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In the early experiments on optical pumping and coherent population trapping (“dark reso-
nances”) increasing buffer gas pressure enhances the effect. In our recent lasing-without-inversion
experiments, based on population trapping, we find the opposite behavior, namely, decreasing atomic
coherence with increasing buffer gas pressure. We provide a theoretical explanation of this result in

agreement with experiment.

PACS number(s): 32.80.Bx, 34.50.—s, 42.55.—f

I. INTRODUCTION

In recent experiments in our laboratory [1], the influ-
ence of atomic coherence in optical pumping has been
demonstrated, and amplification by stimulated emission
without inversion [2] has been observed. In the present
paper we investigate the effects of atomic collisions on
these phenomena and find them to be surprisingly sensi-
tive to buffer gas pressure. We present the experimental
data and a theoretical analysis which is in agreement with
our observations.

The experiment was carried out in a vapor cell with
sodium as an active medium and helium as a buffer gas.
Two circularly polarized phase correlated laser fields cou-
ple the ground states Sy/3, F = 2 and Sy/2, F =1 of
Na to the excited P/, level. This leads to a coupling
of ground-state pairs with the same magnetic quantum
numbers to a common excited level and therefore to pop-
ulation trapping via atomic coherences [3]. The resonant
coupling region depicted in Fig. 1 gives a simplified model
for this system, where b', b stand for the pair of lev-
els within the hyperfine split S;/; sodium ground-state,
coupled by two fields with frequencies v, v, to the com-
mon excited level a within the P;/; manifold. The level
c is coupled to level a via spontaneous emission; e.g.,
in the case of right-circularly polarized (RCP) light the
S1/2, F =2, m = 2 level could be the c state.

Only relaxation processes caused by collisions with the
wall and other atoms might seem to be important for
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population relaxation within the ground states and de-
cay of coherence between them. This coherence is of
special interest to us due to the crucial role of the atomic
coherence in the lasing-without-inversion (LWI) exper-
iments. However, velocity-changing collisions (VCC’s)
can be much more important than the longitudinal and
transverse relaxation effects just mentioned.

In view of the importance of VCC’s we divide the
Doppler profile into two regions as in Fig. 1. In the cen-
tral region both laser fields are strongly coupled to the
atoms and ground-state coherence (which means popula-
tion trapping) is important. In the wings of the Doppler
profile, on the other hand, only one hyperfine level has
a proper Doppler velocity subgroup leading to laser ab-
sorption. In this region no ground-state coherence can
develop, and only “rate equation” optical pumping is in-
volved. The effect of VCC’s in shuffling atoms between
these regions will be seen to be very important to the
present experiments.
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FIG. 1. (a) Schematic representation of the atomic velocity
distribution with relevant velocity groups around zero, v+ and
v_. (b) Schematic description of the various coupling schemes
at the different velocity regions of the Maxwell distribution.
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II. RELAXATION IN OPTICAL PUMPING
WITH A SINGLE FIELD

We will consider two cases: (1) optical pumping with
a broadband light source that can resonantly excite all
atoms under the Doppler profile, and (2) optical pump-
ing with a narrow-band light source that is resonant with
only a small segment of atoms under the Doppler profile.
For a broadband source of light (e.g., a lamp), one contri-
bution to relaxational effects is due to collisions with the
walls of the vapor cell [4,5] having radius R.. In the case
of uncoated walls one assumes that such a collision causes
a randomization within the ground-state magnetic sub-
levels. The process of atoms moving to the wall and com-
ing back “fresh” is described in a density-matrix equation
by the injection of atoms with an equal ground-state pop-
ulation distribution having no coherence between them.
Its rate is determined by the time of flight through the
cell in the absence of atomic collisions. When a buffer gas
is added, this relaxation time is determined by a random
walk diffusive process. The rate for the combination of
the diffusion and the free-flight processes is given by Ref.
[6] as

(1)

where D is the diffusion coefficient proportional to the
mean free path A o« p~!, p is the buffer gas pressure,
¢ = 6.8 in the hard sphere limit for the collision process,
and K is the Knudsen number K = A/R..

Figure 2 shows important rates for optical and coher-
ence pumping as a function of buffer gas pressure, where
we will use the term “coherence pumping” if coherence
effects are of crucial importance. In the case of pumping
with the broadband, incoherent light source there is no
velocity selectivity and VCC'’s are not important, i.e., the
relaxation rate is given solely by ryan.

