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Atomic gravitational cavities from hollow optical hbers
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We analyze a type of cavity, or trap, for atoms: a hollow optical fiber bent into a vertical U
shape. The atoms are con6ned by gravity and by light forces due to the evanescent wave on the fiber's
interior surface. A unique feature of this cavity is its mechanical Bexibility, which allows tailoring
of the gravitational potential experienced by the atoms. In particular a cycloid shape gives simple
harmonic motion along the 6ber. It can achieve con6nement times similar to the parabolic reBector
type of gravitational cavity. Quantized motion and an intracavity cooling scheme are considered.

PACS number(s): 32.80.Pj, 42.50.vk, 03.75.Be

I. INTRODUCTION

The production of trapped and cooled atoms has given
rise to new kinds of experiments, ranging from high preci-
sion spectroscopy to atomic interferometry [1]. In partic-
ular "trampoline" type gravitational cavities for atoms,
which utilize a parabolic refmector, have recently been
demonstrated [2]. In these, a vertical cavity is formed
by gravity at the top and an evanescent light atomic
mirror at the bottom [3]. The light is detuned many
linewidths to the blue of an atomic transition giving a
repulsive dipole force. In this paper we theoretically an-
alyze an alternative type of atomic gravitational cavity
based on a hollow optical fiber. Its trapping performance
is comparable to that of the trampoline cavity, and it of-
fers interesting possibilities due to the fiber's mechanical
Bexibility.

Atomic cavities difFer from simple traps in emphasiz-
ing the potential for multiwave interference of atomic de
Broglie waves, analogously to optical cavities. They have
been considered by Balykin and Letokhov et al. [4] and

by Wilkens et al. [5]. Gravity, which would otherwise be
a serious problem for slow atoms, is used to advantage
in gravitational cavities. The first experimental demon-
stration was limited to two bounces [6]. However with
a parabolic reBector, up to ten bounces were observed
[2]. That experiment was limited by the available laser
power, collisions with background gas, and stray light.

The possibility of using hollow optical fibers as coher-
ent atomic waveguides has been investigated by Mark-
steiner and co-workers [7,8] and by Ol'Shanii et aL [9].
The configuration considered by the latter authors difFers
&om ours because their atoms are confined by an attrac-
tive force due to light propagating in the fiber's hole. In
contrast the only light in the holes of the fibers we con-
sider is the evanescent field at the glass-hole interface.
This light repels the atoms &om the wall, creating a po-
tential barrier and thus confining them in the transverse
directions, Fig. 1. Longitudinal confinement is provided
by gravity by the fiber's vertical bend, Fig. 2.

The fiber's flexibility gives the III'eedom to choose the
cavity geometry, including the possibility of dynamic
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FIG. 1. Schematic cross section of a hollow optical 6ber.
The glass (shading) is the optical waveguide while the hole
is the atomic pipe or waveguide. The atoms are confined
transversely by the evanescent light field (hatching) at the
glass-hole interface. A schematic trajectory of an atom (black
disk) re8ected by the evanescent light field is shown. As in
conventional fibers the glass may be doped to form a high
refractive index light guiding region adjacent to the hole.

X

FIG. 2. Coordinate system used for cycloidal tube geom-
etry. The longitudinal coordinate, along the fiber s axis, is
s. The inset is a cross section through the fiber showing the
transverse polar coordinates r and P which are centered on
the fiber axis. The 6ber bent into a gravitational cavity is
shown schematically. The height of the cycloid is 2a.
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changes in shape. Such changes can, in principle, be used
to cool atoms. Cooling would be necessary to achieve
atomic Bose-Einstein condensation, which is a possible
application of gravitational cavities [3].

In the following we investigate the dynamics of classi-
cal atoms before considering their quantized motion. The
classical analysis allows a comparison with the trampo-
line cavity experiment.

II. THE HAMILTONIAN

where we have defined the effective spring constant

mg
4a

This Hamiltonian is valid for sufIiciently narrow fibers
everywhere except near the ends of the cycloid, ~s~ 4a.
So we restrict our attention to small amplitude oscilla-
tions about the bottom of the cycloid, ~s~ && 4a.

The approximate Hamiltonian may be written as a sum
of longitudinal and transverse parts, H' = H&+H~, where

By analogy with an isochronous pendulum [10] we find
that a cycloidal shape for the fiber admits simple har-
monic motion in the longitudinal coordinate. The cy-
cloidal axis of the cavity is parametrized by
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where —7t. & 0 & vr. The parameter a determines the
length scale of the cycloid. An appropriate coordinate
system (s, r, P) for further calculations is given in terms
of Cartesian coordinates (x, y, z) by the transformation
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where we have introduced the function of s,

SS= 1—
16a2

The arc length, or longitudinal, coordinate is s, while r
and P are local transverse plane polar coordinates, see
Fig. 2.

