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Dipole-dipole interaction in the near-resonant Kapitza-Dirac effect
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We study the near-resonant Kapitza-Dirac diKraction of two atoms interacting via the dipole-
dipole interaction within the framework of an efFective one-dimensional model. We concentrate
mostly on the Stern-Gerlach regime of difFraction, where the atomic wave functions are sufBciently
well localized that a good physical understanding of the system dynamics in terms of local potentials
can be achieved. In general, the dipole-dipole interaction can lead to substantial modifications of the
Stern-Gerlach difFraction pattern. We find in particular that under appropriate conditions, bound
states of the atomic system can be established, with the two atoms separated by a distance of the
order of hundreds of nanometers. However, spontaneous emission eventually destroys the binding
between these states via a heating mechanism somewhat similar to strong-field Sysiphus heating. In
this respect, the behavior of the "diatom" bound state under the in8uence of spontaneous emission
is similar to that of the atomic solitons predicted to occur in near-resonant Kapitza-Dirac diKraction
in the framework of nonlinear atom optics.

PACS number(s): 42.50.Vk

I. INTKGDUCTION

The diffraction of atoms by the periodic structure pro-
vided by a near-resonant optical standing wave, the near-
resonant Kapitza-Dirac effect, is one of the central tenets
of atom optics. This problem has been studied in much
detail in the past, both theoretically and experimentally,
and the various diffraction regimes that can be achieved
are well understood [1,2]. The transition from a diB'rac-
tive to a diffusive regime of interaction as a function of
the rate of spontaneous emission has also been analyzed
[1—4]. The situation where the optical field needs to be
treated quantum mechanically [5—9], a topic of much cur-
rent theoretical activity, might lead to the development of
new techniques to investigate subtle aspects of quantum
mechanics, such as the generation of entangled states and
measurement theory.

In parallel to these developments, progress in atomic
cooling permits one to reach temperatures below the so-
called recoil limit, where the atomic thermal de Broglie
wavelength becomes larger than the wavelength of the
light used to carry out the cooling [10,11]. Moderate to
large atomic densities of such ultracold atoms can now be
achieved. It is hoped to eventually reach temperatures
and phase-space densities such that collective effects such
as Bose condensation can be demonstrated [12]. Even
before reaching this extreme regime, however, it is rea-
sonable to expect the onset of some evidence for collec-
tive effects. This is true in particular in the case of the
near-resonant Kapitza-Dirac effect, where the atoms are
driven by an electromagnetic field, and hence are sub-
ject to the long-range dipole-dipole interaction between
ground and excited states [13]. This interaction has a
range of the order of an optical wavelength and is ex-
pected to start playing a significant role already at mod-
erate densities. This is in contrast to the van der Waals
interaction between ground state atoms [14], which is

short range and of considerable importance in Bose con-
densation.

Attempts to understand the effects of these long-range
forces on dense clouds of magneto-optically trapped ul-
tracold atoms already constitute an actively pursued field
[15—18]. An interesting question under these conditions
is to quantify the limitations these forces impose on
the ultimately achievable temperatures and densities in
magneto-optical traps. The description of observed trap
losses [19—22] by means of semiclassical scattering meth-
ods or optical Bloch equations shows mixed results so
far. There are indications that it is crucial for the un-
derstanding of the dynamics of ultracold atoms in light
fields to analyze the full problem, including translational
and internal degrees of freedom, quantum mechanically
[23,24]. But probably the most intriguing consequence
of these long-range forces under the low temperatures
and moderate to high densities under consideration is the
appearence of genuine quantum mechanical many-body
effects. Efforts to include them in quantum field theo-
ries of ultracold atoms are now being carried out both in
the context of Bose-Einstein condensation [25—29] and in
atom optics [30—34]. In particular, such theories lead to
effective single-atom dynamics in the mean field of the
other atoms that are typically nonlinear, leading to the
possibility of nonlinear atom optics.

