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Propagation effects and ultrafast optical switching in dense media
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We investigate ultrashort pulse propagation in a dense medium of two-level atoms. We numerically
solve the coupled nonlinear Maxwell-Bloch equations by assuming that the fields are slowly varying in
time only. We find that while intrinsic optical switching of the atomic inversion persists in extended
media, self-phase-modulation efFects, coherent energy transfer, and rejections can be large even for films
that are only a small fraction of a wavelength thick. If the propagation distance is sufficiently large, a
physical boundary that separates fully excited atoms from atoms in the ground state can be created
within the medium. In turn, this leads to a rapid spatial modulation of the nonlinear polarization, and a
deterioration of the intrinsic optical switching mechanism. We then show that, although the slowly
varying envelope approximation in space may be preempted by the fast longitudinal variation of the field
and atomic variables, the mean-field approximation remains valid in the regime of ultrafast optical
switching, provided the film thickness is sufficiently small such that the medium is nearly uniformly excit-
ed. These results are generated by utilization of our calculational method that fully accounts for the lon-
gitudinal dynamics of the fields, including reAections.

PACS number(s): 42.65.Pc, 42.50.Hz, 42.50.Fx, 42.65.Re

I. INTRODUCTION

Under suitable conditions, an electromagnetic wave
impinging on a medium composed of two-level atoms or
molecules can induce near-dipole-dipole (NDD) interac-
tions [1—5]. If the density is such that on average there
are many atoms per cubic resonance wavelength, then
NDD interactions, or local-field effects, can no longer be
ignored, as would be the case for more dilute media.
NDD effects necessitate a correction to the macroscopic
Geld that couples to an atom in terms of the macroscopic
field and volume polarization. This is caused by the in-
teraction with other atoms that reside within a volume of
the order of a cubic wavelength. The field contribution
from these near dipoles manifests itself in the renormal-
ization of the Geld-atom frequency detuning by an
amount proportional to the atomic inversion [4,5]. The
importance of NDD interactions has been highlighted re-
cently where, for instance, dense media have been shown
to exhibit intrinsic optical bistability in the steady-state
regime [4,5], invariant pulse propagation (solitons) [6], ul-
trafast intrinsic optical switching for ultrashort incident
pulses [7,8], an order-of-magnitude index of refraction
enhancement, piezophotonic switching and gain in sys-
tems that exhibit lasing without inversion [9]. Recently,
intrinsic optical bistability has been demonstrated experi-
mentally by Hehler et al. [5].

In a recent study it was shown that if an ultrashort
pulse is allowed to interact with a thin film of optically
dense two-level systems, in such a fashion that propaga-
tion effects can be ignored, medium response is character-
ized by a rapid switching effect [7]. This behavior is both
quite uncharacteristic and more remarkable than the
response of conventional two-level systems because the
medium can only be found in one of two states: fully in-

verted, or in the ground state, depending on the initial
conditions and the ratio between the peak field strength
Eo and the near dipole-dipole coupling strength c., which
we will define below. For values of Eo ls smaller than 1,
the medium returns to the initial state after the pulse has
passed. If this ratio is near unity, the medium would be
fully inverted if the initial state were the ground state.
Larger values of this ratio would cause the final state of
the inversion to switch between complete excitation or
complete deexcitation, giving rise to a nearly square-wave
pattern as a function of Eo IE. However, the first in-
stance of a full state of inversion always occurs when the
ratio is nearly unity. This feature was found to be imper-
vious to changes in pulse shape, and independent of pulse
area [7]. This behavior is depicted in Fig. 1 (solid line),
where the final steady-state value of the inversion is plot-
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FIG. 1. Steady-state value of the inversion as a function of
the ratio Po/s, without (solid) and with (dashed) a small posi-
tive static detuning. These values are recorded after the Gauss-
ian pulse of Eq. (7) traverses the medium.
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ted as a function of the ratio E0/e.
Although the nature of the interaction had previously

been studied in different regimes, this behavior had not
been predicted and its appearance was quite surprising.
In a later study, it was shown that the switching mecha-
nism comes about as a result of an adiabatic following
type of behavior, that causes the inversion to switch be-
tween the real roots of a quartic equation [8]. The stable
analytical solutions for the final state of the inversion
were found to be consistent with the numerical results of
Ref. [7]. The behavior of the system was shown to be
similar to that of adiabatic inversion by induced frequen-
cy chirp [10],except that in this case the frequency chirp,
and hence adiabatic inversion, are intrinsic.

