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The overlap of classical resonances has been particularly successful in predicting ionization thresh-
olds for hydrogen atoms in strong microwave fields, although not for low scaled frequencies. In this
paper, we explicitly relate quantum mechanically computed matrix elements to the classical Fourier
amplitudes used in the overlap criterion. The resulting twist to this demonstration of classical-
quantum correspondence is that quantum matrix elements can be used to improve predictions of
classical-resonance overlap for low scaled frequencies. Conversely, the classical amplitudes are shown
to contain delicate cancellations in the quantum matrix elements. In the course of this demonstra-
tion, we also introduce a compact numerical method for evaluating high-order multiphoton matrix

elements.

PACS number(s): 32.80.Rm, 05.45.+b, 42.50.Hz

I. INTRODUCTION

The classical-resonance overlap criterion provides a
very powerful tool for determining the conditions for the
onset of chaos in periodically driven nonlinear oscillators
[1]. In particular, the early application to periodically
perturbed Kepler orbits provided estimates for the crit-
ical microwave fields for the chaotic ionization of highly
excited hydrogen atoms [2-4], which were in remarkable
agreement with the experimental measurements on real
hydrogen atoms [5,6]. Combined with detailed numeri-
cal studies of the classical and quantum dynamics of this
strongly perturbed atomic system [6-10], this pioneering
work has stimulated much research activity in the new
frontier of “quantum chaos” over the past decade.

The resonance overlap criterion for periodically per-
turbed nonlinear oscillators is based on classical pertur-
bation theory. It uses the Fourier coefficients of the per-
turbation to estimate the widths of resonances in the clas-
sical action-angle space of the nonlinear oscillator [1,2].
Widespread or global chaos arises in the dynamics of the
perturbed oscillator when these resonances overlap. The
key to using this criterion is the accurate location of the
classical-resonances and the calculation of their widths.
The purpose of this paper is to illustrate a procedure
for determining the classical-resonance widths using the
Heisenberg strong correspondence principle [11] to relate
the classical Fourier coefficents to quantum mechanical
matrix elements. This procedure may be particularly ef-
fective when the classical canonical transformation for
obtaining the resonance widths is very complicated as
in the case of the perturbation of highly excited hydro-
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gen atoms (with principle quantum number n) using mi-
crowave frequencies, 2, less than the natural oscillation
frequency 1/n3. Specifically, we show that the quantum
mechanical matrix elements for multiphoton transitions
in the strongly perturbed hydrogen atom can be used
to extend the resonance overlap criterion to accurately
estimate the threshold microwave fields for the onset of
chaotic ionization at low scaled frequencies, n3§2 < 1.
Of course, the relatively crude resonance overlap crite-
rion is not a panacea. It is intended only to give a rough
(factor of 2) estimate of the conditions for the classical
transition from stable, bound-electron motion to unsta-
ble dynamics that can lead to ionization. In addition,
detailed studies of the classical-quantum correspondence
in the microwave ionization experiments reveal a number
of subtle discrepancies [12,13] that continue to challenge
the theoretical interpretation of the experimental mea-
surements. Nevertheless, as a first approximation the
resonance overlap criterion provides an excellent estimate
of the magnitude and parameter dependence of the tran-
sition to global chaos that can serve to guide both exper-
imental and theoretical studies of the transition to chaos
in classical nonlinear oscillators and investigations of the
behavior of the corresponding quantum systems.
Section II begins with a formal development of the
classical-resonance overlap criterion for the onset of
chaotic ionization at low scaled frequencies, which is a
generalization of an approach first introduced by Bliimel
and Smilansky [9]. In Sec. III we comment on the re-
markable correspondence between the classical Fourier
coefficients of the perturbation and the quantum multi-
photon matrix elements for this system, which is a con-
sequence of the Heisenberg strong correspondence prin-
ciple [11]. In particular, the classical Fourier amplitudes
automatically yield accurate estimates for the quantum
multiphoton matrix elements that were previously shown
[14,15] to require delicate cancellations involving com-
peting terms orders of magnitude larger than the final
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result. This classical-quantum correspondence suggests
in turn that the quantum multiphoton matrix elements
may provide an accurate and effective means of esti-
mating the classical Fourier coefficients that determine
the island widths for low-frequency resonances. In Sec.
IV an efficient algorithm for calculating the multipho-
ton matrix elements is described. These quantum me-
chanical matrix elements are then used to improve the
estimates of the classical Fourier amplitudes utilized in
the resonance overlap criterion developed in Sec. II for
the low-frequency microwave ionization of highly excited
hydrogen atoms. Finally, rules for extracting the dom-
inant contributions to the classical resonance widths as
well as schemes for evaluating the multiphoton matrix
elements within MATHEMATICA [16] are contained in the
Appendixes.

II. RESONANCE OVERLAP THEORY FOR
n3Q <1

We start with the Hamiltonian for the one-dimensional
(1D) hydrogen atom in an oscillating electric field:

-1/, x>0
00, z<0

H(z,p,t) = p*/2 + { } + zF cos(Qt) .