Many-body theories always contain a number of ap-
proximations and ansatz whose validity is difBcult to as-
sess. Hence, it is necessary to complement them with
the study of simple models including just a few atoms,
but treated fully quantum mechanically. In addition,
such models yield physical intuition on the dynamics of
two-body interactions which is complementary to that
gained &om many-body theories. Progress along these
lines has recently become possible thanks in large part
to the development of Monte Carlo wave function simu-
lation techniques [35,36]. Applications of such models to
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the study of cold collisions in lasers fields [24], as well as
of the effects of the resonant dipole-dipole interaction in
velocity-selective coherent population trapping [37) and
in polarization gradient laser cooling [38] have recently
been presented. In this paper, we discuss the diffraction
of two undistinguishable atoms by a classical standing-
wave Geld, including spontaneous emission as well as the
effects of the dipole-dipole interaction. In addition, we
use properly symmetrized initial conditions to take into
account the effects of quantum statistics, in case the over-
lap between the atomic wave functions becomes impor-
tant.

Section II presents our model and outlines the de-
scription of the interaction between the atoms and the
standing-wave field, as well as their interaction with the
vacuum modes of the electromagnetic Geld. We review
how this interaction leads to both spontaneous decay and
the appearance of a dipole-dipole interaction between
ground and excited atoms. The atomic master equa-
tion resulting &om the adiabatic elimination of the vac-
uum modes of the electromagnetic Geld is then presented.
Unfortunately, the size of presently available computers
forbids a direct numerical solution of this equation. In-
stead. , we use a Monte Carlo wave functions technique,
whose implementation is discussed in Sec. III, to simu-
late the resulting atomic dynamics. Section IV presents
selected results &om our numerical experiments, and
demonstrates that the dipole-dipole interaction can have
significant effects on atomic diffraction. These results are
given a simple physical interpretation in terms of local
potentials that are a generalization of the usual dressed
states basis of quantum optics that includes the dipole-
dipole interaction. Finally, Sec. V is a summary and
conclusion.

II. THE MODEL

We consider two undistinguishable bosonic two-level
atoms in interaction with a linearly polarized standing-
wave classical laser Geld, as well as with the vacuum
modes of the electromagnetic Geld. We assume that the
standing wave is along the x direction, along which the
atomic motion is quantized. However, the atomic motion
perpendicular to this axis, in the direction of propagation
of the atomic beam, is treated classically. Physically,
this can be justified by considering a transversely cooled
atomic beam traveling with a velocity v much larger
than the atomic recoil velocity v„, = hq/M, where q is
the wave number of the standing-wave field and M is the
atomic mass. Technically, this allows the significant sim-
plification of effectively dealing with a one-dimensional
problem. The two-level atoms have a Bohr transition
frequency too between their excited level ~e), and ground
level ~g);, i = 1, 2. In a frame rotating at the laser fre-
quency wL„ their interaction with the laser Geld is given
in the electric dipole and rotating-wave approximations
by

J,' hh) 0'sq + MZ cos(qxz)o'i~.

Here p, is the longitudinal center-of-mass momentum
operator of the ith atom (i.e. , along the standing-wave
axis) and x; its position operator, with [x, , p~] = ihb;~,
b = uL, —wo is the detuning of the laser Geld with respect
to the atomic transition frequency, and 'R is the laser
Rabi &equency at the antinodes of the standing wave.
The operators o i; and o3; are standard Pauli pseudospin
operators for the ith particle. In the absence of two-body
(or more generally many-body) interactions, the diB'er-
ence between the one-atom and two-atom near-resonant
Kapitza-Dirac effect appears solely in the initial condi-
tion, which must be properly symmetrized in the latter
situation [39].

Before proceeding, a few words of caution are called
for in order to understand the limitations and assump-
tions made in writing down our model. When using the
electric dipole form of the field-atom interaction the re-
sulting Hamiltonian contains a contact term [40]. It is
ignored in our Hamiltonian because the "length scale"
of this contact term is the Bohr radius, and we assume
that the density is low enough that this term is irrele-
vant. Consequently, we never encounter the diKculty of
including van der Waals, fine or hyperfine interactions,
as seems necessary to explain trap losses due to ultra-
cold collisions. In addition we assume that our sample is
optically thin, otherwise the Geld and matter equations
would have to be solved self-consistently.

