equal to the average of the driving laser frequencies
or equal to one of them, then the long time variance con-
tains a time-independent component plus high-frequency
oscillating components whose time average is zero. Such
time averaging of the long time variances corresponds to
a process that could be carried out on the time-dependent
experimental results and has the e6'ect of removing unin-
teresting transient and oscillating e6'ects. It cannot, of
course, lead to squeezing at long times when none previ-
ously existed; indeed, negative swings in the time-
dependent variance of the quadrature components would
tend to be averaged out.

This paper is organized as follows. Optical Bloch
equations for a three-level atom in the ladder
configuration and driven by the single-mode or two-mode
laser field are described in Sec. II. The Auorescent intensi-
ty is examined in Sec. III for a variety of parameter re-
gimes. Squeezing of the Auorescence field is studied in
Sec. IV and a discussion is given in the concluding Sec. V.

II. OPTICAL IILGCH EQUATIGNS

We consider a three-level system (Fig. 1) which in the
case of nearly equispaced levels [Fig. 1(a)] is driven by a
single linearly polarized monochromatic laser field of fre-
quency coL coupled to both the 1 —+2 and 2~3 transi-
tions, and which in the case of nonequispaced levels [Fig.
1(b)] is driven by two linearly polarized monochromatic
laser fields of frequencies m, and cob coupled to the 1~2
and 2~3 transitions, respectively. In all cases the fields
are not far from both one-photon and two-photon reso-
nance. The transition frequencies between the ground
state ~1) and the intermediate state ~2), and between the
state ~2) and the upper state ~3), are cubi and co2, respec-
tively. These transitions are associated with electric-
dipole matrix elements p, and p, 2, respectively (assumed
real for simplicity), whereas the 1~3 transition is forbid-
den in the electric-dipole approximation. Spontaneous-
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FIG. 1. (a) Three-level atom in a ladder configuration with
nearly equispaced levels driven by a coherent laser field of fre-
quency coL detuned from the atomic transition frequencies by
6I =coL —

co& and b 2=coL —co2. (b) Three-level atom in a ladder
configuration with nonequispaced levels driven by two coherent
fields of frequencies co„cob detuned from the atomic transition
frequencies by 6i =m, —co, and 62=cob —co2.
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emission decays to an empty vacuum via the simple
downward cascade ~3) ~~2) —+~1) occur with decay
rates r22 and I », respectively. The nearly equispaced
and nonequispaced level cases are distinguished by
~coi

—
coz~ being much smaller than, or comparable to, a

typical optical frequency, respectively.
Our aim is to calculate the steady-state populations

and coherences of the atomic states and thus the squeez-
ing properties of the Auorescence field. The master equa-
tion for the reduced density operator p of the three-level
atom describes its evolution in the external laser driving
fields (treated classically) along with the efFects of spon-
taneous emission and is given [41] in the interaction pic-
ture by

t 2
P = ——„'[H,',p] ——' y r„(pS,+S, +S,+-S,;. p

i j =1

—2S p'S+ }eJ

2'

2l 2 2e 2 (4)

where the laser electric field is
E,p sin(co, t +P, )+Ebp sin(cob t +Pi, ) involving ampli-
tudes E,p, Ebp and phases P„P& for the two frequency
components, b, , =(co, —co, ) and b,2=(cob —co2} are the
one-photon detunings between the laser fields and their
coupled atomic transition frequencies, and Q, =pi E p/A'

and Qp=p2'Ebp/A' are the Rabi frequencies. This laser
field could be described quantum mechanically as a prod-
uct of coherent states ~a, ) ~ab ) for the two modes of fre-
quencies co„cob and linear polarizations e„eb, with

a, = t(/n, e ' and E,p=(2irtco, n, /spV)'~ e, (c =a, b)
The matrix elements of p' according to Eq. (1) satisfy

linear coupled equations of motion containing explicit
time-dependent factors of the complex exponential type.
These can be removed using the following transforma-
tions:

where the prime denotes the interaction picture for the
operators. In Eq. (1), S;+=~i+1)(i~ and S; =(S;+)
(i =1,2) are transition operators. The coherence transfer
rate I,2=I 2, which couples the 2~3 to the 1~2 atomic
coherences is given by [3,19,41]

(a) For the ES level case,

ii =Pii =Pii
l~L l~2t & l~ I

—iPL —iA~t lPL lQ)

P2'P1
(co2+ co, )

6&E otic
(2) —2itttL —i(b )+52)t

and is zero when p, , and p2 are orthogonal.
In both cases, Rabi frequencies, detunings, and relaxa-

tion rates [I 2, -(l'»I'22)' ] are small compared to opti-
cal frequencies and are similar in magnitude. Evaluation
of I 21 produces the following selection rules in terms of
angular momentum quantum numbers: b, (Ji 1J2 ),
b(Jz1J3), and M3 —M2=M2 —Mi =+1,0. The I 2i
terms can be ignored in the case of nonequispaced levels
via the application of the rotating-wave approximation of
the second kind (adiabatic approximation) [41,42] since
they couple coherences whose frequencies differ by much
more than an optical frequency. However, for the case of
nearly equispaced levels, these terms cannot be ignored.
In Eq. (1), Ht is the interaction Hamiltonian between the
atom and the driving field(s), given in the dipole and
rotating-wave approximation as follows.