(1)

On transforming to the action angle variables for the un-
perturbed Hamiltonian:

H(0,I,t) = =1/2I° + F ) Viu(I)cos(md — Q1) ,

(2)
where V,,(I) = Cci(m)I? with coefficients
3 m=0

Cei(m) = { 23, (m)/m, m #0. ®3)
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Hamilton’s equations of motion for the action and an-
gle variables are

dI

i Fgo mVp, (I) sin (mf — Qt), (4)
ﬁ=1/I3—+-F i V.. (I) cos (mf — Qt) . (5)
dt ="

Formally integrating to lowest order in a perturbation
expansion in F, the solutions are

It)=I,+F Z z—g—g:(%o()ﬁ cos[(mfp — Q)t] + O(F?),
m#0
(6)
6(t) = 0o + Qot
+F m;w % sin[(mQp — Q)t]
+O(F?), (7)

where I, and 6y are the initial values of the action-angle
variables and

Qo = 1/I%|1=1, (8)

is the classical Kepler orbital frequency.
This result suggests that we isolate the leading oscilla-
tory perturbations by introducing a new angle variable

p=0—F f: be sin[(kQo — Q)] , (9)

k=—o0

where

b = V{(I)/(kQ0 — Q) = { :g%?(’k) Jk(kQ — Q), : 2 0. (10)
At first we keep the action variable unchanged using the generating function
Fa(0,1,8) = 10— F i /01 bom(T) sin|(mSo — Q))dI . (11)
Then the new Hamiltonian is
K(¢,I,t) = —1/2I* + F i Vin(I) cos [m (45 +F i by sin[(kQo — Q)t]) — Qt] + OF, /0t . (12)
m=—oo k=—oo

(Note that since 8F,/dt does not depend on 0 or ¢ this term will not contribute to any new classical resonances.
Furthermore, the m = 0 term in 8F,/8t term exactly cancels the remaining m = 0 term in the new Hamiltonian.)

For large driving frequencies, /9 > 1, a good description of the critical fields for the onset of global chaos can be
achieved by neglecting the higher-order resonances by setting all b = 0 in Eq. (12) [17,18]. In this case dynamical
resonances occur only for 2/ ~ m with m = 0,+1,+2, ..., where the phases of the remaining oscillatory terms in
Eq. (12) are stationary.
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However, for low driving frequencies, /€9 < 1, the additional resonant interactions at subharmonic frequencies
with Q/Q¢ = 1/q must also be included. In particular, if we expand the cosine of the sine in Eq. (12) in terms of Bessel
functions, then the full Hamiltonian can be expressed in a form that clearly exposes the higher-order, subharmonic

resonances that determine the resonance overlap criterion for the onset of global chaos for n3Q < 1:

K(¢,I,t)=—-1/2I* + F i Vin(I) Re (ei(m¢—m) ﬁ i

k=—o0 Sg=—00

m=—00

This Hamiltonian is still exact. Although the infinite
product of the infinite sums of Bessel functions appears
complicated, a typical term of the perturbed part of the
Hamiltonian K corresponding to a “string” of indices
m, k, and {sg }x=—oc0,c0 Can be simply expressed in terms
of an amplitude and a phase

A (K, {sk}) cos [mqs - (Q - > sk(kQ0 — Q)) t] ,

(14)

where the Fourier amplitude is expressed in terms of
products of Bessel functions,

A (k,{sk}) = FVn(I) [] Jou (mFb2) . (15)
{sr}

By approximating ¢ = Qgt, the resonances associated
with each of these terms can be determined by the con-
dition that the phases in Eq. (14) be stationary

mQp — <Q - i sk(kQo — Q)) = 0. (16)

83 =—00

This occurs when the ratio of the perturbation frequency,
Q, to the natural frequency, Qo = 1/I3, is

Q/QO=I3Q=(m+ i ksk)/(1+ i sk).

8 =—00 8 =—00
(17)
Since m, k, {sr} are all integers, the resonances occur
when I3} is a rational ratio p/q.

Consider for example the case I3Q = 1/q < 1. Then
the resonant action is

Lig = (1/49)3. (18)

The resonance width about this action is determined by
the Fourier amplitudes A,,(k, {sx}) defined by Eq. (15)
corresponding to strings of m, k, {si} that satisfy Eq.
(17), that is,

m+ Z ks, =1, (19)

8 =—00
1+ Z sk=gq. (20)
8 =—00C

As the magnitude of the Bessel functions decreases

Ja, (mFbk)eisk(kQ°_Q)t) + OF, /0t . (13)

rapidly with increasing order for small arguments, only
a few of the many factors in Eq. (15) contribute to the
amplitude of these resonances. In fact, a careful analysis
of the relative size of these factors shows that the domi-
nant terms for ¢ = 1,...,10 come from index strings with
(a) m = 1 (since V;, ~ 1/m3), (b) the largest value of
so that satisfies the resonance condition, Eq. (20) (since
bo 3> bro), and (c) 1+30°_ _ _ [sk| = ¢ (since the small
argument expansion of the Bessel functions then gives
Am gsey ~ F9). (Note that this last condition neglects
counterrotating terms with m < 0.)

Application of the rules (a), (b), and (c) shows that
the leading term for Q/Q = 1/q with ¢ = 1,...,10 cor-
responds to the index string

m:l, So—_—q—l, Sk;é():O. (21)
Since Jy ~ 1 for small arguments, the leading contribu-
tion to the amplitude of the 1/q resonance comes from

A9 = FV (1) J,_1(-3qF0) , (22)

where Fy = I*F is the scaled field.
Then the width of the 1/q resonance can be approxi-
mated by the usual formula [1,2]

Ay
H/a 2]

and resonance overlap leading to global chaos can be esti-
mated to occur [19] when the sum of the resonance island
half-widths is approximately two-thirds the separation of
their locations,

(23)

I=I,,,

§=3Wijq+Wigi1)//liyqg = Lijqeal > 3. (24)

Using Egs. (22) and (23) we have determined esti-
mates for the critical Fy for the onset of global chaos
due to resonance overlap for 2/Qy < 1 for comparison
with the numerical and experimental values of Ref. [6].
For the microwave frequency, v = Q/2n = 9.92 Ghz,
used in the experiments [6], the locations of classical-
resonances were determined by Eq. (18), which we relate
to the principle quantum numbers of the Rydberg atoms
in the experiments using the Bohr-Sommerfeld quantiza-
tion condition Iy, = ny/, (where & = 1 in atomic units).
The resonance island widths for ¢ = 1-10 were then cal-
culated from Eq. (23). Resonance locations and widths
computed for increasing scaled microwave field n*F are
plotted as a function of initial n using dotted curves in
Fig. 1. Finally, the application of the resonance overlap
criterion, Eq. (24), using the “2/3 rule” predicts thresh-
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FIG. 1. The dotted lines represent the value of the ac-

tion I at the top and bottom of the 1/¢ resonance (where
g = 1,...10) for a range of scaled fields Fy. The solid line
gives the threshold fields for resonance overlap as predicted
by the “2/3 rule” discussed in the text.

old fields for the onset of global chaos as a function of
initial action m, which are indicated by the solid curve
linking the resonance zones in Fig. 1.