However, in the case of optical pumping with a laser,
i.e., a narrow-band coherent light source, increasing the
buffer gas pressure leads to VCC’s which take the atoms
out of the resonance region before they hit the wall.
Hence this is another process for the loss of atoms from
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FIG. 2. Relevant rates for the Na-He system: rwan, pop-
ulation relaxation due to diffusion to the wall; r<f, effec-
tive population relaxation due to wall collisions for the case
of narrow-band excitation light; rpump, effective injection of
pumped atoms due to the action of the fields in the velocity
regions v4+ and v—. Shown for comparison are the radiative
decay v and the spin-flip relaxation rate rs,,, in the Si/2
ground-states.
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the resonant region. In a typical cell experiment, the
nonresonant region in the Maxwell velocity distribution
contains many more atoms than the resonant one and
acts as a kind of reservoir. Resonant Na atoms that,
through VCC’s, are scattered into the nonresonant re-
gion, have some probability to be scattered back into
the resonant region. This “reservoir” circulation of the
Na atoms modifies the relaxation rate for the resonant
atoms produced by the collisions with the buffer gas. In
the limit of an optical pumping rate larger than both the
VCC rate .o and the wall relaxation rway, a rate equa-
tion calculation gives an effective rate for the diffusion
injection of “fresh” atoms from the wall into the reso-
nant region (or equivalently the effective rate for the loss
of optically pumped atoms from the resonant region)

Twall + Tcoll

—_—, Tcoll = MHeTcoll¥ -
Twall + Tcoll 00/ T

(2)

This rate, which is derived in Appendix A, applies to
atoms in the resonant region [7]. In Eq. (2) ng/n is the
ratio of resonant to total Na density, nyg. is the He buffer
gas density, ocon is the gas kinetic cross section, and o is
the average relative velocity of Na and He. Modeled this
way, the only difference at higher buffer gas pressures
between broadband and narrow-band optical pumping
is the factor n/ne which leads to an enhanced effective
wall collision relaxation rate (Fig. 2) in the narrow-band
case. This is also essentially valid for two uncorrelated
laser beams, the linewidths of which are such that they
are not able to produce ground-state coherences.

In Eq. (2), the transverse and longitudinal relaxation
effects due to atom-atom collisions have been neglected.
This is reasonable because the ground-state of the alkali-
metal atoms is an S state, and the buffer gas atoms (He)
have a stable closed shell with only high lying excited
levels. Specifically, the collisional processes leading to
coherence and population relaxation in collisions are due
to a modification of the hyperfine interaction and spin-
orbit coupling of the Na spin, resulting in a spin flip
[8]. These are very weak processes, involving cross sec-
tions opop & 10726 cm? for the population relaxation
and ocon & 10724 cm? for the coherence decay [9]. These
are to be compared with the gas kinetic cross section
Oconl = 10715 cm?. The corresponding rates are propor-
tional to the buffer gas pressure, e.g., the typical popula-
tion relaxation rate is rg, /2 = MHeOpop¥- The spin-orbit-
coupling relaxation for the ground-states (S;/; spin-flip
process), shown in Fig. 2, is much less important than
wall collisions in the buffer gas pressure range of the ex-
periments (p < 100 Torr) [10].

fF
r:vall = Twall

III. VELOCITY-CHANGING COLLISIONS
AND DOPPLER BROADENING

One effect of the Doppler frequency shift in optical
pumping with a narrow-band frequency source, such as
a laser, has already been described above: only a small
fraction of the atoms is in the velocity subgroup which
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is resonant with the field; most of the population is a
kind of reservoir. Now consider the case of two laser
beams, which are both on resonance, i.e., their frequency
difference is that of the ground-state hyperfine splitting.
One might expect less diffusive relaxation and therefore
a better coherence as the buffer gas pressure increases.
However, consider a velocity group having a Doppler fre-
quency shift of the order of the ground-state hyperfine
splitting. The field, which for zero velocity atoms was
resonant with b’ <+ a, can now couple b and a due to the
Doppler shift (see pumping region R, in Fig. 1). Atoms
in this velocity group will thus be affected by only one
field, which leads to destruction of the b, b’ coherence by
rate equation optical pumping of the atoms out of states b
and c. Such effects occur at velocities vy = Ap, Aps (here
vy = £1043 m/s) where Ay is the ground-state hyper-
fine splitting (in Na 1.77 GHz) and Ap, is the wavelength
of the D; line (589.5 nm).