Medium response of this kind is important for several
reasons. First, the phenomenon is ultrafast since ul-
trashort pulses are used to excite the medium. Second,
the existence of only two final states suggests switchlike
characteristics, with the welcome advantage that dissipa-
tive energy loss is virtually zero when compared to other
switching mechanisms based on ordinary optical bistabili-
ty. Third, the inversion characteristics are independent
of pulse area, that is, exclusive use of m pulses in order to
achieve full inversion of conventional two-level systems
can be replaced by arbitrary pulses that require only that
the ratio ED/s= i. Finally, the NDD interaction alters
the system's quantum coherence properties, leading to
many new effects in quantum optics [4—9], such as
modified lasing without inversion [9].

Previous studies were based on the assumption that
propagation effects in a dense medium could be ignored
[7,8]. Our goal in this paper is to examine the possibility
of intrinsic optical switching and overall medium
response under more realistic circumstances, namely, in
media that are assumed to be finite in length. In reality,
propagation always plays a role, and eventual compar-
isons with experimental results require that propagation
by part of any theoretical investigation. Other workers
have previously investigated propagation effects in dense
media, and have highlighted the importance of reAections
[11]. However, these studies were not performed in the
limit of intrinsic optical switching, where field amplitude
and c are large and can be on the same order of magni-
tude. The mean-field approximation was also adopted in
those studies, and phase-modulation effects of the field
were ignored. We will show below that although intrin-
sic optical switching still occurs, a state of nearly full in-
version throughout the medium can be sustained only if
the film is a small fraction of a wavelength. We also find
that the slowly varying envelope approximation in space
for the Maxwell field cannot be used in these systems be-
cause rapid field amplitude variations, strong self-phase
modulation effects, large reAections, and coherent energy
transfer all occur well within a small fraction of a wave-
length from the entrance of the medium. In general,
then, the mean-field approximation cannot be used for
these systems, euen if the condition L «A, is satisfied,
where L is the length of the sample. However, we will
show that if the medium can be excited uniformly in its
entirety, and film thickness does not exceed —,

' of the in-

cident wavelength, then the mean-field approximation

remains a useful tool, although it is not generally applica-
ble for thicker films. The results that we present in the
sections that follow were brieAy pointed out elsewhere
[12], but here we expand the discussion to highlight the
extremely complex and rich dynamics of the system.

II. MODEL
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We have imposed the slowly varying amplitude and
phase approximations in time (SVEAT) only. Here W is
the atomic inversion, P =2NpR is the effective polariza-
tion of the medium, E is the complex macroscopic
Maxwell field envelope, s=4~p X/3A' is the strength of
the near dipole-dipole coupling, p is the atom s dipole
moment, A is Planck's constant divided by 2m. , and N is
the atomic density. We have taken the linear refractive
index of the host medium to be unity, and chosen
k =m/c. This choice implies that all phase modulation
effects that ensue from propagation are contained in the
field envelope function.

For simplicity, we have also assumed that the incident
field is resonant with the single atom transition frequen-
cy, and that longitudinal and transverse relaxation rates
can be ignored due to the ultrashort nature of the in-
cident pulse. We now scale the time with respect of the
optical period in the medium, that is, rz =A, /c, such that
r=t/~~ If we scale. the longitudinal coordinate such
that g=z/A, , where A, is the wavelength of the radiation
field in the host medium, we can then write

aw i(P*R —ER '),—
a7. (4)

BR . .ES'
(5)

a~
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where P=p, r~E/A is the scaled field, and s=er~ is also
scaled by r . We note here that s also appears in Eq. (6)
as a propagation constant, and therefore its importance
in this and many other systems cannot be overstated.

