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Coherent elliptic states in lithiuxn
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A detailed comparison between experimental lifetimes for Rydberg atoms formed by the adiabatic
crossed-6eld method and corresponding theoretical lifetimes has been performed to document that
the crossed-6eld method indeed may be used to generate and control coherent elliptic states of highly
excited Rydberg atoms. It is found that core efFects play a negligible role except for states of very
high eccentricity.

PACS number(s): 32.80.Rm, 32.70.Cs,32.70.Fw, 31.50.+w

I. INTRODUCTION

The adiabatic switching method for atomic beams in
crossed electric and xnagnetic fields [1—3] has previously
been used to form atoms in circular states [4,5]. Briefly,
the atoxnic beam is Grst exposed to a suitably tuned mul-
tiphoton process in a region with a strong dominance of
the electric field to populate the so-called linear state,
i.e., the most strongly polarized Stark state of a selected
Rydberg manifold. Subsequently, this state is trans-
formed adiabatically into a circular state when the atoms
pass into a region where the magnetic 6eld is dominant.
Throughout the paper we shall refer to this experimental
technique as the adiabatic crossed-field method (ACFM).
The intermediate states pertaining to the general situa-
tion with finite electric and magnetic 6elds are naturally
referred to as elliptic states. The directions in space of
the expectation values of the angular momentum and the
Runge-Lenz vectors characterizing the elliptic state are
controlled by the external magnetic and electric 6elds,
respectively. The elliptic states, including their limiting
circular and linear forms, satisfy the minimum quantum
fluctuations condition [1] and may accordingly also be
referred to as coherent or semiclassical states [6].

Several methods of producing Rydberg atoms in states
of high angular momentum have been suggested and used
[7—10]. The first demonstration of the production of cir-
cular Rydberg states used the adiabatic microwave trans-
fer method [8] which leads to aligned but not oriented
states (i.e., a statistical population of the two xnagnetic
substates ~mx~ = l = n —1). This method is well suited
for precision spectroscopy [ll]. Oriented circular states
may be produced in the presence of a circularly polar-
ized microwave 6eld by adiabatic transformation near an
avoided crossing of two dressed Rydberg states of which
one is accessible by resonant laser excitation and the
other correlates with a circular state in the limit of van-

ishing microwave field [10]. To our knowledge the ACFM
is the only known method which leads in a natural way
to the formation of oriented coherent elliptic states.

II. COHERENT ELLIPTIC STATES

The concept of elliptic states pertains in principle to
the pure Coulomb 6eld only, but, as we shall discuss in
some detail in this paper, the extension to Rydberg atoms
with small quantum defects is generally a very good ap-
proximation. In this section, we Grst brieBy review the
algebraic method pertaining to the pure Coulomb Geld
and then discuss the results of a numerical investigation
of the Rydberg states of lithium.

A. Elliptic states of the Coulomb Beld

Using the SO(4) dynamical symmetry of the Coulomb
problem [12—14] the Hamiltonian of the hydrogen atom in
electric and magnetic fields can be written as (in atomic
units)

1
H = — +A j +A+j+

2n2

A+ =A kA =0+ (2)

where the Larmor and Stark precession vectors A and
A are de6ned by

A = paya,

3
A = ——nE,

2

when restricted to the Hilbert space of a given principal
shell n. The two vectors A+ are given by
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in terms of the external electric (E) and magnetic (B)
6elds. The quantity p~ is the Bohr magneton and u+ are
unit vectors. The two operators j+ are defined in terms
of the orbital angular momentum j. and the Runge-Lenz
vector a,
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The operators j+ represent the well-known SU(2) x SU(2)
reduction of the SO(4) dynamical symmetry group of the
Coulomb Geld and are pseudo-spin vectors within the
considered principal shell [13].As a matter of fact, (j+)2
and (j ) are diagonal with the same eigenvalue j(j+ 1)
with j = (n 1—)/2, while the spectrum of jP is restricted
to the usual set of eigenvalues, —j & m+ & j.