Below these threshold values, the perturbing field is too
weak to cause overlap of the ¢ and g+1 resonances, which
could lead to chaotic excitation of the initial state to
higher actions or quantum states and then to ionization.
However, for fields above these thresholds, the overlap of
adjacent resonances results in global chaos leading to ion-
ization of the atom. A comparison of these predictions
with the results of classical simulations of chaotic ioniza-
tion and with experimental measurments of the threshold
fields for microwave ionization shows excellent agreement
in Fig. 2 with no adjustable parameters. The most no-
table deviations are the increased thresholds in the ex-
periments and numerical simulations at the middle of the
threshold steps associated with initial actions inside each
resonance zone. However, this discrepancy is accounted
for by the increased stability of the perturbed atom as-
sociated with the existence of an approximate adiabatic
invariant, which is preserved by the slow turn-on of the
microwave perturbation in both the experiment and sim-
ulations, as was discussed in earlier work [3].

A more serious problem indicated in Fig. 2 is that,
although keeping only the A; contributions to the reso-
nance widths gives good agreement for ¢ = 2 and 3, the
threshold fields are too large in the low-frequency limit.
In fact, this approximation, which corresponds to keeping
only the contributions of the permanent dipole moment
in the new angle variable ¢ gives a threshold field that is
a factor of 2 too big in the limit of zero frequency [20].
This discrepancy can be understood mathematically if we
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examine the behavior of A;(g) in the large-q limit. Using
the asymptotic form of the Bessel function in A;(q) for
large order and large argument,

1 3eFp\?
Jq_1(3qF0) ~ ———’__271'!] ( 2 ) ) (25)

we see that A;(q) converges to 0 for Fy < 2/3e as ¢ — oo
and diverges for Fy > 2/3e. So the critical field for res-
onance overlap can be estimated as Fp = 2/3e = 0.245,
which is nearly a factor of 2 larger than the classical
scaled field threshold for static field ionization, F; ~ 0.13
2

The additional contributions from resonance ampli-
tudes corresponding to other allowed index strings as
well as terms arising from the perturbation of the action,
Eq. (6), are necessary to approach the correct asymptotic
limit at low scaled frequencies. For example, the ampli-
tude given by Eq. (15) for

m = 2, Sk¢0,_1 - 0 (26)

SOZq_27 3—1:1,

is

A = FVy(I)Jg—2(—~69F0)J1 (471 (1)aFo/(q + 1)) . (27)

0.08

0.04

40 60 80

FIG. 2. Comparison of critical fields for global chaos de-
rived from the resonance overlap criterion with experimental
(thin line) [6] and numerical thresholds (points) for chaotic
ionization. The solid line was obtained using only the classi-
cally computed A; Fourier weight, while the dashed line uses
the three leading contributions to the quantum multiphoton
matrix element calculated in Sec. IV in the overlap criterion.
Note that the experimental thresholds are for 10% ioniza-
tion and are measured only at discrete values of the scaled
frequency. The experimental curve shown here is obtained
by simply connecting these points. The 1D numerical sim-
ulations include time-duration, turn-on characteristics of the
experiment. Readers interested in discussions on the question
of dimensionality and details of this particular simulation are
directed to Ref. [17] and references therein.
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Using the asymptotic expansion for J,_(—6gFy), the
critical field for divergent amplitudes is Fy =~ 1/3e =
0.123, which is much closer to the classical value for static
field ionization of 1D hydrogen atoms. Of course if we
examine the asymptotic behavior of A3(g), the threshold
estimate would appear to be even lower. However, the
q — oo, zero frequency limit is only expected to be an
asymptotic one (as in the quantum theory [21]), so ex-
tensive cancellations of the many contributing terms may
be expected at any given order gq.

The increasing complexity of our classical perturbation
theory as the frequency decreases ultimately indicates
that that our canonical transformations do not provide
the most efficient or useful description of the dynamics for
very low scaled frequencies. Similar conclusions were also
arrived at in the work of Richards et al. for both quan-
tum and classical descriptions of the very-low-frequency
regime where adiabatic approximations were successfully
utilized instead [22]. Consequently, the utility of our
method is limited to frequencies that are not too small.
In particular, we will restrict our analysis to 2/Q¢ > 0.1
where our converged results in Fig. 2 demonstrate that
the application of the resonance overlap criterion to the
subharmonic resonances for low scaled frequencies pro-
vides a good description of the classical threshold for the
onset of chaotic ionization.

In Secs. III and IV we will show how an alternative
method of evaluating these additional contributions to
the resonance widths using the quantum mechanical mul-
tiphoton matrix elements and the Heisenberg correspon-
dence principle can be employed to improve the very-low-
frequency (large-q) estimates of the ionization thresholds.
Although resonances with Q/Qo = p/q for p > 1 may also
be expected to reduce the ionization thresholds further,
simple rules for the contributions to these terms appear
to be more difficult to formulate. As these contributions
are smaller than the 1/q resonances and our calculations
keeping only the 1/q resonances give reasonable agree-
ment with both the numerical simulations and the ex-
perimental data (including the low-frequency limit), we
neglect them here. These additional terms are, however,
considered in the recent work of both Bliimel and Howard
(20,23].