In the Born-Markov approximation [41], the coupling
of the atoms to the vacuum modes of the electromag-
netic Geld leads to two effects: the first one is sponta-
neous emission, as would be the case for a single atom,
and the second one is the appearance of a dipole-dipole
interaction that couples one of the atoms in its excited
electronic state to the other in its ground electronic state.
Its physical origin is the reabsorption by one of the atoms
of a photon spontaneously emitted by the other.

We do not reproduce the derivation of the appropri-
ate two-atom master equation, which has been presented
elsewhere [42]. Instead, we limit ourselves to stating the
final result

p = [H + H«, p] + E~p. (2)

Here, p is the reduced density operator for the two atoms
and Hgg is the dipole-dipole interaction Hamiltonian

6 0

2
V«(q&)I&i+~2 +

where po is the spontaneous decay rate of the transition
and 0, , o,. are usual raising and lower atomic operators
for the ith atom. In view of the fact that the dipole-dipole
interaction has the same physical origin as spontaneous
emission, it is not surprising that it should scale as po.
The spatial part of the dipole-dipole interaction depends
on the distance r between the two-level atoms, and is
explicitly given by

3 cos gf'
v«(qr, 8) = —— (1 —cos 0)

2 Qf'

qr qr )
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where 0 is the angle between the atomic dipoles and the
relative position vector of the atoms r2 —r~. The diver-
gence of V«(qr, 8) as r ~ 0 is an artifact of our oversim-
pli6ed model and needs to be removed by an appropriate
cutoIII', as further discussed in Sec. III. The damping part
of the master equation (2) is given by the Lindblad form

3+0. l.op = ——--
4

dQ „+[o+cr p+ pa.+o —2cr pa+], . (5)
4m'

where dB is a solid angle element, the surface integration
is over a sphere of unit radius, and

0- (k) = o+(k)
= Ql —cos2 Og [o, e'"" + o 2

e'"'"
] (6)

IT+) = le)~ le)»
IT-) = lq&~ lq)2

ITe& = (~/~2) [le& ~ lg&. + Ig&~ le&2]

l~e) = (~/~2) [le&~ l~&2
—

Ig&~ le&2]

where the singlet state ISo& is radiatively decoupled from
the triplet family for atoms at rest at the same location.
%le generalize this basis set to account for the atomic
center-of-mass motion by introducing the complete, sym-
metrized basis set

The square root in this expression accounts for the dipole
radiation pattern of a two-level system driven by a lin-
early polarized Beld, Ok being the angle between the di-
rection of the atomic dipole and the direction of emission
of a spontaneous photon of wave vector k.

Before turning to the Monte Carlo wave functions im-
plementation of our model, we conclude this section by
introducing a local basis that will prove useful to discuss
our results. When analyzing the superradiant properties
of two atoms at rest, Dicke [43] introduced the triplet
and singlet states

K = ~2'R sin(qx, ) sin(qx„/2), (12)

& = (»/2) V«(qlx. I).

Here x„=xq —z2 is the projection along the axis of the
standing wave of the relative position of the atoms, while
x, = (xq + x2)/2 is the projection of their center-of-mass
motion.

We see, then, that the interaction with the standing
wave couples the electronic triplet state IT+) to ITo), and
ITo) to IT ), with the effective Rabi frequency K+. ln ad-
dition, it couples the singlet state

I So) to the triplet states
IT+) and IT ) with effective Rabi frequencies +K . For
atoms at the same location, x„= 0, we have K = 0
and hence recover Dicke's result that the singlet state
decouples from the triplet manifold. In addition, the
dipole-dipole interaction leads to a shift in energy of the
electronic states ISe& and ITo). Since the strength of the
dipole-dipole interaction scales with the spontaneous de-
cay rate, this shift can be, and often is, considerably
larger than the e8'ective Rabi frequencies K~, a prop-
erty that will prove useful in interpreting our numerical
results.