The situation is particularly simple when the electric
and magnetic 6elds are orthogonal as assumed in the rest
of this paper. Then we have 0 = 0+ = 0 while the
orientation of the two vectors may be characterized by
their angle of inclination to the magnetic Geld

)n'y
o. = arctan

I (6)

with the corresponding eigenstates

I
jm )„ I

jm+)„+,

where it is noted that the two pseudo spins are quantized
along diferent directions. We note that the eigenener-
gies are independent of the orientation of the vectors 0+
and never cross even when the magnitude 0 is varied.
This implies that the atom develops adiabatically in the
pseudo-spin product representation if the external fields
are changed at a suKciently slow rate. The state of the
atom may accordingly be manipulated in a controlled
way if the two external parameters n and 0 are slowly
varied. In particular it is noted that the energies are
unchanged if 0 is kept fixed but that the corresponding
eigenstates change when the angle o; is varied. The state
variation induced by a slow change of o. is referred to as
adiabatic switching.

It is easy to see that an angular momentum state
Ij, mz ——j) with maximum projection along some di-
rection u generally is a minimum uncertainty state in
the sense that the Heisenberg uncertainty relation is sat-
is6ed as an equality. In accordance with quantum optics,

The energy eigenvalues of the Hamiltonian in Eq. (1) are
given by

1E = — +A(m++m )

such states are called coherent states [6]. The coherent
states of the hydrogen atom in orthogonal electric and
magnetic Gelds are, accordingly,

Of these four states we are primarily interested in the
uppermost energy eigenstates

(10)

which we shall refer to as the coherent elliptic state
(CES). The uppermost energy eigenstate is chosen be-
cause it appears to be much better suited for the adia-
batic switching method when Rydberg atoms other than
hydrogen are considered. This is further discussed in the
next section.

The o. parameter is controlled by the ratio between the
E and B Gelds. In the weak electric-field limit, o. van-
ishes and the two vectors, 0~, are both directed along
the magnetic field. Then, the CES is an eigenstate of
I~ ——j& + j& with the z axis along B corresponding
to m~ ——2j = n —1. The CES accordingly represents
a state with maximum orbital angular momentum pro-
jection, i.e., a circular state. In the weak magnetic-field
limit, on the other hand, o. = m/2, and the two vectors
A~ are parallel to the E 6eld, but oppositely directed.
In this case the CES is an eigenstate of the orbital angu-
lar momentum projection along the E Geld l@ ——j&+ + j&
corresponding to m~ ——j —j = 0 while the eigenvalue of
the corresponding component of the Runge-Lenz vector
a@ = jz —jz is given by k = —2j = (n —1) wh—ich,
according to standard SO(4) theory is identified as the
polarization quantum number in the parabolic represen-
tation of the hydrogen atom. The CES state, accordingly,
represents a Stark state with maximum polarization in
the direction of the E 6eld in this limiting case.

A general expansion of the CES on the spherical basis
set pertaining to the considered principal shell has been
derived in Ref. [1]. With reference to a quantization axis
along the magnetic 6eld the expansion reads

lm

where l + m is even and where

i(n —1)! (l + m)!(l —m)!(2l + ].) . n " o. ~+

(l m)t (l+m)t — (n l 1)t(n y l)I

These authors have also shown [1] that the corresponding
expectation value of the orbital angular momentum in the
direction of the B 6eld is given by

(l~)@ = (n —1) cos a,
while the expectation value of the Runge-Lenz vector in
the direction of the E 6eld is given by

(i4)

The corresponding expression for the electric dipole mo-
ment is

Using the classical relations between the Runge-Lenz vec-

tor, the angular momentum, and the parameters of the
elliptic orbit, we may identify e = sino. as the eccentric-
ity of the corresponding classical orbit. Explicitly, in cgs
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FIG. 4. The l distribution for coherent elliptic states. (a)
Eccentricity s = 0.6; (b) c = 0.999. The hatched bars show
quantum defect results. The empty bars show Coulomb re-
sults. The two distributions almost coincide for e = 0.6 but
for e = 0.999 one notices a signi6cant difference which is due
to the quantum defects of low-/ states.

C. Decay rates of elliptic states

The theoretical decay rates can be obtained by using
the formula [18]

allow for a weaker dependence upon the overall strength
of the fields as an additional parameter to be specified in
the general case.