The populations of these two regions, R, and R_
(Fig. 1), relative to the whole Na population are quite
small. For the above mentioned velocities and with the
laser linewidth of the order of the radiative linewidth,
approximately 10~* of the total sodium concentration is
in regions R, and R_. But this is large enough to ex-
plain the observed dependence of the coherence on buffer
gas pressure, because in these regions of the population
“reservoir” optical pumping takes place and “kills” the
coherence. We assume a strong enough laser field and
short enough upper state lifetime for complete optical
pumping (and therefore coherence quenching) during the
interaction time (the time between successive VCC'’s is
equal to r;}l). Thus this process goes linearly with pres-
sure, and is important when the associated injection of
optically pumped “quenched” atoms into the zero veloc-
ity (central resonant) region exceeds the rate of diffusion
injection of “fresh” zero velocity atoms from the wall.
The effective rate Tpump (Fig. 2) for this quenching of
atoms by optical pumping is caused by the single field
action on the populations in the detuned regions around
vy and v_; the entire population continuously shuﬂ?lesI

P('U) t) = [paa; Pbbs Pob'b! Re ﬁab: Im Pab) Re ﬁab’ ,Im ﬁab’ ’ Re ﬁbb’ ) Im ﬁbb’

We find that Eq. (3) obeys the equation of motion

P(v,t) = /dv'B(v',v)P(’u’,t) +C(v) — A(v)P(v,t),
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through these regions due to VCC'’s.

This optical pumping can be regarded as injecting
atoms into level ¢, which is not coupled to the laser fields.
Even when the atoms return to the central resonant re-
gion, if they are in the state ¢ they cannot be affected
by the fields, so the coherent trapping by the joint ac-
tion of the fields cannot be created. At pressures larger
than several Torr, this injection of “pumped” atoms over-
whelms that of “fresh” atoms from wall collisions. (The
wall collisions return atoms in any state as “fresh” atoms
that the can be brought into the trapping state.) At sig-
nificantly larger pressures, the population is collected by
optical pumping to state ¢ and atoms do not exhibit pop-
ulation trapping in the b-b’' pair.

IV. RELAXATION IN LASING
WITHOUT INVERSION

We now turn from the above qualitative discussion to
the appropriate calculations which model the physics.
We describe the role of collisions via a density-matrix
equation of motion for the Na atoms by a collision ker-
nel W;;(v' — v), which gives the rate of collisions for
atoms with velocity v’ scattering to velocity v for the var-
ious density-matrix elements p;;(v') which describe these
atoms [11,12]. As we are in a regime (buffer gas pressure
p <100 Torr) where the collision rate is smaller than
the decay rate v of the excited level a, we can assume
that the collision kernel is approximately the same for
all populations and ground-state coherences. Now one
can transform the density-matrix equation in an interac-
tion representation for each of the three different velocity
regions of Fig. 1. This permits a rotating wave approxi-
mation.

Straightforward calculation along the lines of Ref. [11],
given in Appendix B, leads us to define the vector P(v,t)
for the populations pao (@ = a,b,b’) and the real Repag
and imaginary Imp,3 components of the density matrix

]T

®3)

(4)

where A (v) contains the action of the fields, the dissipative decay phenomena and loss due to VCC’s. For the central
region |v| < cAps/(2vp,) (we have drawn the border in the middle between the resonance regions)

i Y + Fo('v) 0 0 0 —2(22 0 —-291 0 0
—v/3  To(v) O 0 20, 0 0 0 0
0 0 0 ~l(v) —Az(v) 0 ] 0 -
A(’U) = nz —Qz 0 Az(’l)) ’Y(Izb(’l)) 0 0 —Q]_ 0 (5)
0 0 0 0 0 ’)’;b, (’U) —Al(’U) 0 Qz
Ql 0 ——Ql 0 0 A]_(’U) ’)’Lb, (’U) —Qz 0
0 0 0 0 Ql 0 Qz ’)’Lbl ('U) Abbl (’U)
L 0 0 0 Ql 0 _Qz 0 "Abbl ’Yl’)b' (U) |
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where A; (v) = wy—v1(1—v/c), Az(v) = wa—va(1—v/c),
and Agy = Az — A, are the detunings, w; corresponds
to the energy of the a « b’ transition and wy to the
a & b transition. The Rabi frequencies are defined by
Q; = &;pi/h where p; are the dipole matrix elements
for the optical transitions and &; are the fields coupling
these transitions (¢ = 1,2). The decay rate of the optical
transitions is «; for the collision rate I'(v) at velocity v
and the wall relaxation ryan we have used the rates