For the ES level case,

—2l ~L
—2l coL t=e e p =g

(b) For the NES level case,

ll Pll Pll

~b I ~2t ~
l ttttb l cOb t

—lf —l k)t, —if —lCO

—i(P +Pb ) —i(h)+52)t
0 13 e ' ' e '

p13
—I (P +Pb ) —I (co + cob )t

P13 ~31

In terms of the o.;, the Bloch equations are almost ex-
actly the same for both the nearly equispaced and the
nonequispaced cases, differing only due to the coherence
transfer rate I 21. The equations may be written in simple
form using suitable scaled variables

+ —iQ&t —iPL iA&t iPLHt= —2ifiQi(Si e 'e —Si e 'e )

+ —I +2t —i PL i 52t
,'iAQ~(S~ —e —'e —S2 e e ), (3)

r=(r„+r„)t, ),= r»+r„'
r22 r21

V2 r +r 721
11 22 11 22

where the laser electric field is Ep sin(coL t +Pt ), which
has an amplitude Ep and a phase PL, 6;= coL

—co;

(i =1,2) are the one-photon detunings and Q; =p.;.Ep/irt

(i =1,2) are the Rabi frequencies. This laser field could
be described quantum mechanically via a coherent state
~aL ) for the mode of frequency coL, linear polarization

eL, , with aL =Tnt e and 'Ep=(2Acot nL /spV)' eL,

For the NES level case,

�

h) Q2

r„+r„' ' r»+r„'
61+h2 5=r»+ r„' r»+ r22

In these scaled variables ~ is the scaled time, y1, y2, y21
are scaled relaxation rates, g„gz are scaled Rabi frequen-
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cies, 4 is the scaled two-photon detuning, and 5 is the
di6'erence between the scaled one-photon detunings.

The Bloch equations are for the ES level case

Bo 33 = —X2~33—
—,'k(g 23+~32»

Bo zz
=rzg33 VI~22 41(~12+gzl)+ 42(g23+g32)

Ba&&

B7
xlgzz+ kl(g12+gzl )2

Bo z3

8'7
= ——'[1+i (b, +5) ]a23 —'g, —g, 32

+ 42(g33+~22)

Bo Iz
2 [71+ (~ ~)]~12+ zeal(~22 ~11)

+ kzg13+3 zlg23

Bo )3
( ,'X—z+-1~)g»+ ,'kl g2-3 ,'k—~—»

and for the NES level case

2 [ Y 1+1(~ ~)]glz+ 241(gzz g 11 )+ 242~13

(9)

with all the other equations the same as in Eq. (8). The
equations for o.3z o.zi and ~3~ c n "e obtained from Eqs
(8) and (9) by complex conjugation. In the case of nearly
equispaced levels, the inclusion of two driving fields of
difFerent frequencies, both of which would be coupled to
both the 1~2 and 2~3 transitions, would lead to 81och
equations with additional terms and for which the time
dependence could not be transformed away on account of
the coherence transfer rate I z, . The presence of such an
explicit time dependence in the Bloch equations will be
considered in a later publication. The numerical tech-
niques used in the present paper for solving the Bloch
equations involve using the result that o.»+o.zz+o. 33
equals unity to convert the Bloch equations (8) and (9)
into eight linear inhomogeneous equations for the
remaining density matrix elements (six coherences and
two populations). The steady-state solutions can then be
found by setting the time derivatives to zero and using
matrix inversion techniques. These steady-state solutions
will then be used to study the populations and coherences
of the atomic levels and thus the squeezing properties of
the emitted fluorescence field.

III. FLUORESCENCE INTENSITY

Populations in the intermediate and upper states may
be monitored experimentally in terms of the intensity of
the fluorescent light emitted. In general, the populations
considered as a function of the detuning 6 are not
Lorentzian and in this section we study the resonance
behavior of the driven three-level ladder system.

Simple analtyic solutions can be obtained for the case

where the excited states have equal decay rates, I » = I zz
and the Rabi frequencies are equal, Q&=Qz. Thus we
have y, =yz =

—, and gl =
gz

=g. For the nearly
equispaced level case, we choose I z&=I »=I zz so that
yz, =

—,'. In the nonequispaced level case, we have yz, =0.
Here the behavior is examined in various intensity re-
gimes for the nearly equispaced level case.

In the weak-field limit (g«1) the populations are
given by Lorentzians

g33( oo )=
( —,'+45, )[—,'+(b, —5) ]

(1O)

g 33(oo )=
( —,'+45, )[—,'+2/ +(b, —6) ]

(12)

gzz( ao ) = (-'+4hz)[1+2(z+(~ ~)z]

[—,'+2/ +(6—5) ]
(13)

This predicts that the one-photon resonance at 4=6
(6,=0) in both the intermediate and upper states is
power broadened by the term 2$ . Also, the intermediate
level is predicted to have a resonance at 5=0, zero two-
photon detuning. This latter efFect is due to the simul-
taneous absorption of two photons of frequencies
coL =coo= —,'(co, +coz) to cause the transition ~1)~ ~3) fol-
lowed by a spontaneous emission of a photon in conjunc-
tion with the ~3)~ ~2) transition. For large one-photon
detunings 5, the first term of (13) near b, =O is approxi-
mately g~/[5 ( —,'+46, ) J with the factor g /5 acting as a
two-photon Rabi frequency.