III. MGNTE CADI C) VVAVE FUNCTION
SIMUL ATIG N S

A direct numerical solution of the master equation (2)
is beyond the capabilities of most present-day comput-
ers, due to prohibitive memory requirements. We chose
instead to solve it using an equivalent Monte Carlo wave
functions approach. This technique is now well docu-
mented [35,36], and we limit ourselves to a discussion of
those aspects particular to the problem at hand. Since
the dissipative part of the master equation is of the Lind-
blad form, it is possible to express Eq. (2) in the form

IU~& = (~/~2) [I»)~ I») ~ + I») ~ I») 2] IT+)

IU2) = (~/~2)[l»&~ l»&2+ l»&~ l»&21 IT-&

IUs& = (l/v2)[l»&~ l»&2+ l»&~ l»&2] ITo &

IU4& = (~/~2) [l»&i l»&2 —l»&~ l»&2] lso& (8)

Neglecting for now the kinetic energy contribution to the
system's Hamiltonian, which leads to nonlocal dynamics,
and introducing the vector U = (Uq, U2, Us, U4), the local
contribution to the Schrodinger evolution of U may be
cast in the matrix form

p = —H, ff p —pH, ff + C pC~,

where

ih
H fy = H+H« ——) Ct C

and the operators C are given by

'
cr (k). (i6)

ihU=H) U,

Hi..—6

—h 0 K+
0 6 K+

K+ K+
0

K+ ——~2'R cos(qx, ) cos(qx, /2),

This decomposition permits us to perform Monte Carlo
wave function simulations as discussed, e.g. , in Ref. [36].
The evolution of the wave function is governed by H ff
until a random quantum jump occurs; averaging over
many runs then reproduces the results of the master
equation.

Since from the de6nition (6), the operators C act on
the two-particle space, some care is required in explicitly
evaluating H ff. We And that in addition to the usual
spontaneous decay term, there is an additional contribu-
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tion in the form of an imaginary potential, which results
&om the interference of spontaneous emission probabil-
ity amplitudes due to the undistinguishability of the two
particles. This prevents us knowing from which particle a
detected photon was spontaneously emitted, and may be
loosely interpreted as meaning that a particle decaying
&om its excited state at a given location can reappear
in its ground state at the location of the other particle.
Taking this term into account, we have

——) C C~ = — [oi+oi + o2 o2
2 2

where

+V, (qr)(oi+o. 2 + oi o2 )],

1 —3cos2 8 .
V, (qr, 8) = jo(qr) — j2(qr),

the functions j;(x) being spherical Bessel functions of the
first kind [44].

We noted earlier that Vg~(qr, 8) diverges for x, ~ 0.
To avoid this singularity in the numerical simulations, we
resort to the fact that even for moderate atomic beam
densities, the average interatomic separation (r) is quite
large. For instance, for a density of 10 cm, we have

(r) 10 cm, which is about two optical wavelengths,
and interatomic separations smaller than, say, one tenth
of a wavelength are extremely rare. We, therefore, in-
troduce a cutofF by assuming a minimum interatomic
distance r0, and truncating the dipole-dipole interaction
accord. ingly. Specifically, we fix the atomic separation
in the direction of propagation of the atomic beam at
this minimum distance r0, but leave the motion in the
quantized direction unconstrained. With this ansatz, the
explicit forms of r and 0 in the potentials Vq~(qr) and
V;(qr) become

0+ 2 (19)

and
2

cos 02 r0
r0+ x (20)

respectively, where we have assumed that the polariza-
tion vector of the standing wave is parallel to the z axis,
the direction of the atomic beam.

The effective Hamiltonian (15) is used to evolve the
wave function by means of a split-operator technique.
At each time step, the evolution due to the Hamiltonian

(1) is carried out using the band structure of the atoms
interacting with the periodic standing-wave field; this is a
straightforward generalization to two atoms of the band
theory of Ref. [45]. The evolution due to the remaining
part Hgd '2" P C C of t—he efFective Hamiltonian (15)
is performed after transforming to the coordinate repre-
sentation, where it is local. The time steps are limited
on the one hand by the Monte Carlo technique, which re-
quires that the exponential decay be well approximated
by a first order expansion in Lt, and on the other hand by
the split-operator technique, which requires that the two
operations approximately commute. In practice the first

of these constraints, p06t (( ]., is the more restrictive
one.