To compare the quantum defect theory and the
Coulomb theory we show in Fig. 1 the Stark spectra
for hydrogen and lithium [16] for the m = 0 case. At
strong electric fields the upper and lower states corre-
spond to maximally polarized but oppositely directed
Stark states, i.e., elliptic states with unit eccentricity.
The elliptic character is preserved for both states at lower
field strengths in the hydrogenic case, but for lithium the
elliptic character is preserved only for the upper energy
state while the lower state evolves into an s state. We
have also calculated the mean value of the angular mo-
mentum in the direction of the magnetic field and the
mean value of the electric dipole moment in the direc-
tion of the electric field for hydrogen and lithium in the
CES state (i.e., the uppermost energy eigenstate within
the considered principal shell). The case of n = 25 is
shown in Figs. 2 and 3. For e below 0.9 the average
values of the electric dipole moment and the angular mo-
mentum are almost indistinguishable, whereas for higher
eccentricities significant differences develop. This is re-
Qected also in the l distributions which differ markedly
for the more eccentric states as illustrated in Fig. 4.

TABLE I. Lifetimes of spherical eigenstates for lithium
with principal quantum number 25.

0
1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

r~ (»)
12.7
43.9
7.43
16.3
27.5
41.8
59.3
79.9
103.
130.
161.
194.
231.
271.
313.
359.
409.
461.
516.
575.
637.
703.
771.
842.
917.

where A~ is the decay rate for the spherical state of the
angular momentum l. The b~ 's are the expansion co-
eKcients of the coherent elliptic state on a spherical ba-
sis corresponding to Eq. (17) and are to be replaced by
the coefficients c„r from Eq. (12) in the pure Coulomb
case. Although the elliptic state is a coherent superpo-
sition of spherical states, there are no interference terms
in the total decay rate since such cross terms are readily
shown to vanish identically in decay processes to isotropic
manifolds of final states. The decay rates A~ were ob-
tained &om the data of Refs. [19,20] by extrapolation
&om n & 20 using appropriate scaling rules. The values
which we use in the present work are listed in Table I.

The lifetimes, = I/A, of the CES is shown in Fig. 5. It
decreases significantly with increasing e corresponding to
an increasing content of lower angular momentum states.
This effect is independent of core effects so long as e is
less than 0.8 in accordance with the results of Sec. IIB.
For e & 0.8, however, quantum defects become increas-
ingly important and ultimately change the lifetime by as
much as a factor of 2 relative to the Coulomb case. The
difference between quantum defect and Coulomb cases
is large enough that it can be tested by experiments as
discussed in Sec. IVB.

In practice it is diKcult to avoid populating the sec-
ond highest energy level in the Stark manifold by the ini-
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FIG. 5. Theoretical lifetime of coherent elliptic states as
a function of eccentricity. Full curve, hydrogen; crosses,
lithium. B = 35 G.

tial excitation process in the crossed-Geld method. The
expansion of the corresponding eigenstates is similar to
Eqs. (11) and (12) in the algebraic method and is readily
identified as eigenvectors in the diagonalization method.
Qualitatively, these states are very similar to the CES
for high n values, and will be referred to as near-elliptic
states. The decay rate for the near-elliptic states is also
determined by Eq. (18) and is of some iinportance in
our discussion (in Sec. IV A) of the elliptic purity of the
ensemble of Rydberg atoms produced experimentally by
the ACFM technique.

III. EXPERIMENTAL SETUP AND
PROCEDURES

The experimental lifetimes for coherent elliptic Ryd-
berg states presented here were obtained by the use of
a time-of-Bight technique in which the attenuation of an
ensemble of elliptic Rydberg atoms of a given velocity
is observed over a known distance. The most essential
experimental components and procedures were described
earlier [18]. For convenience we briefiy discuss the main
components again and add further details. A schematic
drawing of the experimental setup is shown in Fig. 6. An
oven loaded with a few grams of Li and electronically held
at a fixed temperature T near 700 K (b,T & 1 K) emits
a thermal beam of lithium atoms into the surrounding
vacuum system ( 2 x 10 ~ torr) through a long circular
pipe (I = 30 mm, d = 3 mm), heated to a temperature
somewhat above that of the oven itself. The thermal Li
beam drifts through a stack of eight circular plates El-
E8 with 3 mm holes in the center for the beam and finally
into a region between two rectangular plates. Plates El
through E4 are held at suitable potentials to form a ho-
mogeneous electric dc field of 150 V/cm parallel to the
Li beam while plates E5 though ES define a variable dc

Li OVEN

FIG. 6. Schematic diagram of the experimental arrange-
ment showing the Li oven, the laser beams, the stack of Stark
plates (El—E8), the field ionization plates, and the detector
for Li+ ions formed by selective field ionization. The distance
between Stark plates is 5 mm except for E6—E7 which is 10
mm. The distance along the Li beam from the crossing with
the lasers to the region of 6eld ionization is 50 mm. The Ry-
dberg atoms are linear from excitation to E5, elliptic from E5
to E8, and circular from E8 to 6eld ionization.

field, typically in the range 0—10 V/cm. The hole in plate
E4 is covered by a fine copper grid (80%%uo transmission)
to ensure that the field in the region between plates E3
and E4 is truly homogeneous.