In the very strong-field regime we find that

g 33( ao ) = —,
' (14)

cr 22( ao ) =
[—'+(b, —5) ]

for the nearly equispaced level case and for all A, 6. This
predicts that the population of the intermediate state
shows resonance behavior when the detuning factors are
equal, 6=5, corresponding to the one-photon resonance
(b, , =O) at the transition frequency ~1)~ ~2). The popu-
lation of the upper state, however, shows resonant
behavior when the detunings are given by 6=0 and
6=5. The first case corresponds to two-photon reso-
nance, the second case to resonance in the intermediate-
state population through which a stepwise excitation to
the upper state occurs. When the levels actually become
equispaced, 5=0, and the situation of two-photon reso-
nance 6=0 coincides with the one-photon resonances at
6=6 and 6= —5.

Various other regimes can also be distinguished. At
somewhat higher intensities we have
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a22( ~ )=—,', (15)

indicating that all three atomic states are equally popu-
lated.

The effects described above can be seen under ap-
propriate parameter regimes, and similar discussions ap-
ply to the nonequispaced level case. However, the physi-
cal possibilities for this system with regard to possible
resonances are much more complex than the previous re-
stricted discussion implies. To discover this, we use the
previously described numerical methods to display the
features. Both the ES and NES cases are considered,
highlighting any differences the additional coherence
transfer rate y2, produces. The effects of differing spon-
taneous decay rates y &, y2 can also be considered.

We begin with the analysis of the populations in the ex-
cited atomic states. There can be striking differences be-
tween the ES and NES cases. Figure 2 shows the
intermediate-state population versus two-photon detun-
ing for the decay rates y&=y2=0. 5, detuning 5=5, and
for increasing equal Rabi frequencies g&=$2=/. Reso-

nances at b, =0 and b, =5 are seen in both the ES and
NES cases, but at higher Rabi frequencies the resonance
at 6=5 is shifted more for the NES case. The resonance
at zero two-photon detuning is in accordance with the
work of Kieu and Dalton [27]. As the detuning 5 in-
creases, the resonances at 6=0 and b =5 become more
resolved and the population in the intermediate state
shows two distinct Lorentzians. This is illustrated in Fig.
3, where the steady-state intermediate-state population
o z2( ac ) is plotted as a function of two-photon detuning 5
for the ES case with the decay rates y&=y2=0. 5, the
coherence transfer rate y2& =0.5, and the much larger de-
tuning 5=50 as compared to Fig. 2. Results for two
equal Rabi frequencies g&=$2=/ are shown. It is seen
that there are two distinct Lorentzians: a broad one cen-
tered at b, =5 (zero lower-transition detuning b, , =0) and
a narrow one centered at b =0 (zero two-photon detun-
ing). There is no resonance at b, = —5 (zero upper-
transition detuning). For large detunings 5, however, al-
most identical graphs apply to the NES level case with

yz& =0 and are not shown.
A more interesting situation emerges as we consider

the upper-state population o33(ac). Figure 4 shows the

CS

~ ~ k ~ 5 ~ S ~ ~ I ~ k ~ ~ ~ S Y
Cl

CS

CV
OIb o

)0
8 I

')'

I -i. .
o
)0
Q

~

~ ~ ~

P

I

5x10~

0.05

0.01

0.1

0.015

0.15

0.02

0.2

E ~ I 0 ~ ~ ~ ~ ~ ~ k ~ S ~ ~ 0 ~ 0 ~o

o

O -~

C)

0

!
~o

0.20.1
~ 0 0 ~ 0 5 ~ ~ 0 ~ ~

0.3 OA 0.5

~ ~ ~ ~ S h ~ ~ ~ h ~ ~ k I ~ 4 ~o-5 0 5 10 15

FIG. 2. The steady-state population o.»( 00 ) of the intermedi-
ate state ~2) as a function of two-photon detuning b for decay
rates y&=y2=0. 5, one-photon detuning 6=5, and for various
equal Rabi frequencies g, =gz=g'. In (a) /= I, (b) /=2, and (c)
/=4. For the ES level case (shown solid line), coherence
transfer rate y» =0.5 and for the NES level case (shown dashed
line), y2& =0.

FIG. 3. The steady-state population o.»( ~ ) of the intermedi-
ate state ~2) as a function of two-photon detuning b, for the ES
level case with decay rates y& =y2=0. 5, coherence transfer rate
y2&=0. 5, and detuning 5=50. R.esults for equal Rabi frequen-
cies g, =g'2=)' are shown for /=2. 0 (solid line) and /=4. 0
(dashed line).
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steady-state population o.33( ae ) for the same parameters
as in Fig. 2. For both the ES and NES cases, there is a
strong resonance at 6=0, but only for a low intensity of
the driving field (/=0. 2) do we observe a weak resonance
at 6=5. Power broadening tends to obscure the latter
resonance. This resonance is significantly more pro-
nounced for larger detuning 6. This is shown in Fig. 5,
where the steady-state upper-state population cr33(ae ) is
plotted versus two-photon detuning 6 for the same decay
rates y&=y2=0. 5 and detuning 5=50 as applies to Fig.
3. Again, results for two equal Rabi frequencies,
g, =$2=/, are shown. Figure 5 applies to the ES level
case with y2&=0. 5 and shows results for the same ranges
of detuning 5 as in Fig. 3. Now we see pronounced reso-
nances at b, =5 (zero lower-transition detuning 5,=0)
and b, =O (zero two-photon detuning), but no resonance
for b, = —5 (zero upper-transition detuning b,z=O).
However, the NES level case with yz&=0 in fact shows a
resonance at 6= —5. This is illustrated in Fig. 6, where
the steady-state population o 33( Oo ) is plotted as a func-
tion of two-photon detuning 6 for the same parameters
as in Fig. 5, but y2& =0. It is seen that resonances at zero

upper-transition detuning are indeed possible even
though their occurrence is by no means apparent from
analytic formulas. This is in accordance with the results
of Salomaa [5]. The above graphs show that in the ES
level case, the coherence transfer process due to y2, de-
stroys this effect.