IV. B.ESULTS

P(x„) = dx, ig(x„, x,) i

of having the particles separated by the distance x„, in-

dependently of the center-of-mass position of the system.
Figure 2(a) shows the time evolution of the atomic sys-
tem in the absence of any interaction, that is, neglecting
both the standing-wave field. and the dipole-dipole in-
teraction. Spontaneous emission is also ignored in this
example. As should be expected, the atomic evolution is
fully determined by free space diffusion. In Fig. 2(b), the
light field is turned on, but the dipole-dipole interaction
and spontaneous emission are still neglected. This situ-
ation is essentially the same as that of Ref. [39], where
the only many-body effect is in the symmetrization of the
initial atomic wave function, except that we are now in

To guide our thinking, we first examine the local
Hamiltonian (10). Its diagonalization yields a set of four
potentials E, (x„,x,), i = 1, . . . , 4, which are useful to
gain an intuitive picture of the system dynamics, de-
spite the fact that it neglects both the atomic motion
and nonadiabatic transitions resulting from the kinetic
energy. Figure l(a) shows its local eigenvalues as a func-
tion of the relative position x„of the atoms, for x = 0.
In this example, 'R = 20m„, , b = 0, p0 ——5000~„, and
the cutofF distance is ro ——A. (Because of the weak depen-
dence of E,(x„x,) on x„ it is sufficient to consider the
dependence of the local potentials on x„ in our qualitative
discussion of the numerical results. ) Note in particular
the narrow avoided crossings between the eigenvalues E»
and Es at x, 0.8A and x„1.4A. Figures l(b) —l(d)
are the projections ~(T, ~e~)~ of the Dicke states ~T+),
IT ), ~TO), onto the eigenstates ~ez(x„, x,)), j = 1, . . . , 4,
corresponding to E,(x„,x,), while Fig. 1(e) gives the
probabilities ] (So~ez)

~

. In these figures, the radius of the
circles is proportional to the corresponding probabilities.

Consider for the sake of concreteness the relative dis-
tance x„=0.65A. Here, the local potential E» is repul-
sive, and the corresponding eigenstate ~ei) is almost en-
tirely composed of the Dicke state ~So). In contrast, the
local potential E4 is binding, with ~e4) ~TO). Hence,
one might expect that an atomic system described by
a wave packet initially confined near x„= 0.65A, and.
in the middle triplet state ~TO), would be bound by the
dipole-dipole interaction. That this is indeed the case
is illustrated. in Fig. 2, which shows the evolution of
an atomic system whose initial wave function is a sym-
metrized wave packet composed of two Gaussians peaked
at 0.325A and. —0.325A, and of equal widths 0. = 0.035A.
The fact that the extent of the atomic wave function is
small compared. to an optical wavelength indicates that
we are in the Stern-Gerlach regime of the near-resonant
Kapitza-Dirac effect [46]. Plotted in the various curves
is the marginal probability density



3976 P. PAX, G. LENZ, AND P. MEYSTRE 51

E/Ere c (a)

200-
1

100-

0-

I
I

I
t

I
I

I
I

I

I
I

I
t

u

l

1
I
I

I

I
I

V

100L

—200I-

2

x„/A

E/E
200

100

0

-100
—200

(bj

E/E
200

100-

(c)

-100-
—200-

2
x„/A

E/Er ee

200

100

0

-100
—200

(dj

E/E„„
200

100

0

-100
—200

(e)

FIG. 1. (a) Eigenvalues E,(x„,x, ), i = 1, . . . , 4 of the local
Hamiltonian (10), versus the dimensionless relative atomic
distance x /A for x, = 0. In this example, 72. = 20' „,b = 0,

5000m „and ro = A; (b)—(d) Projections ~(T, ~e~)~
of the Dicke states ~T+), ~To), and ~T ), respectively, over
the eigenstates ~e~(x„, x, = 0)) corresponding to the local
potentials E~ (x„,x, = 0); (e) Projections

~
(So ~e~) ~

of the
Dicke state ~SO) over the local eigenstates ~e~(x„,x = 0)).
In these figures, the radii of the circles is proportional to the
corresponding probabilities.