III. REMARKS ON THE CLASSICAL-QUANTUM
CORRESPONDENCE

The Heisenberg strong correspondence principle says
that the dipole transition matrix element from quantum
states n to n +m can be simply evaluated for large n by
computing the classical Fourier component of x expressed
as a function of the action-angle variables (6,I) of the
unperturbed system,

1 27T

— z(6,1)e™dh ~ (n|z|n + m). (28)
2w Jo

Heuristically, this powerful semiclassical relationship can
be “derived” by performing a canonical transformation
to appropriate action-angle variables, (I,6), on both

z = x(0,I) and the quantum states |n) ~ e~"f/\/271
and |n 4+ m) = e*+™?/\/27 on the right hand side of
Eq. (28). Of course quantum mechanics is not invariant
under classical canonical transformations that mix the
position and momentum variables. However, since the
corrections involving the commutation relations of these
operators are of order % they may be neglected in the
semiclassical limit. A formal justification of the strong
correspondence principle is provided in the seminal paper
by Percival and Richards [11].

For single-photon transitions Eq. (28) provides a very
convenient method for evaluating the quantum matrix
elements for single-photon transitions between highly ex-
cited states of Rydberg atoms where the appropriate
canonical transformation is to the action-angle variables
of the unperturbed classical Kepler motion. For exam-
ple, the dipole matrix elements, ft,,n+m, for single-photon
transitions between states n and n £+ m are very well ap-
proximated by the classical Fourier amplitudes V,, with
coeflicients given by Eq. (3) [e.g., Vi(n) ~ —0.325n% ~
Unnt1, Va(n) ~ —0.11n2 =~ ponia, Va(n) ~ —0.06n% ~
HMnnt3, - - ] [7]

Remarkably, the strong correspondence principle can
also be used to calculate the effective quantum matrix
elements for multiphoton transitions between highly ex-
cited states of the one-dimensional hydrogen atom by
transforming the quantum matrix elements using the new
canonical variables defined by Eqs. (11). In this case
we identify the quantum matrix element with the corre-
sponding Fourier component of Eq. (13).

For example, keeping only the leading contribution to
the m = 1 Fourier component for I = n,

AP (n) = FVy(n)Jy-1(3¢Fp), (29)

which gives an expression for the g-photon matrix ele-
ment for quantum mechanical Rabi flopping between two
states n and n+1 that was previously derived by Susskind
and Jensen [24]. Moreover, the small argument expan-
sion for the Bessel function reduces Eq. (29) to the mul-
tiphoton matrix element for one off-diagonal (An = 1)
transition and ¢ — 1 diagonal (An = 0) transitions be-
tween one-dimensional hydrogen states originally derived
by Bardsley and Sundaram [15]. In this latter case it
is important to recognize that this quantum result only
arises after the partial cancellation of individual contribu-
tions that can be many orders of magnitude larger than
the final result. By contrast, the classical Fourier com-
ponent, Eq. (29), delivers the correct result in a single
expression. This remarkable correspondence will be ex-
plored further in the next section.

However, this term corresponds to keeping only the
k = 0 term in the transformation to the new angle vari-
able ¢ [Eq. (9)], which is equivalent to only transforming
away the oscillations due to the permanent dipole mo-
ment Vo = 3I2. The necessity of including additional

terms like the qu) term in the resonance width estimates
to achieve agreement with the numerical simulations and
experiment at low scaled frequencies indicates that im-
portant new, classical and quantum physics must be in-
corporated in the theory to describe the low-frequency,
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large-q dynamics.
In particular, the additional term,

4qJ! (1) F,
A = FVa(n)Jyoz(—64Fo)Jy (iq%—) . (30)

corresponds to a An = 2 transition from n to n+2 involv-
ing (g — 2) diagonal (An = 0) matrix elements followed
by a transition back from n + 2 to n + 1. In the next
section we show that in the quantum theory the cancel-
lations arising from the careful summation of a number of
different terms that are orders of magnitude larger than
this final term leads to a similar result for the quantum
matrix element.

The reason for the classical Fourier component being
orders of magnitude smaller than the individual quan-
tum contributions is that the arguments of the Bessel
functions which determine the powers of F' in the matrix
elements involve the derivatives of V4 (I) with respect to
the action I = n. This reduces the size of the effective
g-photon matrix elements from n2? to n9+!. When n and
g are large this reduction is enormous.

Unfortunately, a careful comparison of the quantum
matrix elements with the classical Fourier coefficients
shows agreement only in order of magnitude. The clas-
sical and quantum results typically differ by a numerical
factor. For example, the dominant Fourier amplitudes
for a three-photon transition between states with no per-
manent dipole moments correspond to m = 1, k = 1,
si=1l,andk=-1,5_1=1

AP) (k, sk) = FViJ1(=3FV!,/4n)J1(3FoV{/2n) , (31)
and m = ~1, k=1, and s; = 2,
A®)(k, s) = FV_1J,(—3F V! /2n) . (32)

If we expand the Bessel functions in Egs. (31) and (32)
to leading order in F', we arrive at a simple expression for
the multiphoton, multilevel matrix element that can be
compared with the quantum results in the next section,

A ~ 9[Cai(1) Fo/2)° /n? (33)
and
A_1 ~9[Cai(1)Fo/2)? /n’. (34)

As shown later, the sum of these two contributions is
exactly equal to 2/3 of the corresponding quantum me-
chanical three-photon matrix element given by Eq. (47).

Hily By la Blgls * Bl f
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This numerical discrepancy arises because the single
canonical transformation described in Sec. II does not
fully evaluate the magnitude of the resonance amplitudes.
If the classical Hamiltonian, Eq. (12), is further trans-
formed to include the perturbation of the action, Eq. (6),
then additional resonance terms contribute to the reso-
nance widths. A lengthy algebraic calculation shows that
including the perturbative correction to the action in Eq.
(12) to order F provides the missing 1/3 contribution
to the three-photon matrix element.