When I »AI zz the resonant behaviors can be
enhanced or diminished depending on the ratio
a=I z2/I'». This is shown in Fig. 7, where we plot the
steady-state population o zz( ~ ) in the intermediate state
~2) as a function of the two-photon detuning b, for 5=5,
equal Rabi frequencies g, =$2=/=2. 0, and different a.
The normalized decay rates y &, y2 always satisfy
y, +yz= l. Figure 7(a) is for a=10 and there appears
a window instead of a peak in the population distribution
at 6=0. This change in the behavior of the population
in that state ~2) is due to a population trapping in a
coherent superposition of the upper state ~3) and the
lower state

~
1). The population is transferred to the state

~3 ) by the absorption of two photons of the frequency coo

from the driving field, and is trapped in the superposition
state due to its long lifetime, with only a small population
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FIG. 4. The steady-state population o33(oc ) of the upper
state

~
3 ) as a function of two-photon detuning 6 for the decay

rates y&=y2=0. 5, one-photon detuning 5=5, and for various
equal Rabi frequencies g, =gz=g. In (a) g'= 1, (b) /=2, and (c)
/=4. The ES level case with coherence transfer rate y2& =0.5 is
shown with a solid line and the NES level case with y»=0 is
shown with a dashed line.

FIG. 5. The steady-state population o.33(~) of the upper
state

~
3) as a function of two-photon detuuing b. for the ES lev-

el case, with decay rates y&=y2=0. 5, coherence transfer rate
y»=0. 5, and detuning 6=50. Results for equal Rabi frequen-
cies g, =gz=g are shown for /=2. 0 (solid line) aud /=4. 0
(dashed line).
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in ~2 ) . Figure 7(b) for a = 1 shows the familiar resonance
at 5=0. For Fig. 7(c) with a=10, the lifetime of the
population in state ~3) is very short, and we observe a
pronounced peak in the population of the state ~2)cen-
tered at 5=0. Results for both the ES level case with

yz, =(y,y2)' and the NES level case with y2, =0 are
shown in Fig. 7, and both have similar behaviors.

The immediate consequence of population trapping in
the superposition of the lower and upper states is the van-
ishing of the one-photon coherences 1-2 and 2-3 near
b, =O. This is shown in Fig. 8, where the atomic coher-
ences are plotted versus the two-photon detuning 5 for
the same situation as in Fig. 7(a). Figure 8 corresponds
to the ES level case, but the results for the NES level case
are almost the same. The figure demonstrates the ex-
istence of a two-photon coherent population trapping, as
the two-photon coherence 1-3 is large at the resonance
6=0, whereas the other one-photon coherences 1-2 and
2-3 vanish, along with the intermediate state population.

IV. SQUEEZING IN THE FLUORESCENCE FIELD

P =2+e' +P e ' (17)

where

@=cot—k.R+P, (18)

and where we will generally interpret E, P&, etc., as a
specific vectorial component along vector e, unless other-
wise indicated. The operators X', etc., are Heisenberg
field operators at position R and time t.

terest of brevity, only the key results will be given here.
The electric field operator E can be written in terms of

the quadrature components E&,E& ~ &z~ as [29]

E(R, t) =8& cos(cot —k.R+P )

+Ey ( y2) sin(ct)t k'R+P) (16)

The quadrature component of the electric field E& at fre-
quency co, wave vector k, and phase P is defined in terms
of the positive and negative components E*as [29]

A. General squeezing expressions

A full discussion of the expressions used to describe
squeezing is given in our basic paper, Ref. [40]. In the in- Q
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FIG. 6. The steady-state population o.33(oo) of the upper
state ~3) as a function of two-photon detuuing for the NES level
case with decay rates y, =y2=0. 5, coherence transfer rate

y» =0, and detuning 6=50.

FIG. 7. The steady-state population o.z2( 00 ) of the intermedi-
ate state ~2) as a function of two-photon detuning b for detun-
iug 8=5 and equal Rabi frequencies g, =gz= /=2. For various
ratios of decay rates, the ES level case with yz&=+y, y2 is
shown (solid line) and the NES level case with y» =0 is shown
(dashed line). The decay rates are such that y&+y2=1. In (a)
a = y&/y2= 10, in (b) a = 1, and in (c) a = 10 .
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The positive, negative frequency components can be
written in terms of the modes k for the quantum elec-
tromagnetic (EM) field as

E+ =g fi(R)tlat (19)

for the minimum uncertainty state with equal variances

«&', & l&[&,P-]&l. (22)

Here, the variances & b.Q ) and the mean & Q ) are
defined as

where

=(E )', (20) &b,Q )=Tr[(Q —&Q)) k(0)],
&Q) =Tr[Q&(0)],

(23)

(24)
1/2

ik~.R
e e&, (21)

(C)

and where mode k has wave vector k&, frequency co&, and
polarization vector e&. 8& and && are the annihilation,
creation operators, obeying the usual Bose commutation
rules. If there are source atoms present, the formal solu-
tions of the Heisenberg equations of motion for the an-
nihilation, creation operators will involve atomic opera-
tors.