&(») = d»l&(»»)l' (22)

for one of the atoms to be at position x~ as a function
of time, under the inhuence of the light field alone. This
is once more the usual optical Stern-Gerlach effect [46].
The modish. cations to the dynamics brought about by

the Stern-Gerlach rather than the Raman-Nath regime of
diffraction, and observe, therefore, the oscillations char-
acteristic of this regime. The efFects of the dipole-dipole
potential are clearly evident in Figs. 2(c)—2(e). In the
case where the initial electronic state is the middle triplet
~To), we observe a strong binding of the atoms in the po-
tential E4(x„,x,). The atomic system always remains
in the vicinity of the minimum of that potential, never
approaching any other potential surface. This is further
confirmed by Fig. 2(d), which shows the populations of
the various Dicke states as a function of time. As ex-
pected, they remain roughly constant in that case.

In contrast, Fig. 2(e) shows what happens if the
atoms are initially in the electroruc singlet state ~So).
In this case, the atoms experience the repulsive potential
Eq(z„, z, ), the atomic wave function starts "rolling down
the hill" and rapidly approaches the narrow avoided
crossings at x„O.SA and x„1.4A. The branching
of the atomic wave function into these potential surfaces
is clearly evident in. Fig. 3(a), which shows a short-time
close-up of Fig. 2(e). These nonadiabatic transitions are
further illustrated in Fig. 3(b), which shows how the
atomic population leaves the initial local eigenstate.

While the results of Figs. 2 and 3 are easily understood
in. terms of local potentials and are quite useful &om a
pedagogical point of view, one should keep in mind that
they were obtained at resonance b = 0, and hence are
expected to be strongly inQuenced by spontaneous emis-
sion. Rather than pursuing this example further, we now
turn to another situation, where the field is detuned &om
the atomic transition frequency. As we shall see, this
presents the double advantage of reducing somewhat the
effects of spontaneous emission, and. of leading to the
existence of minima of the local potential near x„= 0.
Figure 4 shows the local eigenstates of the Hamiltonian
(10) for 7Z = 500m„, and b = —1000xt„„. (In the ab-
sence of dipole-dipole interaction, the four local eigenval-
ues of the dressed atoms consist of two periodic poten-
tials and two degenerate constant potentials, the periodic
potentials corresponding to the approximate eigenstates
~T ) and ~T+) for large detunings. ) Figures 4(a) and

4(b) show the projections ~(T ~e~) ~

and ~(To~e~)
~

of the
Dicke states ~T ) and ~To), respectively, onto the eigen-
states ~e~(z„, x, = 0)), j = 1, . . . , 4. The other two pro-
jections are not shown, as they are only weakly populated
and play no major role in the subsequent discussion.

Consider for concreteness a situation where the atoms
are initially in the ~T ) state, with symmetrized Gaus-
sian coordinate representation wave functions peaked at
+A/8 and of equal widths cr = 0.025A. Figure 5(a) shows
the resulting time evolution of the marginal probability
density
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case of Fig. 2(e). Time in units of u„, .
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FIG. 6. Populations of the various Dicke levels as a func-
tion of the dimensionless time u„„t for the situation of Fig.
5(b).

here. Figure 5(c) shows the same example as in Fig. 5(b),
but with spontaneous emission included. We see that in-
deed, this incoherent process rapidly destroys the bound
state. This can be qualitatively understood in terms of
the local potentials of Fig. 4. As the atoms undergo
their collision, they reach a relative distance where the
lowest local potential is quite steep, and the correspond-
ing eigenstate is mostly composed of the ITO) Dicke state,
see Fig. 4(b). When in this state, the atoms are strongly
susceptible to spontaneous emission, thereby winding up
in the local potential 83, whose corresponding eigenstate
Ies) IT ). However, while falling down the potential
well E4(x„), the atoms can gain a substantial amount
of kinetic energy, which can in turn be used to expel
the atoms &om the shallower well Es(x ). This heating
mechanism is somewhat reminiscent of laser heating in
a strong standing wave with red detuning [49]. An im-

portant difFerence between the two situations is that in
strong-Geld Sysiphus cooling or heating, the two poten-
tials between which the atom jumps have identical curva-
tures, but are shifted by a half wavelength. In contrast,
the present heating utilizes the differe. ce in curvature
between the two potentials involved. The possibility of
using similar techniques to achieve cooling are presently
under study.