Between plates E3 and E4 the Li beam is crossed by
three collinear laser beams which are tuned to resonance
with the transitions 2s to 2p (671 nm), 2p to 3d (610
nm), and 3d to the uppermost Stark level of the n = 25
manifold (831 nm) formed by the external electric field
(150 V/cm). A representative Stark spectrum is shown in
Fig. 7. The uppermost state is marked by an arrow. All
three lasers are dye lasers pumped by a pulsed Nd: YAG
laser running at 14 Hz and with a pulse length of 5 nsec.
The dye-laser beams were all linearly polarized in the
direction of the electric 6eld. The first two transitions
were saturated by relatively weak and broad band laser
beains (average power ( 1 mW, linewidth ) 10 GHz).
The last transition was not saturated (average power 10
mW, linew'idth 6.5 GHz). The average number of Ryd-
berg atoms produced under these circumstances is esti-
mated to be of the order of 10 atoms per shot;.

After excitation the Rydberg atoms drift into the re-
gions defined by plates E4 to E5 and E5 to E8 in which
there are smaller electric fields and a crossed magnetic
field (B) of the order of 50 G. In the first of these two
regions the electric field is typically 20 V/cm. This is
high enough that the structure of the Rydberg atoms
is dominated by the electric field and they are therefore
still linear in this region, but as the atoms drift through
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f [A(E, B) —A(0, B)]xdx
f[A(E, B) —A(0, B)]dx ' (20)

where the integration is along the beam direction and
E(x) is found by solving Poisson's equation in the region
between electrodes E5 and E8 for typical voltages. The
IIII value depends on the voltage and the distance from
the center axis. The variation is small (& 1 mm) com-
pared to the average value of 20.5 mm. The total drift
length L was 50 mm.

spectrum was preceded and followed by a spectrum for
E = 0, and the ratio between the area of the spectrum
and the average of the two normalization spectra was
calculated. The measurements were performed automat-
ically under the control of a personal computer. To get
a measure of the statistical fIuctuations of the measured
survival fractions we measured each point a number of
times (typically ten) and calculated the standard devia-
tion.

The efFective length of the region IIII was determined
by

1.0

0.8-

0.6-

0.4

0.2

0
830.95 830.97 830.99

Wavelength A3 (nm)

831.01

s

831.03

FIG. 9. Partial Stark spectrum of lithium obtained by
scanning the wavelength A3 of the third laser. Stark field
E, = 150 V/cm, R = 35 G. The uppermost states (in en-

ergy) are resolved into individual lm~~ = 0, 1, and 2 lines.
The range of A3 values near 830.966 nm for which pure ellip-
tic states may be formed is indicated.

IV. RESULTS AND DISCUSSION

A. Purity of initial Stark ensemble

The uppermost state of the Stark manifold for a given
shell is the starting point of the adiabatic switching pro-
cess and has orbital angular momentum m~ ——0 along the
direction of the external electric field Eg. According to
our previous discussion this state is denoted by 4
and corresponds to the CES with maximum eccentricity,
e = 1. The three laser beams are all linearly polarized
parallel to the Stark field Eg. The dipole selection rule
for this polarization, Lmz ——0, where m~ = m~ + m, is
the total angular momentum quantum number and m,
is the spin projection of the active electron, allows exci-
tation of the initial state with lm~l =

2 to Stark states
with mi = 0 and hami l = 1, where the last possibility is
due to spin-orbit mixing. In the presence of a crossed
magnetic field, B, the quantities, m~, m~, and m, are
strictly speaking no longer good quantum numbers but
when B is sufFiciently small that the paramagnetic Zee-
man coupling can be treated as a perturbation, the efI'ect
of the B field is to couple unperturbed lmil = 1 states
with mi = 0 and lm~ l

= 2 states. The excitation of Stark
states with lmil & 2 is thus allowed by the dipole selec-
tion rule. In hydrogen the 4 g2 state is nondegenerate
and may therefore be excited selectively if the bandwidth
of the appropriate laser is sufFiciently narrow. The same
applies to Li but the quantum defect of the m~ ——0 states
results in an energy separation of only about 4 GHz be-
tween the upperinost mi ——0 and hami l = 1 states. This is
relatively small as compared to the linewidth (6.5 GHz)
of the third laser driving the last transition and prevents
a clear spectral separation of the two uppermost Stark
states. Figure 9 shows a detailed excitation spectrum il-
lustrating this. Each structure in the spectrum has been
resolved into 3 lines with m~ ——0, 1, and 2 as indicated in
the figure. It is apparent Rom the figure that the admix-

ture of hami l ) 1 states is effectively suppressed when the
laser is detuned a few GHz towards smaller wavelengths.
This is substantiated in the next section.