I'(v) = /d’u' reonW (v = v'),
Fo('l)) = F(U) + Twall

Voo () = (V) + Twan + 152 (v)
Yai (¥) =7/2+ T(v) + ryan for j=b, v . (6)

With the above stated approximations for the normal-
ized collision kernel W, the only nonzero elements of the
matrix B(v’,v), which yields the population and ground-
state coherence transfer by VCC'’s, are

Bi1 =By =B;33=DBsg=Bgg=rcalW(v' = v).
(7)

The vector C(v) describes the injection of fresh atoms
due to wall collisions, where the only nonzero elements
are Ca(v) = Cs3(v) = F(v)Twan/3 and F(v) is the
Maxwell velocity distribution. These two elements cor-
respond to atoms being injected in levels b and ¥'.

For the other velocity regions R, and R_ there exist
similar matrices A (v), obtained by considering the differ-
ent coupling schemes and modified detunings and Rabi
frequencies.

With the further assumption of strong collisions, i.e.,
W(v' — v) = F(v) , Eq. (4) can easily be solved for the
steady state solution of P(v) in the case of constant laser
fields, leading to

-1
P(v) = A7 (v) B(0,v) [1 - /dv"A"l(v")B(O,v”)]
x / d'A-1(W)C(W) + A (W) C) . (8)

The numerical results of this calculation are shown in
Figs. 3 and 4 by using the parameters from our experi-
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FIG. 3. Velocity and pressure dependence of the
ground-state coherence Ps(v) = Reppyr (v).
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FIG. 4. The ground-state coherence Pg(v = 0) =

Reppy (v = 0) as a function of buffer gas pressure: the nu-
merical result (solid curve) and the experimental result (data
points) [10].

ment (Ref. [1]) and summarized in Table I. In Fig. 3 we
show the velocity distribution and pressure dependence of
the ground-state coherence P3(v) = Reppy (v). In Fig. 4
the ground-state coherence Pg(v = 0) = puy (v = 0) for
the “resonant” atoms is shown. This is measured exper-
imentally by utilizing fast pulses (much shorter than the
time scale of VCC’s). For comparison we show the ex-
perimental result for the ground-state coherence in Fig. 4
([10]). There is good agreement with our simple four-level
model, showing the decrease of coherence effects at a few
Torr of buffer gas.

V. DISCUSSION

A more exact calculation would require an analysis
considering all 16 levels of the sodium D; manifold, with
a collisional coupling to the P3/; levels and the use of a
more sophisticated kernel (e.g., without the strong colli-
sion approximation) [6]. Also, in a multilevel model, the
inclusion of scattering of the excited-state coherence by
VCC’s across the whole velocity distribution (similar to
[13]) would be necessary. This calculation is underway.
We emphasize, however, that the present “simple” model
explains the physics of the process quite well.

In conclusion we consider the difference between our
work and other experiments on establishing coherence in
which the dependence on the buffer gas pressure was sim-
ilar to that of optical pumping. In the early experiment of
Alzetta et al. [14], trapping effects in an optical pumping
experiment within the Na D; line were observed; how-
ever, no significant dependence on buffer gas pressure
was reported. The reason is due to the fact that they
used a multimode laser with many modes oscillating at
equally spaced frequencies. For the point in space where

TABLE I. Values for the parameters used for numerical
simulation of the experiment.

Parameter Value

AVDop 2w x 1.6 GHz

¥ 2wx 9.9 MHz

Ql, Qz, Qa ~ vy

Twall ~v/(125 + 360 p [Torr])
Tcoll v 0.1 p [Torr]

,thase 0
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the dark resonance was observed the frequency difference
between the nth and the (n+5)th modes was equal to the
splitting between the lower hyperfine sublevels. Thus for
each velocity group under the Doppler profile, one could
always find a pair of laser modes that couple the two
lower sublevels to the same upper sublevel. Thus, un-
like our experiment, there were no velocity groups where
coherence trapping of a newly arrived atom would be de-
pleted by optical pumping. For this case the population
trapping is limited by the ratio of the collision rate r;‘iu
to the radiative decay rate rather than to the rpymp rate.