As a final example, we look at the effect of the dipole-
dipole force on atomic difFraction in the Raman-Nath
regime, which has previously been extensively studied
both experimentally and theoretically [1,2] in the single-
atom case. In contrast to the Stern-Gerlach regime, we
now consider initial wave functions with spatial exten-
sions on the order of or larger than an optical wavelength
A. We proceed numerically by incoherently averaging re-
sults obtained over many initial positions, thereby simu-
lating the experimental situation of an atomic beam with
well defined momentum. We specifically concentrate on
the evolution of the marginal momentum distribution of
one of the atoms,

+(Pl) f PIl4'(u dv )l',I2
which, on leaving the interaction region and propagat-

FIG. 7. Marginal momentum probability distribution
P(pq) = f dp2j@(pq, p2)j in the Raman-Nath regime, after
an interaction time t = 0.1u„.The relevant parameters are
'R = 100m„, b = 0, pp ——100m„, and rg ——0.1A. Solid
line: spontaneous emission and dipole-dipole force neglected;
dotted line: spontaneous emission included, but dipole-dipole
interaction neglected; dashed line: dipole-dipole interaction
included.

ing to the far field, becomes the experimentally detected
position distribution. In the absence of spontaneous
emission, the standing-wave field scatters the momen-
tum wave function in units of hq, leading to well sepa-
rated difFraction orders whose amplitude is given by a
well-known Bessel function distribution [50]. Sponta-
neous emission can be minimized by ensuring that the
excited state population remains negligible, for exam-
ple by working far off resonance. When there is sub-
stantial spontaneous emission, the difFraction orders are
washed out, since the atomic recoil from the emitted
photon is randomly distributed [1,3,4]. Since the near-
resonant dipole-dipole interaction and spontaneous emis-
sion have the same physical origin, the study of its effect
on Raman-Nath difFraction requires one to work in this
difFusion-dominated regime. Figure 7 shows P(p) for a
choice of parameters corresponding to the experimental
situation of Ref. [1]. The solid line shows for reference
the result of Raman-Nath diffraction in the absence of
spontaneous emission, the width of the various diffrac-
tion orders being due to the width of the incident atomic
beam. The dotted line shows the effects of spontaneous
emission on this pattern, with the well-known transition
f'rom a diffractive to a diffusive regime [1,3,4]. The ef-
fects of the dipole-dipole interaction are insignificant if
the cutoff distance ro & A, and lead to a result practi-
cally identical to the dotted line. Indeed. , large densities
are required to observe significant effects, as illustrated
by the dashed line, which corresponds to a cutoff dis-
tance ro ——0.1A. Such a short cutofF distance implies an
unrealistic density of about 10 cm . As a final re-
mark, we note that the Raman-Nath results can clearly
not be simply interpreted in terms of the local potentials
E,(x„,x,), due to the strongly delocalized nature of the
atomic wave functions.
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V. CONCLU SION

In this paper, we have applied an effective one-
dimensional model to the study of the near-resonant
Kapitza-Dirac diffraction of two atoms interacting via the
dipole-dipole interaction. We have concentrated mostly
on the Stern-Gerlach regime of diffraction, where the
atomic wave functions are sufficiently well localized that
a good physical understanding of the atomic dynamics in
terms of local potentials can be achieved. In general, the
dipole-dipole interaction is found to lead to substantial
modifications of the Stern-Gerlach diffraction patterns
even for large cutoff distances ro A, which correspond
to atomic densities of the order of 10 cm . We found
that under appropriate conditions, bound states of the
atomic system can be achieved, with the two atoms sep-
arated by a distance of the order of hundreds of nanome-
ters. However, spontaneous emission eventually destroys
the binding between these states via a heating mecha-
nism somewhat similar to strong-Geld Sysiphus heating.

In this respect, the behavior of the diatom bound state
under the inffuence of spontaneous emission is similar to
that of the atomic solitons predicted to occur in near-
resonant Kapitza-Dirac diffraction in the framework of
nonlinear atom optics.

Our present model suffers from a number of weak-
nesses, that we are presently proceeding to remove:
most important amongst them are the effective one-
dimensional model and the use of two-level atoms. In ad-
dition, we are investigating whether the heating resulting
from the dipole-dipole interaction can be turned around
and changed into a cooling and/or confining mechanism.
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