[Note that since the perturbation of the action does
not include any additional dependence on the permanent
dipole moment, Vp, only the A(lq) terms, Eq. (29), corre-
sponding to one off-diagonal An = 1 transition and ¢ —1
diagonal An = 0 transition are complete.]

In general, these additional canonical transformations
are very tedious. However, the Heisenberg strong cor-
respondence principle suggests an alternative approach
to evaluating the classical-resonance widths by using
the quantum matrix elements to estimate the classical
Fourier coefficients. After reviewing an efficient proce-
dure for evaluating the quantum matrix elements in the
next section, we will use this reverse application of the
Heisenberg strong correspondence principle to improve
the classical estimates for the threshold fields for low-
frequency microwave ionization of highly excited hydro-
gen atoms in the concluding section.

IV. EFFECTIVE QUANTUM MECHANICAL
MATRIX ELEMENTS

The presence of permanent dipole matrix elements,
corresponding to a linear Stark effect, is peculiar to hy-
drogen atoms subjected to an electric field. Several stud-
ies have shown that these have to be included when com-
puting transition rates for multiphoton processes. In the
one-photon near-resonant case, inclusion of the diagonal
elements does not modify the behavior within the two-
level resonance or rotating-wave approximation, as the
additional terms generated do not contain slowly oscillat-
ing terms. This is not, however, true in the multiphoton
case where large cancellations result as a consequence of
the diagonal terms.

We begin from the general perturbative expression for
a resonant g-photon transition matrix element between
levels labelled 7 and f [25]

N
F q
(@) — il
Mq_2(2) ¥
Lilg-lg_q

where p;; denote dipole matrix elements between levels 7
and j. The prefactor 2 ensures that this general expres-
sion reduces to a simple matrix element in the single-
photon limit. The peak amplitude F and frequency 2
are the external field parameters and w;, = E;, — E; is
the energy difference between the initial level and any
intermediate level ;. For a g-photon process, the sum

(Wi, =) (wi, —29) -+ [wr,, — (¢ — 1)Q]

(35)

is over (¢ — 1) intermediate states whose energies, un-
like those of the initial and final states, are not related
through energy conservation. These transitions are vir-
tual in nature as attested to by the fact that the time
spent in a virtual state p, given by At = (w, — NQ)71, is
small compared with the transition time from initial to
final states.
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With the inclusion of permanent dipole moments, two
types of transitions are possible, diagonal ones involving
the same level and off-diagonal ones going across levels.
In a representation involving direct products of electronic
and photon states |e;n), where e labels the electronic
state and n is the photon number, a ¢-photon transition
from level i to f means going from [i; q) to |f;0). Taking
instead the change in photon number leads to a simple
way to schematize the multiphoton process. As an illus-
tration, consider a three-photon transition in a two-level
system. The level structure is as shown in Fig. 3(a),
where the second label is now simply the energy denom-
inator (defect) measured in units of the photon energy.
The summation in the multiphoton matrix element (35)
now corresponds to all possible paths from |¢;0) to | f;0),
which are shown in Fig. 3(b). The top row of diagrams
may be considered as a single class, as they each involve

I

q—m
™ W Babily,
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a single off-diagonal transition from ¢ — f. The last dia-
gram has three off-diagonal transitions and is clearly not
the only one in its class. To exhaust this set one needs to
go beyond the simple two-level picture, a point we shall
return to later.

The procedure illustrated for the three-photon transi-
tion can easily be extended to the general ¢g-photon case.
Take the case schematized in Fig. 3(c) of this transition
between levels a and b where (¢ — 1) diagonals and one
off-diagonal transition are involved. Of the (¢ — 1) diag-
onal elements, m occur with respect to level a and the
remaining (g—m—1) with level b. To exhaust this class of
diagrams, all possible values of m [from 0 — (g—1)] have
to be considered. Thus, in Eq. (35), the summation over
(¢ — 1) indices may be replaced by a single summation
over m leading to

-1

F\ 1 & (-1
M@ =9 —_
2/ Qa1 mz=:o ml(g—m

2 F\*? Hab =
= —_ __rree —1 m, m q——m—l__—___
Qq—l (2> (q_1)|7§)( ) ,"’aa:u'bb m!(q—m——l)! 9

where the energy differences (as seen from the three-
photon case illustration) have been expressed in units
of the photon energy Q. The summation is clearly a bi-
nomial expansion leading to

2 E B (I‘Lbb - l’l‘aa)q_l
Q-1 \2 ) P g

Specifically for transitions between Stark states with
high principal quantum number n and electric quantum

number |n — 1| (extremal states) we use the fact that the
matrix elements are well approximated by

inn = 3n(n — 1)/2,
Pnnt1 = —0.32(n £ 1/2)3,
Unntz = —0.11(n £ 1),
Co(k)[(n+n') /212,
where the subscripts refer to initial and final states. Thus
the first expression is the diagonal matrix element. Us-

ing these, a g-photon transition between neighboring ex-
tremal states (where n changes by 1) is given by
M(q) . 0.32n?2

q—1
_ 03207 o, (3n
b (g—1)! 20 ’
while the more general transition where n changes by &
leads to

M@ =

(37)

Hnn'=ntk (38)

(39)

2 q—1
M9 ~ Co(k)n Fa (3nk) ‘ (40)

20

These expressions provide the first indication of the high
degree of cancellation in the effective matrix element. A
g-photon transition where each element is proportional
to n? should go as n?9, but what we have, as seen from
our earlier classical analysis, is n9t!. Once again, for

—1)---[g—(¢—-1)]

(g—1)! (36)

[
large n this is a reduction of several orders of magnitude,
even for modest q.