In a more recent version of that experiment [15],
ground-state population trapping has been produced us-
ing a three-mode dye laser in which the frequency sep-
aration between adjacent modes matched the sodium
ground-state hyperfine splitting. Even though that pump
configuration is a close approximation o that of our ex-
periment, no significant decrease in coherent population
trapping with the buffer gas pressure was observed, at
least for the pressure range explored in Figs. 3 and 4. In
the experiments of Refs. [14] and [15] one choice of the hy-
perfine levels b’ and b was the states F = 2, mp = —2 and
F =1,mp = —1, respectively. With this level choice, the
addition of buffer gas together with the optical pumping
actually produced an enhancement of population in the
b level involved in the coherent trapping superposition.
This dependence on buffer gas pressure is opposite to that
observed in our work in which optical pumping produced
by the addition of buffer gas depletes the population of
both levels involved in the trapping superposition.

The explanation is found in another significant differ-
ence in the experiments of Refs. [14] and [15]. Specifi-
cally, the laser beam is left-circularly polarized and prop-
agates along the axis of the cell, whereas there is a rel-
atively strong magnetic field at an angle o from 20° to
40° to the axis of the cell. Using the magnetic field as
the quantization axis, the pure left-circularly polarized
light propagating at an angle a would in this represen-
tation have a linear polarization component that drives
Amp = 0 transitions. Thus atoms in the mp = —2
state could be affected by this field and could produce
population trapping in their F = 2,mp = —2 and
F = 1,mp = —1 combinations. In this configuration
there is no longer a state to which all the atoms can
be pumped and which is not affected by any field. Thus
VCC’s cannot move all the atoms in an inaccessible state.
It should also be noted that if @ = 0, the FF = 2, mp = —2
and F' = 1,mpg = —1 coherence disappears. But they do
still observe an F' = 2,mp = —1 and F = 1,mp = —1
coherence that is analogous to the one we observe. We
anticipate that with @« = 0 and two laser modes, buffer
gas pressure dependence of this coherence would be sim-
ilar to our observations.
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APPENDIX A: EFFECTIVE RELAXATION
RATE

In the case of optical pumping with a narrow-band
light source, e.g., a laser, increasing the buffer gas pres-
sure leads to collisions which take the atoms out of the
resonant region even before they leave the light beam.
At the temperatures of interest, the nonresonant region
in the Maxwell velocity distribution contains many more
atoms than the resonant region, thus it acts as a kind
of reservoir. An increase of the collision rate leads to a
higher flux of atoms out of the resonant region. Specifi-
cally, the concentration of optically pumped atoms that
have been scattered into another velocity group grows,
and so does the probability for them to scatter back into
the resonant velocity region without diffusing to, and re-
laxing at, the wall. Let us express the above reasoning
in terms of rate equations; the contributions to the pro-
cesses are proportional to the following number densities.

(i) n: Total concentration of Na atoms (1 = 1¢ + Nres)-

(ii) mo: Concentration of Na atoms in the resonant
region (no <K n).

(iii) nres: Concentration of Na atoms in the reservoir
region (Nges = n).

(iv) nP: Concentration of optically pumped Na atoms
in one of the two regions.

(v) nf: concentration of “fresh” Na atoms in one of
the two regions.

The total concentrations both in the resonant region
Nres = nf., + nP,_ and the reservoir region ng = nf + nf
are constant, so we will only write equations for pumped
atoms in the resonant region nf and pumped atoms in the
reservoir n¥ . The process of escape of pumped atoms
to the walls and return of fresh atoms is described by
the terms with the rate ry,y times the concentrations of
pumped atoms. In the resonant region fresh atoms are
being pumped with the rate R due to the laser field. We
assume that the pumping rate is sufficiently high that
the atoms undergo complete pumping (the equilibrium
of the radiative processes is achieved) before they scatter
again. The equations have the form

n—ng
. — p p
7p = R(no — nf) — Twaunh — rconn )

To
+T0011_nfes’ (Al)
n
. —To_p Mo »p
'n’fes = _rwallnfes + Tcoll Ng — rcou;nl‘es' (AZ)

The last two terms in each equation are due to the col-
lisional transfer of atoms via VCC’s with the buffer gas
from the resonant region to the reservoir and vice versa,
respectively. The weighting factor ng/n describes the
probability that an atom which has experienced a col-
lision in the reservoir region will be scattered into the
resonant region, and n — ng/n describes the reverse.