(6)

Our analysis of the dynamics of the Maxwell-Bloch
equations is different in that an alternative beam propaga-
tion method is employed to solve the second-order propa-
gation equation [13]. We consider the full dynamics of
the fields along the longitudinal spatial coordinate. We
only retain the slowly varying envelope approximation in
time, since incident pulses are assumed to be on the order
of 100 optical cycles or more. We assume the incident
field is of the form X=—,'[E(z, t)e'"' "+c.c.], where E
is the field envelope that varies slowly in time only. The
modified optical Maxwell-Bloch equations take the form
[4,5]
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Equations (4), (5), and (6) are solved simultaneously for
the field and the atomic variables. The method we em-
ploy is straightforward because one need only specify the
location of an arbitrary number of boundaries, or a sud-
den density change as in our case, and not the boundary
conditions associated with the field and its derivatives
[13]. These conditions are embedded in the propagation
equation and they are implicitly accounted for.

III. RESULTS AND DISCUSSION

We now specify a typical system by taking the incident
wavelength to be A, =10 m. Then a picosecond pulse
corresponds to a pulse nearly 100 optical cycles (or wave-
lengths) at the waist. We also assume that the initial field
is centered at /=go, and that for simplicity it is real and
Gaussian in shape, that is,

—[(g—
g ) f25 jE(g 0)=E e (7)

This field has a spatial spread of more than 100 optical
cycles at the waist, and it is consistent with the slowly
varying envelope in time assumption. We first integrate
Eqs. (4)—(6) in the limit that the medium has essentially
zero thickness, and for the conditions that the peak value
of the field equals the dipole-dipole coupling coe%cient,
Eo=c=0.2. We find that the medium is fully inverted
after the pulse has passed, consistent with previous
findings [7,8]. We assume that E=0.2 in what follows,
unless we state otherwise.

A. Propagation in Slms of finite length

We now consider films of nonzero thickness. Our in-
terest here is to investigate the highly nonlinear medium
response that is coherently excited by a short pulse.
When the pulse is still approaching the medium, the
atoms are initially detuned by an amount —c8' at ~=0,
that is +c for 8'= —1. This constitutes a static blue-
shift. Equation (5) then suggests that the evolution of the
inversion leads to a time varying shift of the resonant fre-
quency. This is also equivalent to an intrinsic time vary-
ing detuning that constitutes a redshift to saturation. If
we ignore for the moment the coupling to the Maxwell
field, these considerations lead to the intrinsic optical
switching discussed previously [7,8]. The final state of
the inversion is either the ground or the excited state,
with the first occurrence of a periodic square wave of 8'
vs Eo/E centered about Pole. = 1.

Although the features of the square-wave pattern of 8'
vs Eo/E were found to be stable to changes in pulse width
and pulse shape, slight distortions in the shape of the ex-
citing pulse, or a nonzero static detuning, could lead to a
shift, a widening, or a shrinkage of the peaks [7,14]. This
means that maintaining the ratio Pole=1 does not
guarantee a final full state of excitation of the medium.
However, the medium can still be fully excited for a
range of values whose ratio is higher, or lower, than 1,
depending on the sign of the detuning. We show this
effect in Fig. 1 (dashed line), where we plot the steady-
state value of the inversion after a Gaussian pulse
traverses a thin medium, with a small positive static de-

. E 8'
R =i(P eW)R—i—

2

~= —ilEI(R —R") . (10)

Both amplitude and phase can still be taken to be slowly
varying functions of time, but are allowed to vary rapidly
in space. Equations (9) and (10) therefore suggest that
self-phase-modulation effects can indeed contribute
significantly to the evolution of the Bloch variables, by
inducing a quite complicated spatiotemporal shift of the
resonance. In fact, these effects may cause a dynamic
shift of the peaks shown in Fig. 1, or may even preempt
their formation. Full excitation of an extended medium
can still be obtained, but the ratio X'o/s approximately
unity may not be sufFicient. Sample length is extremely
important because it not only determines bulk re6ection
and transmission coefficients, along with the dynamics of
the field inside the sample, but also the location, width,
and perhaps the existence of the peaks of Fig. 1.