Let us now reinforce the connection between the clas-
sical Fourier weights and the quantum transition matrix
elements. The matrix element (39) can be rewritten as

1t;-3> |f;—2> f;—1> |f;0>
] . ] o Level f
. . . . Level i
|i;0> lis;1> Ji;2> 11;3>
(a)

(c)

FIG. 3. (a) Level structure for a three-photon transition
from levels ¢ — f in the direct product representation. The
first is the electronic state label, while the second represents
the change in photon number. (b) Distinct excitation paths
for three-photon transition form ¢ — f. (c) Schematic of the
general g-photon matrix element with only one off-diagonal
transition.
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m 3no\? "
(@) _ An=1 0
May = G-t (29)
3\ 1
— 2 [ 270 -
= Ca(l)Fmo (290) (g —1)!

= Co(1)Fn? [(31;"‘1) ) G _1 1)!] . (41)

where ng is the initial state, the scaled variables Fy =
Fnj, Qo = Qnd, which leads to Q¢ = 1/q. Recogniz-
ing the term in square brackets as the leading term in
the expansion of J,_;(3¢Fp) establishes the correspon-
dence with the Fourier weight A; computed earlier. The
asymptotic behavior for large g is also recovered using
Stirling’s formula (g —1)! ~ v/2wq9~1/2¢~(9-1) leading to

gq—1
— lim const (3eF0 ) , (42)
g—o0 \/_

which has convergence conditions identical to those for
Eq. (25).

It is clear that we have considered only a few terms of
the total number of possibilities involving diagonal and
off-diagonal contributions. In terms of the diagrams we
have exhausted only one class, where the ones we have
neglected involve fewer diagonal transitions. However,
once again there are large cancellations in the effective
matrix element for each class of diagrams. To verify these
cancellations one must go beyond simple two-state con-
siderations. For example, for a g-photon transition from
|2) — |f) where we restrict n-changing to An = =+1, the
conditions are

hm M

(i) Odd g¢: need to consider (g — 1)/2 levels below |z)
as well as above |f).

(ii) Even q: q/2 levels below and above |i) and |f) re-
spectively.

This is trivially verified by considering the extreme case
of g off-diagonal transitions. Relaxing the An restriction
to include +2, changes these conditions to (¢ — 1) and
g, respectively. General conditions can be constructed,
though to do so gets increasingly more complicated.

Consistent with our earlier classical analysis, the term
involving a single off-diagonal transition is the most
important contribution for low-order multiphoton pro-
cesses. We illustrate this by considering a three-photon
transition between neighboring Stark levels where only
An = =*1 transitions are considered. By our earlier argu-
ments, we need a four-level scheme to exhibit the cancel-
lations. We simplify the problem further by neglecting
the anharmonicity in the levels and the resulting level
scheme is shown in Fig. 4(a). Given the restrictions on
the matrix elements, we need consider only the cases of
one and three off-diagonals. The class of diagrams with
one off-diagonal leads to

F\* 1
M(l) = (5) 5511101(3710)2 . (43)

4025

State Quantum
Label Number

2 (ng+2)
en 1 (ng+1)
SOI
o N,
SOI
-1 (ne-1)

(b)

FIG. 4. (a) Four-level scheme used for calculating the
three-photon contribution where all three transitions are
off-diagonal. The state label that appears in the computed ex-
pressions and the corresponding quantum number are shown.
Note that the state label reflects the change in quantum num-
ber, i.e., the An in the corresponding transition matrix ele-
ment. (b) The three contributing diagrams when An is re-
stricted to £1.

Similarly, the class with three off-diagonals shown in Fig.
4(b) leads to contributions (reading left to right)

2(F/2)? Qz(_s__ll_‘)_(?o____z_) (F/2)3 1 #01#01’
3 Mm#%z 3 1 #12#01
2(F/2) sz =F2G—
2(F/2)3 Ho1a_1 —(F/2 )3 1 pg_ip01 (a9

Q2 (-3 -1)(0 —2) 4

Summing these three competing contributions and ex-
pressing the result in a form analogous to Eq. (43), we
have (to leading order)

F\* 1
—(5) mm,lo.:&n?,. (45)

This result is a factor of

M) =

M(s)/M1) = 0.3/9.0 = 0.033 (46)

times smaller than the leading term, Eq. (43). Thus,
for the three-photon case the second class of diagrams
adds very little to the overall transition matrix element,
which is dominated by the single off-diagonal contribu-
tion. However, as we shall illustrate later this is not the
case as the order of the multiphoton process (or equiva-
lently the order of the classical resonance) increases. We
reiterate that a simple two-level scheme would account
for only the first diagram in Fig. 3(b), whose contribu-
tion is nearly a factor of nZ larger than M), giving an
incorrect result.

To compare with the corresponding classical Fourier
weights (31) and (32), we rewrite the sum of (44) as
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M) = Co(1)? (g) %%‘
=3(¢°)[Co(1)F/2]°n'® = 27[Cq (1) Fo/2)* /n? ,
(47)

where we have introduced scaled variables and used
Qo = 1/q = 1/3. Recall that the classical contribution
consisted of two terms that summed to a coefficient of 18,
which is 2/3 of the quantum matrix element. As stated
earlier, the remainder is recovered on including correc-
tions to both action and angle variables in the classical
dynamics.