If we assume that the pumped atom concentration in
the reservoir is constant in the steady state (i.e., n%,, =
0), then the second equation, Eq. (A2), gives

Teonh(n — o) /1
Twall + rcolan/n

)
Mres =

(A3)
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We now define 7S to be an effective rate for the es-
cape of a pumped atom to the wall, or equivalently, the
effective rate for the appearance of a fresh atom in the
resonant region. Then we have

"D __ P eff _p
N = R(’no - nO) — Twall”o-

(A4)

By substituting Eq. (A3) into Eq. (A1), and comparing
with Eq. (A4), we find

reff o Twall + Tcoll
wall — Twall .
Twall + "'couno/n

(A35)

This rate can be used in the density-matrix equation
written for only one velocity group to take into account
some effects of Doppler broadening.

APPENDIX B: DERIVATION OF THE KINETIC
EQUATION

To study the influence of velocity-changing collisions
we need to add the dependence on the velocity to the
density-matrix equation and the terms describing the
exchange due to collisions. We will approximate the
collision integral by the collision kernel W;;(v' — v)
which gives the rate of collisions for atoms with veloc-
ity v/ which lead to a transfer to velocity v for the
various density-matrix elements p;;(v’) which describe
these atoms [11]. As we are interested in a low pressure
regime where the decay rate v at the optical D; tran-
sition line is much larger than the gas-kinetic collision
rate, the transport of coherence in the optical transition,
i.e., polarization, from one velocity group to another is
here of no importance, especially as the cross section for
population and coherence decay by buffer gas collisions
within the Py /; manifold is of the order of the gas-kinetic
cross-section. For the ground-state coherence there is
a different situation, as the effective ground-state relax-
ation (i.e., including the wall relaxation) becomes smaller
than the collision rate with increasing buffer gas pressure.
Therefore it cannot be neglected. We neglect the trans-
verse relaxation in comparison with the change of state
which is longitudinal relaxation. So we assume the same
collision kernels for the following elements of the density
matrix:

Waa(v—2v") = Wip(v—>0')
= Wb:br(v—)v')
= Wee(v—v')
= rcaiW (v —>v'),
Wbb' ('U—)’U’) = Wbc(v—)v') = Wb:c(v—)v')
= ’I'couW(‘U—)‘UI),

Wap(v—ov') = Wap (v —ov') = Wo(v—od') =0.  (B1)

Here the kernel W (v — v’) is normalized to the equilib-
rium Maxwell distribution F(v):

1= / / dvdv’ F(v) W (v — o). (B2)

The velocity-dependent rate of collisions I'(v) of atoms
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with a certain velocity v results then in

I(v) = / do'reonW (v — V') . (B3)

Using a term +};(v) for an additional phase decay caused
by spin-angular-momentum coupling in the alkali-metal—
buffer-gas interaction, the collisional part of the equation
of motion for the density matrix can be written as

= —v5 () pij(z,v,t)

4
a: P '(Zv v, t)]
[6t ! coll
—F(U) Pij (z, v, t)

+/dv' Wii(v' = v) pij(z,9,t) .
(B4)

The dependence on z is important for the transition to
the rotating frame of reference.

For the resonant region, i.e., where the field with the
frequency vy couples the transition a <> b’ and the field
with v, couples a <> b and the wave vectors are K; and
K respectively, this representation is given by

Pab(2,0,1) = pap(v, t)eK2z—vat],

Pab (2,0, 1) = pap (v, t)eFrz—11t]

