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Time-dependent unrestricted Hartree-pock theory
for the multiphoton ionization of atoms
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Time-dependent unrestricted Hartree-Fock (TDUHF) theory is formulated for the multiphoton
ionization of a model atom. The single-particle states are nonorthogonal and the quantum variational
principle requires additional normalization terms. For a model He atom, the three-dimensional (3D)
electrostatic interaction is replaced by a 1D soft-core interaction that allows the construction of the
two-electron atom in only two dimensions. The resulting 1D formulation of the TDUHF equations
contains numerous exchange and overlap terms. The TDUHF multiphoton ionization rates are found
to be in better agreement with the results of a direct solution of the time-dependent Schrodinger
equation on a 2D lattice than the rates predicted by a 1D formulation of the standard TDHF
equations.

PACS number(s): 32.80.Rm

I. INTRODUCTION II. THEORY

A good starting place for understanding correlation ef-
fects in atomic dynamics is the study of the multiphoton
ionization of divalent atoms. The direct solution of the
time-dependent Hartree-Fock (TDHF) equations, which
has been used for many years to study heavy-ion col-
lisions in nuclear physics [1—3], has been recently ap-
plied to calculate multiphoton ionization rates of the He
atom [4,5]. The standard formulation of the full TDHF
method, however, leads to unphysical and ambiguous ion-
ization rates due to difBculties in describing the breakup
of a two-electron ground state described by a single Slater
determinant. In reality the standard TDHF method is a
time-dependent restricted Hartree-Fock (TDRHF) the-
ory, which has problems describing breakup reactions.

In this paper we formulate a time-dependent unre-
stricted Hartree-Fock (TDUHF) theory for the multipho-
ton ionization of atoms. Before embarking on a solu-
tion for the full 6D He atom, we Grst reduced the di-
mensionality of the problem from 6 to 2 by replacing
the three-dimensional (3D) electrostatic interaction by a
1D soft-core interaction. This model two-electron system
has been previously employed to study the multiphoton
ionization of He [6], the multiphoton detachment of H

[7,8], the autoionization of He* [9,10], and the multipho-
ton ionization of H2 [ll]. The dimensional reduction al-
lows a relatively straightforward derivation of both the
TDRHF and TDUHF equations for the multiphoton ion-
ization of the He atom. At the same time the validity
of the formulations may be checked against an "exact"
time-dependent solution of the model on a 2D lattice. We
Gnd that the present formulation of the TDUHF method.
leads to a breakup of the ground state of He which is
physically reasonable and. in good agreement with the 2D
lattice calculations. The various time-dependent theories
are developed in Sec. II, numerical methods are outlined
in Sec. III, multiphoton ionization results are presented
in Sec. IV, and a summary is found in Sec. V.

The Hamiltonian for the model He atom is given by

1d 1d
Hp ————

2dx 2dg
1+

2V'c+ (*—y)'

gc+ x' gc+ y2

where x and. y are the coordinate positions of each elec-
tron, a nucleus of charge Z = 2 is located at x = y = 0,
and c is an arbitrary constant used to soften the singu-
larity of the potential. To stud. y multiphoton absorption
processes, we add the "length" gauge potential:

V = E(t) (x + y) sin (cut),

where E(t) is the amplitude and w is the frequency of
the electromagnetic field. The total Hamiltonian is H =
Hp+ V.

For a total wave function constructed. from orthogonal
orbitals, the variational principle for the time-dependent
Schrodinger equation is given by

To derive the time-dependent restricted Hartree-Fock
equations for the ground state of the model He atom in
an electromagnetic Geld, we start with the symmetrized
product:

g(x, y, t) = u(x, t)u(y, t) . (4)

Total antisymmetrization of the wave function is ob-
tained by multiplying the symmetric space function of
Eq. (4) by an antisymmetric spin function. Upon substi-
tution of Eq. (4) into Eq. (3), the variationally derived
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differential equation for the single-particle orbital, u(x, t),
is given by = (~&IHI@) + N(~&I&),

Bg

where

.Bv
i =hu,

Ot

h = f + (ulglu) .