B. Experimental and theoretical survival fractions

The survival &action of the experimental Rydberg en-
semble depends on the wavelength, A3, of the third laser,
the ratio E/B of the Stark and Zeeman fields, and the
absolute strengths of the fields. VJe shall now discuss
this dependence and compare experimental and theoret-
ical results.

0.60

0.58

0.56

0.54

0.52

0.50

0.48

830.96 830.97

X3 (nrn)

830.98 830.99

FIG. 10. Survival fraction as a function of wavelength A3 of
the third laser for At = 51 ps, E, = 150 V/cm, E = 70 V/cm,
and B = 35 G. The full curve is a quantum defect theoretical
prediction taking into account the width of the laser and the
oscillator strengths of the transitions.
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The survival &action is shown in Fig. 10 as a function
of wavelength A3 in a situation where the eccentricity is
very large such that adiabatic switching essentially has
been avoided. The theoretical curve is calculated on the
basis of a population distribution corresponding to the
decomposition shown in Fig. 9 and on theoretical life-
times &om the quantum defect theory of Sec. IIB. The
consistency with the data throughout the full range of
wavelengths is a strong indication that the decomposi-
tion of the initial population of Stark states is properly
represented in our procedure. In particular, we note the
fine agreement in the range of blue detunings where a
single m = 0 component is isolated in Fig. 9. This pro-
vides strong evidence that the maximally polarized Stark
state, i.e., the CES with e = 1, indeed may be exclusively
populated by a suitable tuning of the laser fields.

2. Dependence on E and B

0.63

0.61

LL

G$)
0.59

0.57
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20 30 40

E(V/cm)

60 70 80

FIG. 12. Survival fraction as function of E for constant
E/B = 0.5 V/cm/G, As ——830.968 nm, and At = 50 ps. The
full curve shows the result of the quantum defect theory. For
a purely hydrogenic system, the survival fraction is 0.41.

Figure 11 shows the dependence of the survival &ac-
tion on the field ratio E/B for two values of the magnetic
field. The electric field E defining the eccentricity of the
elliptic states is parallel to the Stark field Eg for posi-
tive E/B and antiparallel for negative E/B. The field
variations seen by the Li atoms are therefore somewhat
faster for negative than for positive E/B in the critical
region near plate E5 (see Fig. 6) where the switching pro-
cess takes place. The symmetry of the experimental data
around E/B = 0 therefore shows that the switching pro-
cess is indeed adiabatic in both cases. The experimental
results and the theoretical predictions of the quantum de-

feet theory are in good agreement and they show clearly
that the survival &action depends primarily on the field
ratio but also to a smaller degree on the absolute values
of the fields. The hydrogenic results deviate substantially
from the measurements for E/B ) 0.2 (V/cm)/G corre-
sponding to eccentricities e ) 0.9. This deviation reflects
the fact that low angular momentum components are rep-
resented in different proportions for high eccentricities as
already discussed in Sec. IIB in connection with Fig. 4.

8. Dependence on E
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0.7
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The relatively weak dependence of the survival &ac-
tion on the absolute values of the fields for a constant
Geld ratio E/B is shown in Fig. 12. The agreement
between the experimental data and the quantum defect
results is good whereas the hydrogenic theory clearly un-
derestimates the survival fraction and fails to reproduce
the dependence on the field strengths.
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0.4 Coulomb
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FIG. 11. Survival fractions as function of field ratio E/B
for constant B fields and A3 ——830.968 nm and At = 52

ps. The two sets of data points were measured at B fields
of 35 and 143 G, respectively. The corresponding theoretical
curves are based on the quantum defect representation of the
coherent elliptic state. For comparison the common theoret-
ical curve based on the pure Coulomb representation is also
shown.