The quadrature component 2& of the total EM field is
said to be squeezed relative to the other quadrature com-
ponent P& ( &z) if the variance & b,S'& ) is smaller than

where k(0) is the initial density operator for the quan-
tum EM field and its sources.

Note here that we are referring to squeezing in the to-
tal geld. Measurements of such squeezing generally in-
volve beating the field under study with a strong local os-
cillator field of frequency co, wave vector k, and phase
P—a homodyne or heterodyne experiment. This would,
of course, be a dificult experiment but can, in principle,
be carried out as described by Mandel [29a].

Again it must be emphasized that we do not calculate
the so-called squeezing spectrum [30]. This quantity in-
volves a preliminary frequency filtering of the total field
and then a homodyne or heterodyne measurement. Al-
though the squeezing spectrum is easier to measure and
describes certain aspects of squeezing, it is not relevant to
the squeezing in the total field that is studied here.

The criterion for squeezing is that the normally or-
dered variance must be negative,

&:b,22~. & (0, (25)

CVo
where the normally ordered variance of the quadrature
component P& is given by

~ s I I ~ ~ s I

M ci
LLj

QJ
Q
QJ nl

CS

O
(3

(b) .

E=E~+E~,
-where

(27)

(26)

The electric-field operator E can then be expressed as
the sum of a free field term E~ -and a source field term Es
[41] given in the electric-dipole interaction approxima-
tion as

CS

CS

Cl-5

E~=gfi(R)&i(0)e +H. c. ,

with fi (R) given by (21), and

p~ [t —(IR—R& I &c)]

4 ~ ~R —R

[R—R, [

xO (29)

FIG. 8. The steady-state atomic coherences as a function of
the two-photon detuning b for detuning 5=5 and a=10 as in
Fig. 7(a). The coherence ~o, 3~ is shown in (a), ~o, 2~ in (h), and
~a z3~ in (c). Only the ES level case is shown, since the results for
the NES level case are almost the same.

For the source field, the sum in (29) is over different
atoms A whose position is at R~ and whose electric-
dipole operator is p, z. 0 is the usual Heaviside function,
zero for negative argument, unity for positive argument.

In the case where the atoms are driven by a field whose
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classical amplitude is zero at the detector, and in the
Dicke model situation where the atoms are all located
within a region about the origin which is small compared
to the transition wavelength, the normally ordered vari-
ance in the total field equals the normally ordered vari-
ance for the source jield [40]. Squeezing for the total field
hence requires the normally ordered variance for the
source field to be negative. Thus

(:&&q.) =(:&&qs.),

The A,"= li ) (jl are atomic transition operators and

d;J = &i fp& Ij ) are dipole matrix elements of the electric
dipole operator )ft}„ for the 3 atom. The atomic states
li), lj) have energies fico;, ftcoJ and i &j signifies that
co ' )coj These expressions are to be used in the forth-
coming treatment of the fields produced by the three-
level atoms.

B. Three-level ladder system

and

with

(31)

For the case of a single three-level ladder system at
Rz =0 and with dipole matrix elements
(3ld el2), (2ld. el 1 ) assumed equal ()M), and the atomic
transition frequencies co2, ~& assumed approximately the
same (co },the source field is given by

& aX", ),.„„.„„,.„=pl f, el'&0 .
A. X's+ =~(A„+A„), (36)

The normally ordered variance (:b,P&s. ) of the source
field given by

+(&u )-&u; &'}.-"
+2(( ~ ) —( ) ( ) ), (33)

where Ps, Es are the positive, negative frequency com-
ponents.

In the asymptotic regime where the field detectors are
located, we can find that to a good approximation and
correct to the lowest inverse power of the atom-detector
distances IR—Rz I, for the component along a unit vec-
tor e which is perpendicular to R—R z and for
t & IR—Rz I/c, the following expressions [41] for the
positive and negative frequency components:

co;e'd; A; [t —( IR—R. I /c) ]

4~E,c „ IR—R~ I

2X
i)j

(34)

co; e d; A,"[t—(IR—R„I/c}]

(35)

with

K co )M /4&sac R (37)

&&+')

K

&&, ')*
K

P3i ~ (38)

P32+P2i ~
K K

(g-g+)
P33+P22 ~

K

(39}

in conjunction with (33), and with the transformations (5)
and (6).

For the NES level case, we obtain

The retarded time t —R/c is implicit in the transition
operators. This expression is a special case of Eq. (34)
and of the case treated in earlier work [40]. In the nota-
tion of [40] c =s = I/v 2, ic=K/')/2 and (co )M)=co )M.

As we now consider a single-atom system, the superscript
A will be dropped for simplicity.