F\? pozpz Ry (=1)™ pgo
Mo =2(3) L s UM 5

BALA SUNDARAM AND R. V. JENSEN 51

A class of diagrams intermediate to the ones above
involve two off-diagonals in a g-photon process. When
considering transitions between neighboring levels, we
have to relax the An = +1 condition in order to get
a contribution from this class. As shown in Fig. 5, once
again a four-level scheme is sufficient to obtain, to lead-
ing order, the two largest contributions to a g-photon
process from 0 — 1. By neglecting level anharmonic-
ity, general expressions can be written down but we con-
sider the simpler near resonant, equally spaced case when
s =r' =r = q. The contributions from diagrams (a) and
(b) are

m2

Ko 17" [2g — (my + my + 2)]!

m1=0 ma=0 ms! 2¢ — (mi+ 1)1
F\? po—1p-11 Ry (=1)™ pgo' @z ("1)m2+1MTf—1Nﬁa (g +m)! (48)
M) =2 (5) Qa1 = mq! g;o ms! (g+m1+mz+1)!"°
r
gl e = e, M ot st = 0y =2((5) g5 ot

Evaluating these expressions for the three-photon tran-
sition considered earlier leads to

F\? poaiar [p11 Moz Moo
o (£)' o )

2 Q2 5 20 4
F 3140 MH—11 H11 H—1-1 Hoo
1M —1—
=) == |-= — 49
M) (2) Q2 [ 4 T 20 +5]’()

where the matrix elements are given in Eq. (38). Substi-
tuting and then summing these two contributions gives

Te 2
S ma
> 1
r
> 0
m,
(a)
my 1
r
> 0
o
m, R -
m,
(b)

FIG. 5. Diagrams contributing to a g-photon transition
between neighboring levels with two off-diagonal matrix el-
ements. s,r,r’ are the level spacings measured in units of
photon energy, while m1, m2, and ms = (¢ — 2 — m1 — m2)
are the number of diagonal transitions at each level.

(50)

where Cg (k) are the coefficients for An = k transitions
and ng is the quantum number of the initial state. The
ratio of Egs. (50) and (43),

M(z)/M(l) = '60Q(2)/5| ~ 0.13 , (51)

clearly indicates that the off-diagonal 2 term, which re-
quires a An = +2 matrix element, is a larger correction
to M(;) than the M(3) diagrams considered earlier.

In computing these effective matrix elements we had
to consider multiple excitation paths, the corresponding
energy defects, and gradients in both diagonal and off-
diagonal matrix elements with respect to the principal
quantum number n. Despite simplifications like neglect-
ing level anharmonicity, which allowed us to express all
energy denominators as integer multiples of the photon
energy, it is clear that this method for computing effec-
tive matrix elements is at best extremely tedious with
increasing q. This is precisely where it is expeditious to
use the strong correspondence principle.

V. CONCLUSIONS

The classical Fourier coefficients provide a very useful
order of magnitude estimate for the quantum matrix ele-
ments. In particular, we have shown that this remarkable
classical-quantum correspondence extends to multipho-
ton matrix elements as well. This method for using the
classical Fourier amplitudes to estimate the multiphoton,
multilevel transition rates is not restricted to the one-
dimensional hydrogen atom with its permanent dipole
moments. This approach also provides a very powerful
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method for estimating the multiphoton matrix elements
for any quantum system where the unperturbed Hamilto-
nian is integrable and can be transformed to appropriate
action-angle variables.

In turn, our algorithms for evaluating the quantum me-
chanical multiphoton matrix elements provide improved
estimates of the classical Fourier amplitudes used in the
resonance overlap criterion for the onset of global chaos.
Table I shows the most important quantum terms for
q = 3,...,8. For each g, every term listed has the
same power of n® and a common prefactor (F/2)?/Q%71.
The symbolic coefficient reflects the n-changing transi-
tions involved in each contribution. For example, for
q = 3, the most important term after the one with 2

TABLE 1. Relative weights of contributions to multi-
photon matrix elements of order g between neighboring
states n and n + 1. To,1,2,... denote transitions involving
An = 0,1,2,... . For example, the first symbolic coeffi-
cient represents a three-photon process involving two diagonal
terms and one off-diagonal term with An = 1. The numerical
value is the contribution from this term to the coefficient mul-
tiplying n”. The relative size of this contribution is computed
with respect to the largest term involving (¢ — 1) diagonal
terms.

q s Symbolic Nummerical Relative
coefficient value size
3 4 ToT, -1.44 1.0
ToT\ T 0.2006 -0.139
ToT:Ts 0.0021 -0.0015
T2 -0.049 0.033
TT, 0.007 -0.0049
4 5 TsTy -1.44 1.0
TET\T> 0.2897 -0.2012
ToT} -0.1398 0.0971
ToT\T? 0.01079 -0.0075
T3, -0.00174 0.0012
T T3 -0.00049 0.00034
5 6 ToT -1.08 1.0
T3\ T, 0.281 -0.2602
TETS -0.2009 0.186
TeT, T2 -0.048077 0.0444
ToTETs 0.03355 -0.031
TF -0.0022 0.002
6 7 T T, -0.648 1.0
ToTh T 0.205509 -0.3171
3T -0.193694 0.299
T3T\ T2 -0.0461435 0.0712
TeTET, 0.0475 -0.0733
ToT? -0.00617 0.0095
7 8 ST -0.324 1.0
ToTy T 0.120711 -0.3725
TeTE -0.140804 0.4346
TéT T2 -0.0334187 0.1031
T3T3T, 0.04522122 -0.1396
T2T? -0.0087 0.02685
8 9 TIT, -0.1389 1.0
TET T 0.0593 -0.427
ST -0.0822 0.592
ToTET: 0.0325 -0.234
T3T? -0.0083 0.060

diagonals (T¢Ty) involves a combination of An = 1,2
transitions and one diagonal (ToT17%), as shown explic-
itly earlier. In all the cases shown, the maximally di-
agonal term Tg_lTl is the largest, though for ¢ = 8
both T¢ *T1T; and T¢ 3T? are of comparable magni-
tude. In fact, T¢ °T? > T 'T) for ¢ > 10 while
T Ty Ty, > T2 Ty only beyond g &~ 20. The tabulated
sizes also reflect the growth, with increasing g, of other
terms involving still fewer diagonal elements. Further,
the alternating sign of successive terms points to a del-
icate balance of competing contributions as ¢ increases.
This is consistent with the intuitive view that the ap-
proach to the static field limit of large ¢ multiphoton
processes is dominated by energy denominators.