B. Qnasiadiabatic inversion: field dynamics
and material response

We now quantify our discussion by considering a film
whose thickness is approximately 0.025K. We observe
that the entire medium can be inverted if Eo/E= 1. l.
Now, the inversion is not stationary in time due to the in-
ertia acquired by the Bloch vector and also in part due to

tuning, 6=co—~„where co„ is the single atom transition
frequency. We see that although the mean features are
unchanged, the first peak is reduced in magnitude. The
first peak eventually disappears with increasing detuning,
and an overall shift of the peaks to the right occurs. If
the detuning were negative, the peaks would shift to the
left [14]. This effect is explained in terms of the adiabatic
following model of Ref. [8], and for further details on the
effects of pulse distortions we refer the reader to Refs.
[7,14].

If the Maxwell field is now allowed to couple into the
dynamics, and the medium is initially in the ground state,
the field effectively couples to a medium that is initially
detuned by an amount +8 in this case as well. However,
because the phase shift imparted to the field upon
reAection is of order m. , and because nonlinear dispersion
and coherent energy transfer to and from the medium are
significant, the pulse cannot simply pull the medium into
resonance as in the case of thin films. That means that
strong self-phase-modulation effects govern the dynamics
of the system, leading to significant changes in the evolu-
tion of the Bloch vector. One can easily realize this if the
Maxwell-Bloch equations are recast explicitly in terms of
a general field amplitude and phase. That is, by writing
the field as X=—,'[~P~e'("' "' ~'i")+c.c.], and the field

envelope function as

E=E„+iE,=~E~e '~'~' (8)

where E„and E; are the real and imaginary components
of the field, respectively, and performing the rotating-
wave approximation [10], Eqs. (4) and (5) can be rewrit-
ten as
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radiation reaction that couples all atoms within the
prescribed volume. This means that in contrast to the
thin-film case, the medium cannot be sustained in the ex-
cited state for times that are much longer than the dura-
tion of the pulse, as our calculations show. Therefore, we
define a final state of inversion with respect to the width
of the incident pulse, i.e., we allow most of the pulse to
exit the medium in order to determine that most of the
population still resides in the excited state across all the
sample.

Figure 2 depicts the time evolution of the inversion
(solid line), real (dashed line), and imaginary (dotted line, )
components of the polarization at the entrance of the
medium. Everywhere inside the medium these dynamics
are similar because the entire sample is excited to nearly
the same level. Figure 3, on the other hand, shows the
real (solid line) and imaginary (dashed line) components
of the field that excite the medium response depicted in
Fig. 2, which include both forward and backward propa-
gating modes. While these figures suggest that the medi-
um can still be said to undergo quasiadiabatic inversion
[8], the temporal evolution of both quadratures of the
field that is shown in Fig. 3 reveals the dynamics that in
reality drive the interaction. The long-time behavior of
the curves in Figs. 2 and 3 suggests that energy that is
temporarily stored in the medium is slowly released back
into the field. While the medium becomes almost com-
pletely inverted at first, photons are eventually reemitted.
However, in this case the medium undergoes quasiadia-
batic inversion, and it is able to store the energy provided
by the input pulse for some time. In contrast, Figs. 2 and
3 should be compared to Figs. 4 and 5, where we show
medium response and field dynamics, respectively, with
Po/a= 1.05. Although the medium initially becomes
nearly fully excited in this case as well, the medium of
Fig. 4 is not sustained in the excited state for any
significant length of time. As a result of this coherent ex-
citation and rapid deexcitation, photon s are quickly
reemitted and add to the total field, which in turn is
strongly modulated, as Fig. 5 shows. The difFerences in
the fields of Figs. 3 and 5 strongly hinge on self-phase-

0.25

~~ 0.15
LLI

IJ

0.05

-0.05
40 80 120 160

FIG. 3. Time evolution of the real (solid line) and imaginary
(dashed line) components of the field that cause the medium
response of Fig. 2.

1.0

modulation effects, and are both quantitative and qualita-
tive, as a direct comparison shows. We will return to the
discussion of self-phase-modulation efFects below, and
here we merely point out that the dynamics are extremely
sensitive to small parameter variations (i.e., medium
length, density, pulse width). Finally, we note that the
magnitude of the imaginary component of the field is an
indication of the size of reaction field that is generated
within the medium. In fact, if the pulse were to propa-
gate in free space, a real input pulse [such as that of Eq.
(7) that we use] obviously could not generate the com-
ponent in quadrature.