The survival &action for coherent elliptic Rydberg
atoms is shown as a function of eccentricity e in Fig. 13.
The survival &action is nearly constant for smaller values
of e. This is due to the long lifetime of such states and
the short flight path (2 cm) of the considered Rydberg
atoms. The variation is, however, very pronounced in the
eccentricity range above 0.6. The experimental data set
is, in general, in fine accord with the theoretical results
based on the quantum-defect treatment of the Rydberg
manifold while there is a consistent departure &om the
results of the group-theoretical approach when the ec-
centricity becomes large. This departure is clearly due
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FIG. 13. Survival fraction as function of eccentricity e for
B = 35 G, A3 ——830.968 nm, and At = 52 p,s. The full curve
shows theoretical result of the quantum defect theory. The
broken curve shows the pure Coulomb prediction.

to the fact that low angular momentum components are
over represented when the Coulombic theory is applied
to atoms with a central core.

C. Validity of the adiabatic crassed-Beld method

trol a special class of highly excited Rydberg atoms, nor-
mally refered to as coherent elliptic states (CES). The
CES terminology strictly pertains only to the case of hy-
drogen since it is based upon the dynamic symmetry of
the Coulomb field, but our studies have documented that
the extension to embrace highly excited states of Rydberg
atoms such as lithium is very useful from a conceptual
point of view. Indeed, we have found that the states that
are formed by the ACFM in lithium are very similar to
those that would be formed under the same conditions
in hydrogen so long as the most eccentric states are ex-
cluded. Deviations in the distribution over angular mo-
mentum states, for example, are not significant until the
eccentricity e of the considered state reaches a value of
about 0.9. I ow angular momentum states and, accord-
ingly, core penetration eKects, play an increasing role for
such states. In fact, such states can no longer be strictly
characterized by the eccentricity parameter but depend
in addition upon the strength of the external fields. The
variation is, however, rather modest and is not expected
to have a significant eKect unless a quantity especially
sensitive to the content of low angular momentum states
is at focus. The lifetime of the CES is an example where
the content of low angular momentum states is tested
very critically since most of the radiative decay is con-
trolled by these states. It is therefore very pleasing that
we have been able to demonstrate that the experimental
lifetime of lithium Rydberg states formed by the adi-
abatic crossed-field method is in good agreement with
theory when properly accounting for core penetration ef-
fects.

The accurate agreement between experimental survival
&actions and corresponding theoretical results pertain-
ing to the ideal coherent elliptic state which presumably
would be populated by the adiabatic switching method in
crossed electric and magnetic fields provides strong evi-
dence that the present experimental technique can be
generally used to form and control such states. The
present experimental arrangement has allowed a specially
critical test of strong variations of the lifetime of Rydberg
states in the eccentricity range above about 0.6. The ex-
cellent agreement between theory and experiment in this
critical region we take as evidence that coherent elliptic
states indeed are formed by the present method. The
present test is less sensitive in the region of smaller ec-
centricities, but we have no reason to doubt that pure
and well-defined coherent elliptic states with smaller val-
ues of the eccentricity parameter can be formed by the
present experimental technique as well [4] .

V. CONCLUSION

The main emphasis of the present work has been a
combined experimental and theoretical study of lifetimes
of Rydberg atoms formed by the adiabatic crossed-Geld
method (ACFM). The accurate agreement between the-
ory and experiment provides strong evidence that the
ACFM indeed may be used in practice to form and can-
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APPENDIX

The quantum defect wave functions have previously
been described in Refs. [15—17]. In our special case the
wave functions are needed to evaluate the matrix ele-
ments of the Stark Hamiltonian. The wave functions are
given by

(Al. )

where n* = n —v~ is the effective quantum number. The
sequence of expansion coefEcients a„ is determined by the
recursion formula

n' (n' —I —v)(n' —v+ I + 1)a„= —a„
2 v

and by overall normalization. In the present applications
for lithium in the n = 25 principal shell we assume that
the quantum defects vanish for l & 3 and are given by
0.3999, 0.047, and 0.002 for the 8, p, and d states, respec-
tively.
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We have used the quantum defect wave functions to
calculate the eigenvalues and eigenvectors for lithium in
crossed 6elds within the n = 25 manifold. The calcu-
lations are valid for electric fields less than 150 V/cm.

For larger fields it would be necessary to take intershell
mixing into account. The magnetic field was so small
(B ( 150 G) that it was quite safe to neglect the para-
magnetic term.
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