A final twist to this demonstration of classical-
quantum correspondence comes from using these quan-
tum estimates of the classical Fourier amplitudes in the
resonance overlap criterion. When used to evaluate the
resonance island widths used in the overlap criterion, bet-
ter agreement with the numerical and experimental mea-
surements of the ionization threshold is achieved at low
scaled frequencies. This improved estimate for the on-
set of chaotic ionization is given by the dashed curve in
Fig. 2. Extending these results to still lower scaled fre-
quencies below n3Q = 1/8 = 0.125 requires the further
evaluation of higher-order multiphoton matrix elements.
However, because of the asymptotic nature of the low-
frequency limit, more and more terms must be included
and the symbolic evaluation of these higher-order terms
using MATHEMATICA becomes increasingly time consum-
ing. Further, the neglect of level anharmonicity is no
longer defensible. However, as noted earlier, this pro-
liferation of terms suggests that alernative methods of
describing the thresholds for destabilizing the electron at
very low frequencies should be pursued instead [22].
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APPENDIX A: RULES FOR CHOOSING THE
DOMINANT CONTRIBUTIONS TO THE
RESONANCE WIDTHS

For the I3Q = 1/q resonances, determine the strings
of integers m, k, {sx} that satisfy the conditions

m+ Y ks =1 (A1)
k

and

1+Zsk=q (AZ)
k

and evaluate the corresponding amplitudes A, (k, {sx}).
In computing these amplitudes, Jo(mFb;) was taken to
be = 1+ O(F?).
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Ezample, ¢ = 2:

m Sg 81 S_1 S2 S_3 Am(k, {st})

1 1.0 00 0 FWJh(bF) OF? A3
2 0 0 1 0 0 FVJi(2b_1F) O(F? (A3)
3 00 0 0 1 FV3Ji(3b_2F) O(F?)

In general the leading terms in an expansion in powers
of F' arise from the strings with

> lskl=gq-1.
k

Then for ¢ = 2 the dominant terms for each m corre-
spond to the strings m,k = —(m — 1),5_(;n—1) = 1. For
small F' the small argument expansions of these dominant

(A4)

|
m Sg S1 S_1 S2 S
@) 2 0 0 0
20) 1 0 1 0
20) 0 1 0 0
3a) 0 0 2 0

-2
0
0 FVoJ1(2b0F)J1(2b_1F) O(F3)
1 FV,J1(261F)J1(2b_2F) O(F3)
0 )
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amplitudes gives

1 m
m73 3(m + 1) (m — 1)11/3 ~ m16/3 for large m.

(A5)

Ay~

So the m = 1 amplitude is the largest term for q=2.

Ezample, ¢ = 3. From Eq. (15) the leading terms of
order F* arise from strings that satisfy Egs. (A1) and
(A2) and Y7, [sx]| = 2. So either (a) one s; = 2 or (b) two
different s, = 1 and s;, = 1. In case (a) the requirement,
Eq. (A1), implies that m + 2k = 1, which is possible only
for odd values of m with k = —(m—1)/2. In case (b) Eq.
(A1) requires that m+k+ k' =1lor k = —k' — (m—1)

Am(k,{s})
FViJy(boF) O(F3)

(A6)

FV3Jy(3b_1F) O(F?

Ezample, ¢ = 4. From Eq. (15) the leading terms of order F* arise from strings that satisfy Egs. (A1) and (A2)
and }, |sg| = 3. So either (a) one s, = 3, (b) two different s = 1 and s} = 2, or (c) three different sj, = 1, sy =1,
and sy = 1. In case (a) the requirement, Eq. (A1), implies that m + 3k = 1, which is possible for both odd and even
values of m with k = —(m —1)/3. In case (b) Eq. (A1) requires that m + k + 2k’ = 1. In case (c) Eq. (A1) requires

that m +k+ k' + k" =1.

m Sg 81 S_1 S S_o
1@) 3 0 0 0
20) 2 0 1
3b) 1 0 2

APPENDIX B: EVALUATING MULTIPHOTON
MATRIX ELEMENTS USING MATHEMATICA
Symbolic manipulation using MATHEMATICA is partic-

ularly useful both in evaluating the leading term as well
as estimating the relative sizes (as shown in Table I) of
contributions to the effective g-photon matrix element.
We present here the schemes; the programs are available
on request.

(a) Extracting the leading term for a g-photon matrix
element where compact expressions are known is partic-
ularly simple. For example, consider Eq. (48), where the
g-photon element involves two off-diagonal matrix ele-
ments. Given the form of the matrix elements, the sum-
mations lead to a polynomial in the principal quantum
number n of the initial state. Evaluating the coefficient

2
0
0 0 FVaJa(2b0F)J1(2b_1F) O(F4)
0 0 FV3J1(3b0F)J5(3b_1F) O(F*)

[

Am (k7 {sk})
FViJs(boF) O(F*) (A7)

of the n(2+1) term then gives the leading behavior.

(b) This simple scheme can be modified to estimate the
relative importance of contributions, involving different
numbers of diagonal transitions, to the effective g-photon
matrix element between neighboring levels. Consider a
case where up (down) transitions with An < nu (nd < 0)
are included. In MATHEMATICA, the matrix elements are
written as c[An](n + An/2)2. The summations in the
effective matrix element now result in a polynomial in
coefficients ¢[0],c[1],... from which the relative weights
(shown in Table I) are obtained. Note that the rules for
the minimum number of levels required for exhausting
classes of diagrams must be applied, i.e., if nu = —nd =
1, then terms involving ¢[2] will be incorrect as we need
at least nu = 2,nd = —1.
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