Another important result is that the medium dynami-
cally induces a large rejected pulse in response to the
pump pulse, even for extremely small film thicknesses.
Figure 6 shows both input (solid curve) and scattered
(dashed curve) pulse intensities that give rise to the dy-
namics of Fig. 2. From the figure we see that the
refIlected pulse is indeed significant. Coherent absorption
and nonlinear refraction are also dominant mechanisms
in the interaction. Moreover, if the propagation distance
were sufFiciently large, the field amplitude within the
medium could rapidly decrease until the ratio Po/E fell
below the value necessary to sustain that part of the
medium in the excited state [7]. As we will see below,

Q Q
0.5

-0.5 Q Q

-1.0
40 80 120 160

-0.5

FIG. 2. Time evolution of the inversion (solid line), real
(dashed line), and imaginary (dotted line) components of the po-
larization at the entrance and throughout the medium.
X'o/a= 1.I, and the layer is 0.025k, thick. While the entire
medium is inverted, the field changes little across the sample in
this case. The time is in units of the optical period.

-1 .0
0 4Q 80 120 160

FICx. 4. Same as Fig. 2, but with Eo/a= 1.05. Note the
larger oscillations in the nonlinear refractive index and absorp-
tion with respect to Fig. 2. This comes as a result of increased
self-phase-modulation effects.
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FIG.— 5. Same as Fig. 3, but with Pole = 1.05.
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FICi. 6. Incident {solid line) and scattered {dashed line) pulses
as a function of position. The medium is 0.025K, thick,
Pole= 1.1, and is located near the origin. The longitudinal
coordinate is scaled by the incident, vacuum wavelength.

this can generate a physical boundary within the sample
that separates atoms that are fully excited from atoms in
the ground state, and a rapid spatial modulation of the
polarization (i.e., nonlinear index of refraction as well as
absorption) occurs as a result of conservation of the
Bloch vector, in analogy to intrinsic optical bistability in
media modeled by nonlinear classical oscillators [15]. In
short, medium response cannot be predicted a priori.
Even if the conditions at the input boundary were such
that full excitation should occur there, this can no longer
by guaranteed if the medium is sufficiently thick, and pre-
dicting the width of the inverted layer is a nearly impossi-
ble task. In general, the full longitudinal dynamics of the
field must be included in any analysis of propagation
effects, especially if we consider that the entire switching
dynamics can occur within a very small fraction of a
wavelength.

In Fig. 7 we plot the inversion (solid line), along with
the nonlinear index of refraction (dashed line), as a func-
tion of distance inside a sample of thickness 0.05K,, after
most of the pulse has passed. At this instant, the pulse is
not interacting strongly with the medium. The parame-
ters are the same as those used in Fig. 2, except for medi-
um length. Note that only part of the medium is invert-
ed, and that the fast longitudinal variation of the inver-
sion (which occurs within a distance of approximately

FIG. 7. Snapshot of the spatial variation of the inversion
{solid line) and nonlinear refractive index (dashed line) for a
sample of length 0.05K, and 20/s= l. l. At this stage the pulse
interacts weakly with the medium. The nearly sudden drop that
characterizes the inversion induces a spatial modulation in both
nonlinear refraction and absorption. This longitudinal behavior
of the inversion is caused by the loss of energy of the field as en-

ergy is coherently transferred to the medium. Pulse energy loss
reduces the peak strength of the field, which in turn causes the
medium to fully deexcite.

0.01K,) causes the complex nonlinear refractive index to
also follow, in order to satisfy conservation of the Bloch
vector. This is in contrast to what we obtained in the
case of Fig. 2, where the sample was only half as long.
There, the Block variables became discontinuous only at
the entrance and at the exit of the medium, since the en-
tire length of the medium was inverted. In fact, it is the
discontinuity of the nonlinear index of refraction at the
medium entrance and exit that primarily gives rise to the
coherently reflected pulse of Fig. 6, while in the case of
Fig. 7 the situation is complicated by the additional spa-
tial modulation of the nonlinear index that occurs inside
the medium.