(5)

(6)

where

~(&l ~s, ) —(@IHI&)

8 I@)
(10)

The one- and two-particle operators in Eq. (6) are given
by

To derive the time-dependerit unrestricted Hartree-Fock
equations for the ground state of the model He atom in
an electromagnetic field, we start with the symmetrized
product:

1

2 dx
Z + E(t)x sin (art),gc+ z' Q(z, y, t) = (u(* t) (y t) + v(* t)u(y t)) . (»)

1

pc+ (x —y)2
(8)

The matrix element of the g operator in Eq. (6) is a
direct potential term. The &ozen-core TDRHF method
replaces (ulglu) in Eq. (6) by (uolgluo) involving the
single-particle orbital u(x, t = 0).

For a total wave function constructed &om nonorthog-
onal orbitals, the variational principle for the time-
dependent Schrodinger equation is given by [12j where

.0th
z —h] y'll + hy2v

Ot
. BV
i —= 62iu+ 622v,

19t

(12)

Total antisymmetrization of the wave function is again
obtained by multiplying the symmetric space function of
Eq. (11) by an antisymmetric spin function. Upon sub-
stitution of Eq. (11) into Eq. (9), the variationally de-
rived difFerential equations for the nonorthogonal single-
particle orbitals, u(x, t) and v(y, t), are given by

(vl~lv& + (vlglv) —&*&ulflv& —&*(ulglv& + i&*(ul g", &

hing
——f + N+

(vlf lu) + (vlglu) —~'(ul&lu) —~*(ulglu& —'(vl ~g", )12—
1 —A*A )

(ul&lv) + (ulglv) —&(vl&lv& —&(vlglv) —i(ulI&
1 —A*A

(ulflu) + (ulglu) —&(vlf lu) —&&vlglu) + i&(vl g", &

h22 ——f + N+
1 —A*A

(14)

(15)

(16)

The matrix elements of the f operator are c numbers, while the matrix elements of the g operator are direct and
exchange potential terms. The normalization term is given by

where the total energy is given by

iA(vl s", ) +iA*(uI~~",
&

1+ A*A (18)

(ul&lu) + (vl&lv& + &*(ul&lv& + ~(vlf lu) + (uvlgluv& + (uvlglvu)
1+%*A (19)

In the derivation of the TDUHF equations we have assumed that (ulu) = (vlv) = 1 and that A = (ulv) g 0. Equations
(12)—(17) may be used to construct a matrix equation for the time-dependent quantities (vl &") and (ul &"). Solving
that equation we find that

Ou qg (A*)'q2
Ot 2z 2z

(
Dv (A) 2q, q2

Ot 2z 2z

(20)

(21)



TIME-DEPENDENT UNRESTRICTED HARTREE-FOCK THEORY. . .

where

A'(v
~ f ~v) + (vv~g~vu) —(A*)2(u~ f ~v) —A*(uv~g~vu)

qg —— v f u —A'E+

(vi flu) + (vvig[uv) —A*(ui flu) —A*(uvigiuv)
1 —A*A

A(u~ f ~v) + (uu~g~uv) —(A)2(v~ f ~u) —A(vu~g~uv)

1 —A*A

(ui f iv) + (uuigivu) —A(vi f iv) —A(uvigiuv)
1 —A*A

(22)

(23)

Finally, the time-dependent Schrodinger equation:

i = (Hp+ V)g,. 0$
Bt (24)

may be solved directly for the time-dependent evolution
of the ground state of the model He atom in an electro-
magnetic field.

). ivpi'Ax u

pc+ (x —xp)2
' (26)

while the c-number Inatrix elements are single or double
trapezoidal rule integrations. The evolution of the 1D
orbital in both real and imaginary time can be approxi-
mated either by the implicit expression

u (t) = (I+) 'I u (tp),

where

III. NUMERICAL METHODS

The numerical solution of the TDRHF Eq. (5) and
the TDUHF Eqs. (12) and (13) may be found by con-
structing a 1D mesh of equally spaced points (x ). The
one-particle operator is represented by

iLt 6
L =1+

2

or by the explicit expression

u (t) = exp (—iAt h)u (tp),

(28)

(29)

1 t u +y+u y
—2u

2 ( (~x)' )
ZQ, ~ + E(t)x sin (~t)uc+ xz (25)

where Lx = x —x i. The two-particle potential terms
are represented by

where Lt = t —to is much less than u . A Taylor expan-
sion of the exponential results in a series of matrix-vector
multiplications. A matrix generalization of Eq. (29) is
made for the coupled 1D orbitals found in the TDUHF
method, while the implicit expression of Eq. (27) is used
in the TDRHF method.