Pob! (Z, v, t) = p~bb’ ('U, t)ei[(Kl —K3)z—(v1—v3)t] . (B5)
For the region where the field with the frequency v, is
coupled to the transition a > b (i.e., for atoms with a
velocity around v_) we choose

pab(z, v, t) = ﬁab(”a t)ei[Klz_ult]y

Pab’ (z, v, t) = ﬁab' (’U, t)ei[(ZKl ~K2)z— (21 —va)Y] ’

pob (2,0, 1) = ppp (v, £) KL= K2)z= (1 —v2)t] (B6)
where we have chosen the rotating frame for the uncou-
pled a < b’ transition in such a way that the py element
has in both regions the same decomposition. This leads
to a time-independent right hand side in Eq. (B7) below.
The formulation for the velocity around v, is similar.
For convenience of calculation, we assume that we switch
from one coupling scheme to another at the velocity cor-
responding to the detuning Ays/2 of the fields, and that
there is no significant difference between both schemes at
this point since the fields are too far detuned. If this were
not valid, one would have to work with the more accurate
description of both fields coupling both transitions simul-
taneously, which would lead to time-dependent terms os-
cillating with frequencies Ay and higher harmonics, as
there is no rotating frame for this set of equations. The
density-matrix equations for the resonant region are now
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d . JPR c < .
Epaa(vat) = "['7 + F('U) + rwall]paa(vv t) + ZQZpba + Zleb’a - 1Q;pab - ZQIpab’ + /dv,rcollW(vl — 'U)Paa('UI’t)y
d .y x k=
(‘ﬁpbb(’v, t) = Twall/3 F(’U) + 7/3 paa('u, t) - [F(U) + Twall]pbb(vat) - "'szba + ’LQ;Pab + /dvlrcollw(v, - 'U)Pbb('U'a t),

d .y~ ok =
Eipb’b’ (’U, t) = Twa11/3 F(U) + 7/3 paa(v) t) - [F(U) + Twall]pb'b’ (’U,t) - Zleb’a + lepab'

o ram st
d

apcc(va t) = Twall/3 F(’U) + '7/3 paa(v$ t) - [F('U) + Twall]pcc(v, t) + /dverle(U, - v)pcc(v', t)’
d . X . R . ~

3 pes(v,) = ~[9/2 + 124 + T(0) + roat + i85 0)]pas(v:2) — 19 (paa — p0) + 1,

d . . - . N~
7z Pat’ (v,t) = =[v/2 4+ 7% + T(v) + rwan + A1 (v)]Bab (v, 1) — iQ1(Paa — Porbr) + 12250 5

d . . - o o = -
2 Pov' (v,t) = =[v/2 + 75y + T'(v) + Twan — 1A (v)]poer (v, t) + 125 Papr — i1 Pba + /dv'rcouW('u' — v)pe (v, t).
(B7)

The coherence terms involving the level ¢ are zero, as no fields couple to this transition and there is no injected
coherence. The detunings are Aj(v) = wy; — v1 + K1v, Az(v) = w2 — v + Kov, and Apy = Ay — A; where w;
corresponds to the energy of the a +» b’ transition and ws to the a <> b transition. The Rabi frequencies are defined
by

i=1,2 (B8)

where gp; are the dipole matrix elements for the optical transitions and &; are the fields coupling these transitions.
For the detuned region around v, we have

d o [
d_tpaa('us t) = _['7 + F(U) + "'wall]paa(vat) + lePba - znlpab + /dvl"'collW(v’ - v)paa(v’a t)7

%pbb(v,t)=7’wau/3 F(v) +7/3 paa(v,t) — [[(v) + Twan]pes(v, t) — iQ15ba + i} hab + /dv'rcouW(v' — v)pey (v, 1),
%pb:b: (v, t) =rwan/3 F(v) + /3 paa(v,t) — [['(v) + rwan)pes (v, t) + /dv'rcouW(v' = v)ppp (V' 1),

%pcc(v,t) =Twail/3 F(v) + 7/3 paa(v,t) = [[(v) + rwan)pec(v,t) + /dv’rconW(v' = ) pec(v', 1),

%ﬁab(vat) =—[v/2 + %, + T(v) + wan + iA1(v)]Pab(v, t) — Q1 (Paa — Pbb),
%ijab’ (v,8)=—[v/2 +¥E + T (v) + Twan + iB2(v)]fap (v, t) + i1 o

%5%' (v,t)=—=[v/2 + vh + T'(v) + rwan — 1App (v)] oo (v, ) + 0 Pav + /dv"rcouW(v' - v)ppp (v', 2). (B9)
Here the detunings are A;(v) = A;(v) — Aps and Az(v) = Az(v) — 2(1 — v/c)dv; and the Rabi frequency is

A E1p2

Q= B10
1= (B10)
These equations written in the matrix form give Egs. (4)—(7).
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