As stated earlier, the dynamics described in the above
paragraph are similar to what happens in some nonlinear
oscillator media, where anharmonicities affect the motion
of the electrons and cause intrinsic optical bistability [15].
There, physical longitudinal and transverse polarization
boundaries [15(a)—15(c)] evolve within the medium, im-
plying that the nonlinear index of refraction can take on
two different values for a single incident field amplitude.
As a result, a small reflected wave is induced [15(a)].
Then, in a similar manner as outlined in Ref. [15(a)], a
thin film of dense two-level atoms is suitable to study
four-wave mixing phenomena. For instance, if the
boundary within the medium is probed with a copro-
pagating pulse, scattering from the interface can give rise
to a conjugate field that propagates in the opposite direc-
tion [15(a),16].

C. Phase-modulation effects

In order to highlight the importance of phase-
modulation effects we now specifically address the ques-
tion of how phase changes affect the dynamics. If we
define a complex field envelope as in Eq. (8), that is,
~P ~e '~'~"=E„+iE;, then after simple manipulations it
follows that
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(1 1)

We now refer the reader to Figs. 8 and 9, where we plot
the temporal evolution of P(r), s W(r), and their relative
difference, h(r)=P(r) —EW(r), at the entrance of the
medium for the cases of Figs. 2 and 4, respectively. Note
that b,(r) is now the new effective dynamic detuning as
specified in Eq. (9). The figures show that in spite of
phase-modulation effects, which can significantly change
the effective detuning, quasiadiabatic inversion occurs in
one case (Fig. 8), while it does not in the other (Fig. 9.
In Fig. 10 we plot (()(r) for Po/s= 1.1 (solid line) and 1.05
(dashed line). We point out that this dynamical behavior
repeats throughout the medium, and that the temporal
evolution of the phase and all other quantities are only
somewhat different at the output, a condition that is not
met for thicker films. Figures 8 —10 thus suggest that
while the magnitude of P is comparable in all cases, the
early onset of self-phase-modulation effects in one case
causes the inversion to lose hold of the excited state.
While we see that the importance of P cannot be overstat-
ed in describing the optical switching outlined above, it is
also paramount from the point of view of sideband gen-
eration, especially since P can be large relative to ~s

Although clearly this aspect of the dynamics is extreme y
important, it will be taken up separately later on because
of the complexity of the problem.

For completeness, we point out that for films whose
thickness is other than 0.025K, , quasiadiabatic inversion
on the time scale of the incident pulse width occurs for
different values of the ratio Eo/E. Whether this value is
greater or less than unity cannot be predicted a priori,
and it will sensitively depend on medium length, pulse
width, static detuning, the temporal evolution, and the
sign of P. However, we found that in the absence of a
static detuning, an overall shift to the right of the pea s
shown in Fig. 1 occurs. For example, we found that a
sample of length =0.03125K can also be inverted in its
entirety if Po/s = 1.12, but the excited state is not as long

0.4—

0.4—

0.2—

0 0------------

-0.2
40 80 120 160

FIG. 9. Same as Fig. 8, but with Po/r, =1.05. In this case
the excited state is short lived. If Figs. 8 and 9 are compared, it
is clear that self-phase-modulation determines the stability o
the medium in the excited state.

lived as in the case we have examined above. We show
this in Fig. 11, where we compare the inversion as a func-
tion of time at the entrance of the medium for sample
lengths 0.025K, and 0.031 25k, (solid and dashed lines, re-
spectively). We have used the input field

kp~/' O]
~((~0)=Eoe (12)

which is slightly less then 100 optical cycles in duration
at the waist, and v=0. 25. Throughout the medium the
inversion again follows almost the same temporal dynam-

f b th cases although for the thicker sample the
'

n fielatoms are more strongly coupled by a larger reaction e
and even stronger self-phase-modulation effects. The
figure shows that most of the medium remains inverted
until some time after most of the pulse has left the medi-
um (i.e., r ~ 100). We point out that several values of the
ratio Po/E were investigated, and that the values that we
have quoted above yielded the longest-lived excited
states, although we did not seek to optimize our parame-
ters further. Because we do not find a broad range o
values for which the medium can still be found in the ex-
cited state after the pulse has passed, we predict an
overall decrease of the width and a shift to the right of
the peaks in Fig. 1, and a deterioration of the quasiadia-