The numerical solution of the time-dependent
Schrodinger equation [Eq. (24)] may be found by con-
structing a 2D lattice of equally spaced points (x, yp).
The atomic Hamiltonian operator is represented by

1 &4 +i,p+0 i,p —2W p 1 W,p+i+0, p i —20 pl
Hpvg p = —— '

E (~» )
&0 p &0 p 4-p

Qc+ x2 c+ y2 pc+ (x —yp)z
(3o)

while the electromagnetic operator is represented by

VQ p = E(t)(x + yp) sin(&ut)Q p .

The evolution of the 2D wave function in both real and
imaginary time is approximated by the implicit expres-
sion:

A 2D generalization of the explicit expression found in
Eq. (29) may also be used.

IV. MULTIPHOTON IONIZATION RESULTS

Ground state wave functions and energies for a model
He atom are shown in Fig. 1. The contour plots of
the probability density are centered at the x = y = 0
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FIG. 1. Ground state wave functions for the model He
atom. Contour maps of the probability density. The wave
functions are from (a) 2D lattice solution, (b) UHF solution,
(c) RHF solution, and (d) six-state CI solution.
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FIG. 2. Time evolution of the ground state probability for
the three-photon (10.0 eV) ionization of the model He atom
at an intensity of 1.0 x 10 W/cm . The decay curves are for
(a) 2D lattice solution, (b) TDUHF solution, (c) frozen-core
TDRHF solution, and (d) full TDRHF solution.
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minimum of the potential energy. The "exact" 2D lat-
tice wave function is found by propagating an initial 2D
Gaussian function in imaginary tiine using Eq. (32) with
no electromagnetic field term. At each time step the to-
tal wave function is normalized to one. The UHF wave
function is found by propagating an initial product wave
function in imaginary time using a matrix generaliza-
tion of Eq. (29) with no electromagnetic field terms.
At each time step the individual orbitals u and v are
normalized to one. Close to 1000 iterations are needed
to fully converge the UHF ground state wave function.
Along the way the UHF wave function seems to first con-
verge to an excited state of the model He atom with
the overlap (u~v) 0. At full convergence the overlap
(u~v) = 0.84 and the total energy is 0.13 eV above the
2D lattice results. These values compare well with a
time-independent unrestricted Hartree-Fock calculation
for the real He atom [13]. The RHF wave function is
found by propagating an initial 1D Gaussian function
in imaginary time using Eq. (27). At each time step
the orbital is normalized to 1. The total RHF energy
is found to be 0.57 eV above the 2D lattice results. A
six-state configuration-interaction (CI) wave function is
constructed by Brst obtaining the lowest energy eigen-
functions of the Hamiltonian:

1d' Z
hp ——— (33)

2 dx2 gc+ x' '

on a 1D grid of equally spaced points. The bound eigen-
functions are designated by ns. Even parity symmetric
product states are then formed and a small basis set diag-
onalization is made to find the ground state of the model
He atom. The six-state CI wave function shown in Fig. 1
is a linear combination of the 1s,2s, 3s, 4s, 1s3s, 2s4s
product states. Although the total CI energy is only 0.36
eV above the 2D lattice results, the wave function is not
very good at large distances from the nucleus.

The electron-electron repulsion term of Eq. (1) is
largest along a line in the xy plane at which x = y,
and smallest along a line at which x = —y. The con-
tour plots of the probability density for the 2D lattice
wave function, as found in Fig. 1(a), mirror this feature
of the potential. The contour lines are elliptical in shape
with their major axis oriented along the line of small-
est electron-electron repulsion. The contour plots of the
probability density for the UHF wave function, as found
in Fig. 1(b), are also elliptically shaped. The contours for
the RHF wave function in Fig. 1(c), however, are circular,
as befitting a strict central Beld calculation.