The norinally ordered variance for the P&s quadrature
component of the source field can then be evaluated using
the results

.~ &2~~ps ) i(p +pb) —i(t0 +tot, )—t —' ipt, —icobt' ip —ito —t

2
=[e ' ' e ' ' (7» —(e 'e ' cr32+e 'e ' o2, )~]ei'~

K

i((() +pb ) i(co +tab)t' ipt, icot t' i(i iso t'
+[e ' e ' o)3—e e o~3+e 'e ' o. ,2 ]e

l ttb icOb f lP l CO

+2[(T33+cr22—l(e 'e ' cr32+e 'e ' (T2))l'], (41)

where t'= t —R /c, and t' is implicit in the density matrix
elements o;J. For the ES level case, P„gb~PL and co„
cob —+coL in (41). In both cases, the normally ordered
variance contains oscillating terms. As @=cot—k R+P,

the time-independent part of the quadrature phase
+X'i [cd

—(1/2)(g +Pb )—k. ]
dependence will be of the form e

2l(p —
pL

—k R)
for the NES case and e for the ES case.
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&:az'„:&

K opt/

= —2I ~3i —(~3,+~21)'I

siil(co coL, ) T
(co ~L )T

+2(a 33+(7» l(732+o 2il ), (42)

where the cr; will be the steady-state values o, ( ~ ). This
expression is a well behaved function of the time interval
length T and the di6'erence frequency (co —coL ). Optimiz-
ing with respect to P first, then time averaging, produces
a diS'erent result, since the optimum P depends on
(CO ML )t .

For co&coL, the choice of a long observation interval
T» (co —

coL )I
' (associated with the well known exper-

imental time-frequency uncertainty principle) results in
the firs't term becoming essentially zero, leaving behind
the second term which is positive and hence cannot give
rise to squeezing. On the other hand, for ~=col, the
modulus of the last factor or in the first term is equal to
unity for all T, resulting in a negative term that could
produce squeezing. Similar considerations apply in the
NES level case.

In the ES level case and with ~=coL, the time-
averaged optimized normally ordered variance is

&:~Ebs:&

K
= —2I ~31—(~32+~11)'

opt/

+2(~»+~» —l~»+~»l') . (43)

Both one- and two-photon coherences are involved.
For the NES level case and with co= —,'(co, +cob), the

time-averaged optimized normally ordered variance is

&:az'„:&

K opt/

+2(o 33+o» Io 3~I'—

and for m =co,

Choosing the quadrature wave vector k along R gives
k R=coR /c, so that all the time dependence involves the
retarded time t'.

Time averaging over a suitably long time interval is
carried out for the normally ordered variance, removing
uninteresting oscillatory terms and transient effects. It
must be emphasized that such time averaging does not, of
course, create squeezing in the steady state where it does
not occur. The time-averaged normally ordered variance
is then optimized with respect to the quadrature phase P.
The quadrature frequency ~ is then suitably chosen to
optimize the prospects of obtaining squeezing.

For the ES level case, time averaging the normally or-
dered variance over the interval 0 to T (T» I," ') and
optimizing the choice of quadrature phase P gives

K opt/

+2(~ 3
—l~»l') . (45)

Note the involvement of the two-photon coherence o.
3$

for the co= —,'(co, +coi, ) case but only one-photon coher-
ences for the co=co, case.

For the ladder case, alternative descriptions of the
states via transformations of the form

l'&=c„ll &+c„l3&,
I2'& = I2&,

13'& =c„ll&+c„3&,

(46)

(47)

(48)

C. Results

Our numerical studies are confined to the steady-state
regime and based on Eqs. (43), (44), and (45) for the time-
averaged normally ordered variance (NOV for short) of
the optimally chosen quadrature component in units of K
at appropriate quadrature frequencies, for both the ES

are not useful, as they are in the lambda and vee cases
I:40].

In all cases, we have referred to the atomic density ma-
trix elements as follows. The one-photon atomic coher-
ences are p, ~,p2„p23, p32, the two-photon atomic coherences
aI e p $ 3 p3 &, and the populations are p & &,pz2, p33 The ap-
propriateness of this terminology describing atomic den-
sity matrix elements as "n-photon atomic coherences"
follows from an examination of the response of two- and
three-level atoms prepared in phase-dependent initial
states and considered as detectors of the EM field. For a
two-level atom detector, Barnett and Pegg I43] show that
the detector response associates the one-photon atomic
coherences with the one-photon correlation functions for
the field &P (t) &. For a—three-level atom detector, Dal-
ton and Knight I44] show that the detector response as-
sociates the two-photon atomic coherences with two-
photon correlation functions for the field & P'(t, )P "(t2) &

(s, r =+, —).
The possible states of the atomic system are specified

by the atomic density matrix and the five distinct types of
states are illustrated in Fig. 9. Note that since the state
may change with time, a state with two-photon coherence
could become a state with a single one-photon coherence.

As we have seen in (41), the phase dependence of the
variance of the source field quadrature component (and,
of course, its time average) for the ladder system depends,
in general, on both one-photon coherences and two-
photon coherences. In other words, various types of
source-field squeezing can be distinguished, depending on
which coherences are nonzero for the source-field state in
question. These are illustrated in Fig. 9 also.

In situations where squeezing occurs, we shall ascer-
tain which atomic coherences are significant and desig-
nate the type of squeezing in accordance with Fig. 9. As
we will see, two distinct types of squeezing occur in
ladder systems.
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FIG. 10. The optimized normally ordered time-averaged

variance ((:bX'&s.) /a ),~«as a function of two-photon detun-
ing 5 for the ES level case and the quadrature frequency co= coL .
The decay rates are y &

=
y& =0.5, coherence transfer rate

y»=0. 5, and the detuning 5=10. Results for various equal
Rabi frequencies g, =gz=g are shown; /=0. 2 (solid line),
/=0. 5 {dashed line), and g= 1.0 (broken line).