0.2—

0 0-----------

I
I

;I
tI'

I
/

/r

0.4—

0.2—

-0.2
40 80 120

I

160
0.0

FIG. 8. Temporal evolution of III (solid line), P (dashed
line), and b,(r)=sS' —P (dotted line) at the entrance of the
medium. Dynamics follow similar behavior inside the medium
as well. in t is case p c.—li. I h' P /s= 1 1 and quasiadiabatic inversion
persists because phase modulation does not become important
until after the medium has nearly fully acquired the excite
state.

-0.2
40 80 120 160

FIG. 10. Comparison of P in the cases of Figs. 8 andnd 9. This
figure shows that the early onset of strong phase-modulation
effects prevents quasiadiabatic inversion, thus highlighting the
sensitivity of the dynamics on P and the effective detuning b,(r)
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1.0
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Here I. is in units of the incident wavelength, and &

means spatial average. Equations (4)—(6) become

i(—Po &R & Po&—R &')— & ~R
~

&', (l5)

t)&R & = —is& W &&a &
——P, & W &+ & W&&~ &,

i 1

B7 2 4~~

(16)

FIG. 11. Time evolution of the inversion at the entrance and
throughout the medium for sample lengths 0.025K, (solid line,
and Pp/a= 1.1) and 0.03125K (dashed line, and Pp/a=1. 12),
with c=0.25. The medium can still be found in a state of inver-
sion for some time after most of the pulse has excited the medi-
UID.

batic inversion mechanism solely as a result of propaga-
tion effects.

To conclude this section, we point out that the dynam-
ics described above become even more complicated if the
peak field value is chosen such that the ratio Pc/e is
much greater than 1, i.e., it falls on the second, third, or
even a higher cycle of the square-wave pattern of Fig. 1.
In that case, several inverted layers alternating with lay-
ers that are in the ground state may be created within the
medium, provided the sample is sufficiently thick. Then,
the Bloch vector follows an extremely complex and even
more unpredictable spatiotemporal dynamics. However,
we will not dwell on this aspect of the dynamics here, and
simply point out that the possibility of engineering a sam-
ple for a specific purpose should be evaluated on a case by
case basis.

IV. THE MEAN-FIELD APPRQXIMATIC)N

where Eo is now the incident field, and 1/wz =6mcL.
Therefore we see that if film thickness is nonzero,
cooperativity is induced via coupling with the field result-
ing in the decay terms proportional to r„ in Eqs. (15)
and (16). These terms correspond to superradiant and
subradiant decays [4]. The condition that must be
satisfied to maintain the validity of these equations is that
the spatial variation of the field and atomic variables
remain small inside the medium, i.e., film thickness
should be no larger than —,

' of the incident wavelength.
This condition is met in the case of quasiadiabatic inver-
sion, even if rejections and phase-modulation effects are
significant. Recall, however, that for thicker films only
part of the medium can be inverted, and the atomic vari-
ables do not vary slowly in space. We also note that an
additional restriction on medium length is imposed by
the fact that both subradiant and superradiant decay
rates should be taken to be much larger than longitudinal
and transverse decay rates, which we have neglected for
ultrashort pulses.

The analysis of Eqs. (15) and (16) is straightforward.
In particular, we can see why the inversion can be sus-
tained in the excited state for only a short time. In fact,
while the medium can be nearly fully excited at first, it
eventually coherently decays at a rate I/~i, . In Fig. 12
we plot the final state of the inversion as a function of
Pc/E after the pulse of Eq. (7) has passed, with 8=0.2,