Once ground state wave functions for the model He
atom are obtained, the various time-dependent equations
may be propagated forward in real time with an electro-
magnetic Geld potential turned on using a linear ramp
for the amplitude E(t). The time evolution of the ground
state probabilities are shown in Fig. 2 for an intensity of
1.0 x 10 W/cm and a photon energy of 10.0 eV, corre-2

sponding to three photon ionization of the atom. Least
square Bts to the decay curves yield the rate of depletion
of the ground state, which in our case is equivalent to
the multiphoton ionization rate of the atom. For cases
in which the ground state is tuned to near resonance
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FIG. 3. Three-photon (10.0 eV) ionization rates for the
model He atom. Open circles, 2D lattice solution, crosses,
TDUHF solution, and solid circles, frozen. -cere TDRHF solu-
tion.

with an excited bound state, this equivalence is not true.
There is very good agreement between the 2D lattice and
TDUHF ionization rates. In both, the curve fitting be-
gins at the end of the linear ramp at 5 laser cycles, while
the fit for the TDUHF decay curve ends at 20 laser cy-
cles. Beyond 20 laser cycles the TDUHF decay curve
becomes sensitive to reQections &om the grid boundary.
The &ozen-core TDRHF ionization rate is almost a fac-
tor of 2 larger than the 2D lattice results, while a mean-
ingful ionization rate cannot be extracted from the full
TDRHF decay curve. Three-photon ionization rates as
a function of intensity for the model He atom are shown
in Fig. 3. For a range of intensities the ionization rates
for the 2D lattice and TDUHF methods are found to be
in very good agreement, while the &ozen-core TDRHF
rates are always substantially larger. At smaller intensi-
ties than those shown in Fig. 3, numerical instabilities
in the TDUHF method make an extraction of an ion-
ization rate less reliable. The 2D lattice and &ozen-core
TDRHF methods, however, are still stable and provide
a three-photon ionization rate which scales with the I
dependence predicted by perturbation theory.

V. SUMMARY

Multiphoton ionization rates for a model He atom have
been calculated using several computational methods. A
direct solution of the time-dependent Schrodinger equa-
tion on a lattice should, in principle, be the most accu-
rate method. A standard time-dependent Hartree-Fock
method has difficulties in describing the breakup of a
two-electron ground state when restricted to one orbital.
The orbital tracking the photoionized electron is the same
one that is used to calculate the screening potential. The
outgoing electron thus sees a steadily increasing effective
nuclear charge. The TDRHF difFiculty may be partly
mitigated by freezing the potential so that the outgoing
electron sees a constant effective nuclear charge. Another
approach is to formulate a time-dependent unrestricted
Hartree-Fock method that describes the breakup of a
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two-electron ground state using two active orbitals. The
photoionized electron is described by one orbital, while
the second orbital is free to describe an electron which
lingers about to screen the nuclear charge in a proper
manner. The second electron may later also ionize lead-
ing to sequential double ionization, or in rare cases both
electrons may ionize simultaneously. A furthur study
of simultaneous double ionization would probe the true
essence of the two-electron correlation problem. A draw-
back to the TDUHF method is the increased complexity
of the time-dependent coupled equations for the two or-
bitals; exchange terms, normalization terms, and overlap
factors must all be taken into account. Our calculations
for the multiphoton ionization of a model He atom have
shown that the agreement between the "exact" 2D lattice
method and the TDUHF method is very good for total
rates. In the future we plan to furthur investigate the
strengths and weaknesses of the TDUHF method when
applied to more detailed ionization dynamics and to de-
velop a time-dependent multiconfiguration Hartree-Fock
method which may prove numerically more stable. The

ultimate goal is the consideration of real (full dimen-
sional) divalent atoms and the development of a general
TDHF method which would compete favorably with a
direct solution of the time-dependent Schrodinger equa-
tion.
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