FIG. 9. The distinct states and types of squeezing for three-
level systems. A large dot indicates a nonzero density matrix
element.

and NES level cases. The results for the steady-state
values of the density matrix elements are obtained from
Eq. (A7).

Figure 10 shows the NOV versus two-photon detuning
for the ES level case with quadrature frequency co=~L
for the decay rates yl=y2=0. 5, coherence transfer rate

yz, =0.5, detuning 5=10, and various equal Rabi fre-
quencies g, =gz=g. Here we see significant squeezing at
6=0, corresponding to zero two-photon detuning and
near 6=5, corresponding to zero lower-transition one-
photon detuning A&=0. The squeezing near 6=0 gets
larger as the Rabi frequency increases, as does that near
5=5 for small Rabi frequencies. For 1arger Rabi fre-
quencies, the squeezing near zero lower-transition one-
photon detuning has a double minimum corresponding to
the one-photon Rabi splitting of the dressed atom energy
levels. Figure 11 shows the steady-state atomic coher-
ences versus two-photon detuning for the same situation
as in Fig. 10 and with Rabi frequency /=1. 0. Thus we
see that for the squeezing near 6=0, the two-photon
coherent ~o, 3~ is large, the one-photon coherence ~o. ,z~ is
significant, but diminishing. This is a mixed situation of
two-level —three-level squeezing. On the other hand, near
b, =5 only the one-photon coherence ~o. ,z~ is large and
this is a case of two-level squeezing.

The squeezing status near zero two-photon detuning
changes significantly if we change the one-photon detun-

ing and the Rabi frequency. Figure 12 shows the NOV
versus two-photon detuning for the ES 1evel case with
quadrature frequency co=col, for the same decay and
coherence transfer rates as in Fig. 10, but with detuning
Q =500 and with equal Rabi frequencies g &

=
gz

=g =5.
Again, squeezing occurs near 6=0. Figure 13 shows the

e ~ ~ ~ eCI

CP

in cv

g ci

8

0 10 20

FIG. 11. The steady-state atomic coherences as a function of
two-photon detuning 6 for the ES level case with decay rates
y& =ye=0. 5, coherence transfer rate yz& =0.5, detuning 5=10,
and equal Rabi frequencies g&

=
gz =g = 1. The coherence

~

o', 3 ~

is shown {solid line), ~o, z~ (dashed line), and ~oz, ~
(broken line).
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FIG. 12. The optimized normally ordered time-averaged

variance ((:bP&s.)/a. ),p«as a function of two-photon detun-
ing 6 for the ES level case and for quadrature frequency co =coI .
The decay rates are y &

=y, =0.5, coherence transfer rate

y» =0.5, and the detuning 6=500. The equal Rabi frequencies
are g, =&2=&=5.

FIG. 14. The optimized normally ordered time-averaged

variance ((:EP&s.)/I~ ),~«as a function of two-photon detun-

ing 6 for the ES level case and for quadrature frequency co=cuL .
The decay rates are y &

=
y&

=0.5, coherence transfer rate

y» =0.5, and the detuning 5=500. The equal Rabi frequencies
are g, =g, =g= 20.

steady-state atomic coherences for the same situation as
in Fig. 12. In this case, only the two-photon coherence
c7 ]3 is large near 6=0 and we essentially have a situation
of three-level squeezing.

Figure 14 shows the NOV versus two-photon detuning
for the same ES level case as in Fig. 12, but now with
even larger Rabi frequencies g, =$2=/=20, though with
the same one-photon detuning 5=500. Here we see that

the squeezing has a double minimum near 4=0 corre-
sponding to a two-photon Rabi-frequency splitting of
dressed atom levels based on ~1), ~3). In this case, the
two-photon Rabi frequencies -(20) /500-0. 8, so here
we see the two-photon analogy of the splitting effect near
6=5 (zero one-photon detuning) seen in Fig. 10. Figure
15 shows the steady-state atomic coherences for the same
situation as in Fig. 14. Again, only the two-photon coher-

IA
Clz Q K

O
CP

~ s ~ ~ ~ Q ~ ~~
-10 0 10

FIGs 13. The steady-state atomic coherences as a function of
two-photon detuning 6 for the ES level case with decay rates

y& =y&=0.5, coherence transfer rate y» =0.5, detuning
5=500, and equal Rabi frequencies g&=$2=/=5. The coher-
ence ~o „~ is shown (solid line), ~cr&z~ (dashed line), and ~o»~
(broken line).

FIG. 15. The steady-state atomic coherences as a function of
two-photon detuning 6 for the ES level case with decay rates

y &

=y2=0. 5, coherence transfer rate y» =0.5, detuning
5=500, and equal Rabi frequencies g, =$2=/=20. The coher-
ence /o „/ is shown (solid line), /a, z/ (dashed line), and /o23/

{broken line).
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ence is large and we have a situation of three-level
squeezing.