In this section we explore the usefulness and the limits
of validity of the mean-field approximation. As we have
seen in the preceding section, the field and the atomic
variables can vary rapidly in space, seemingly preempting
the validity of the mean-field approximation. However,
this may not be the case if quasiadiabatic inversion
occurs, and if the film is sufFiciently thin. If the medium
is uniformly inverted in its entirety, the spatial variation
of the field and atomic variables within the sample
remains small. Then, assuming we can ignore the large
phase shift that is imparted to the field upon reAection,
and neglecting self-phase-modulation effects, the second-
order spatial derivative of Eq. (6) can be discarded. This
is equivalent to decoupling and therefore neglecting the
reAected component of the field, which as we have seen in
the preceding section can be quite substantial. Trans-
forming to a retarded coordinate system such that

(13)

a "mean field" can be derived for a sample of thickness L,
and can be written as

1.0

(f)
CC 0.0
LU

—-0.5

-1 0--
0.6 1.0

Eo/ i
1.2 1.4

FIG. 12. Steady-state value of the inversion as a function of
the ratio Pp/s with no static detuning, as in Fig. 1 (solid line),
and with superradiant and subradiant decay (dashed line,
I.=0.01K,; dotted line, 1.=0.025K,). These values are recorded
after a Gaussian pulse traverses the medium. The range of
values of X'p/e for which the medium is inverted is clearly
smaller as medium length is increased, and indicates a deteriora-
tion of intrinsic optical switching as a function of sample length.
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and a film of zero thickness. The nearly square-wave pat-
tern of Fig. 1 is recovered, but we show only the first half
cycle (solid line). We now integrate Eqs. (15) and (16),
and choose film thicknesses of 0.01K, and 0.025K, , respec-
tively, so that we may compare with the results of our nu-
merical integrations of the preceding section. The results
are plotted in Fig. 12 (dashed and dotted lines). We can
see that, while the widths of both peaks are significantly
reduced, the peaks are centered at a value greater then
unity, consistent with our numerical results, and a state
of nearly full inversion persists for a much reduced range
of values of the ratio Po/s. These eifects come as a result
of a change in the effective dynamic detuning, which no
longer simply equals c8'. The temporal evolution of the
inversion is then very similar to the results of the preced-
ing section, but for the thicker sample the location of the
inversion peak does not agree with the results of our nu-
merical simulations because this film thickness is essen-
tially beyond the limit of validity of the mean-field ap-
proximation. In summary, the agreement with our full
numerical solution is very good if medium length does
not exceed —,

' of the incident wavelength. For thicker
samples, the solution of Eqs. (15) and (16) approximates
poorly the solution of Eqs. (4)—(6), and it may even give
incorrect and misleading results. Therefore, although the
mean-field approximation remains a useful tool within
the limits outlined above, care must be exercised if it is
applied outside the regime of intrinsic optical switching,
or if rejections are important.

V. CONCLUSION

In conclusion, we have discussed the role of propaga-
tion effects in an extended medium of dense two-level
atoms. %e find that if film thickness is on the order of
0.03 of the incident wavelength or less, ultrafast intrinsic
optical switching persists, and the entire film can be al-

most completely inverted. However, large self-phase-
modulation effects induce an interesting and complicated
dynamical shift of the atomic resonance. Because large
rejections and energy transfer to and from the medium
can occur even for film layers that are only a small frac-
tion of a wavelength thick, the assumption of slowly
varying envelope functions in space must be abandoned.
For suKciently thick films, only a portion of the medium
may be inverted. In that case, a boundary that separates
a state of excitation from one that is fully deexcited is
created within the medium, a condition that leads to a
strong spatial modulation of the nonlinear index of re-
fraction, as well as absorption. %'e do not rule out the
possibility of inverting in its entirety a film whose thick-
ness is larger than 0.03K, because the right combination
of medium density, thickness, detuning, and perhaps
pulse shape, may conspire to accomplish this. However,
we predict a general deterioration of the square-wave pat-
tern of Fig. 1 that exemplifies the switching dynamics, as
a result of propagation effects. The range of values of the
ratio Po/s for which adiabatic inversion occurs may be
significantly reduced, as shown in Fig. 12, unless medium
thickness can be kept sufticiently small. Finally, we have
determined that the mean-field approximation can de-
scribe Bloch-vector dynamics reasonably accurately in
the case of quasiadiabatic inversion, proUided the entire
medium can be uniformly excited, and if sample length
remains on the order of —,

' of the incident wavelength.
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