Figure 16 shows the NOV versus two-photon detuning
for the NES case with quadrature frequency
co= —,'(ni, +cob) for the decay rates y, =y2=0. 5, coher-
ence transfer rate y2, =0, detuning 5=10, and for various
equal Rabi frequencies gi =$2=/. Here we see significant
squeezing near two-photon resonance 6=0, which gets
larger as the Rabi frequency increases. For the same situ-
ation as in Fig. 16 and with Rabi frequency g =1.0, Fig.
17 shows the steady-state atomic coherences versus two-
photon detuning. Near the squeezing regime at 6=0 the
two-photon coherence is large and the one-photon coher-
ence ~cr, z~ is still significant, but decreasing and the other
one-photon coherence ~o z3~ is negligible. This situation is
a mixed one of two-level —three-level squeezing. Howev-
er, if the one-photon detuning and the Rabi frequency are
altered, a situation of pure three-level squeezing can be
obtained near zero two-photon detuning, just as for the
ES level case. For example, the parameter choice
y, =y2=05, yz, =0, 5=500, and g, =gz=g=5 pro-
duces, near 5=0, graphs similar to those shown in Figs.
12 and 13, and the parameter choice y &

=y2=0. 5,
y2i=0, 5=500, and pi=$2=/=20 yields graphs almost
the same as those presented in Fig. 14 and 15. In the in-
terest of brevity, these graphs are not shown.

Squeezing properties of the Auorescence 6eld for the
NES case strongly depend on the quadrature frequency
co. Figure 18 shows the NOV versus two-photon detun-
ing for the NES case but with quadrature frequency
co =co„ for the decay rates y, =y2=0. 5, coherence
transfer rate y2&=0, detuning 6=10, and various equal

~ W 0 ~ ~ 0 ~

CS

Cl L

10 20

Rabi frequencies g, =gz=g. Again, we see significant
squeezing around 6=6, corresponding to zero lower-
transition one-photon detuning 6&=0, but there is no
squeezing near 6=0, zero two-photon detuning. For
small Rabi frequencies the squeezing is largest at 5=6,
whereas for larger Rabi frequencies the squeezing has a

FIG. 17. The steady-state atomic coherences as a function of
two-photon detuning 6 for the NES level case with decay rates
y, =y2=0. 5, coherence transfer rate y»=0, detuning 5=10,
and equal Rabi frequencies g, =g'3=/=1. 0. The coherence

~
(7 $3 ~

is shown (solid line),
~
cr, 3 ~

(dashed line), and
~
cr,3 I (broken

line).
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FIG. 16. The optimized normally ordered time-averaged

variance ( (:hP&s. ) /«), ~«as a function of two-photon detun-
ing 6 for the NES level case and for quadrature frequency
~= —,'(~, +~b). The decay rates are Z, =&2=0.5, coherence
transfer rate y»=0, and the detuning 5=10. Results for vari-
ous equal Rabi frequencies g, =g'z=g are shown; /=0. 2 (solid
line), /=0. 5 (dashed line), and g= 1.0 (broken line).

FIG. 18. The optimized normally ordered time-averaged

variance ( (:bP &s. ) /«), «as a function of two-photon detun-
ing 5 for the quadrature frequency co=co, and for the NES level
case. The decay rates are y& =@2=0.5, coherence transfer rate
y2& =0, and the detuning 5= 10. Results for various equal Rabi
frequencies g, =/3=A are shown; /=0. 2 (solid line), /=0. 5
(dashed line), and g= 1.0 (broken line).
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double minimum, corresponding to the Rabi splitting of
the dressed atom energy levels. For /= 1, the atomic
coherences are as in Fig. 17 and we see that only ~o &z~ is
large when squeezing occurs, indicating that the squeez-
ing is of the two-level type.

In the present work, the largest squeezing obtained has
((:A~&s.)/tr ),~«= —0.2 (see Fig. 14) for the regime of
zero two-photon detuning, where the squeezing shows a
predominantly three-level character. In our general
study for the optimum squeezing in three-level systems
[40] (and for which we also had c =s = I/&2), the op-
timum value of ((:b,P&s. ) )/tc ), «was approximately—0.41. Although in this case purely three-level squeez-
ing was obtained, the optimum value for squeezing was
not, in fact, reached for the specific resonance Auoresence
process and the parameter choices studied here.

It should be noted here that the squeezing properties
near two-photon resonance are similar to the multiatom
squeezed states recently discussed by Barnett and Duper-
tuis [32]. They have shown that two two-level atoms can
radiate squeezed light even when the expectation values
of the dipole moments are zero. This effect is due to a
nonvanishing expectation value of the square of the col-
lective atomic operators. In fact, the system of two two-
level atoms, under some conditions [45—48], is equivalent
to the three-level ladder system and the square of the col-
lective atomic operators corresponds to the two-photon
coherences.

V. SUMMARY

In this paper, we have studied the two-photon proper-
ties of resonance fluorescence emitted from a coherently
excited three-level atoms with a ladder configuration of
energy levels. In such a system, two-photon absorption
greatly modifies the steady-state populations of the atom-
ic levels and the atomic coherences. In particular, we
have shown in the steady state that in addition to the
well-known resonant behavior of the upper-state popula-
tion centered on zero two-photon detuning, the inter-
mediate state also exhibits the same resonance. This
behavior changes the fluctuation properties of the Quores-
cent light and leads to unusual three-level squeezing
properties near two-photon resonance. This squeezing is
not present in the A- and V-type atoms, and is inherent
three-level squeezing. Moreover, squeezing near two-
photon resonance increases with the intensity of the driv-
ing field and attains its maximum value for moderate in-
tensities and large one-photon detunings. This is in con-
trast to the squeezing behavior near one-photon reso-
nance, where squeezing is largest for a weak driving field.
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