Using the Langrangian formalism, we obtain the con-
jugate momenta p; and classical Hamiltonian H as
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where m is the atom's mass and g the acceleration due
to gravity. For hollow optical fibers the hole radius B is
much smaller than the length, B (& a. In this limit, and
for ~s~ && 4a, the Hamiltonian reduces to

The transverse Hamiltonian depends on the longitudi-
nal coordinate through the potential energy term pro-
portional to S. This term is the transverse component of
the gravitational potential. Away from the ends of the
cycloid, where (s/4a) « 1, its dependence on s2 can be
ignored compared to that of the potential term in H&.
Then the longitudinal and transverse parts of the Hamil-
tonian decouple and the atoms undergo simple harmonic
motion along the fiber axis independently of their trans-
verse motion.

III. THE CLASSICAL CAVITY

In the trampoline cavity experiment Cesium atoms
were dropped as a cold cloud from a height of 2.9 mm
onto a parabolic mirror [2]. They arrived at the mirror
with a mean velocity of 0.24 m/s. An 800-mW laser de-
tuned by 10 GHz from the D2 transition was focused to
a spot of 1/e diameter 1 mm, which could reflect atoms
with velocities of up to 0.4 m/s (which allows for the
velocity spread of the initial atoms).

In the fiber cavity case, the laser power can be coupled
into a smaller area and hence the intensity incident on
the internal glass-hole interface can be much higher than
for the trampoline cavity. Due to the curvature of the
fiber, atoms bounce Rom the walls at a glancing angle
and the maximum transverse velocity is not as high as
for the trampoline case with normal incidence. The com-
bination of these effects suggests that less laser power will
be required for similar confinement times. Alternatively
the atoms might be confined with increased. detuning and
smaller losses.

To demonstrate this we calculate the power required
to confine cesium atoms in a fiber with hole diameter
2K=1 mm and glass thickness 0.1 mm. Such a fiber can
be thought of as a capillary tube. The hole diameter is
chosen to correspond to that of the trampoline experi-
ment while the glass thickness is rather arbitrary. The
atoms are transversely confined by a potential barrier
with height U which in the limit of large atom-laser de-
tuning A is given by [1],

I I 8 P~ ~4' 2+ —ks + mgrScosg, (6)
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where 4 has the units of Hz (not rad/s). 0 is the Rabi
frequency of the evanescent field at the glass-hole inter-
face,

dEO0=
Atom

Cs
He'

m (kg)
2.3 x]0—25

6.6 x10

A (pm)
0.852
1.083

d (Asm)
2.5 x 10
2.0 x10

I' (MHz)
5.2
1.6

TABLE I. Atomic parameters for cesium and metastable
helium.

where d is the atomic dipole moment, and Eo is the elec-
tric field strength, which is related to the light intensity
I in the glass by I = 0.5ccoAEo& with n the glass re-
fractive index (we use n=1.5). If an atom has sufficient
transverse kinetic energy to surmount this barrier it will
collide with the wall of the fiber and, we assume, be lost.

To investigate the transverse velocities with which the
atoms hit the wall requires computer simulations. For
simplicity a number of approximations are made in the
simulations. First, we ignore the y dimension and hence
only consider motion in two spatial dimensions. Second,
the atoms are assumed to reflect oH' an infinite potential
barrier at the walls. Finally we approximate the cycloid
by a parabola. This is accurate for small amplitude os-
cillations.

Simulations were run for parameters corresponding to
a cycloid with a = 7.6 mm, so that the period of longitu-
dinal oscillation was 0.35 s. Dropping the atoms from a
height of 2.9 mm we observed about 20 bounces per os-
cillation. The maximum transverse velocity in the fiber
was found to be 0.18 m/s. Equating the corresponding
transverse kinetic energy to the height of the potential
barrier we find that 100 mW of guided power at a detun-
ing of A=10 GHz will confine cesium atoms in this fiber.
This is less than the 800 mW required for the trampoline
cavity [2] due to the combined advantages of a reduced
optical area, a uniform, instead of Gaussian, intensity
distribution and the fact that atoms make glancing col-
lisions with the walls. Our 100-mW power estimate as-
sumes that the intensity at the glass-hole interface equals
the average intensity in the glass. Note that lower powers
result if the glass thickness is reduced.

The major losses in the trampoline cavity experiment
were due to stray light from the mirror beam, background
gas collisions, and photon absorption during reflection.
The first two of these are technical problems, but the
absorption loss is more fundamental. The average num-
ber of photon absorptions per atom per reflection, n„,
may be estimated by assuming that the atom's motion is
classical and that the excitation probability is (0/4vrA)
where 0 is the Rabi &equency corresponding to the field
at the atom's location. This gives [2]

loss rate in the fiber, &om Eq. (12), as 1.5 per second
per atom. According to Eqs. (10) and (11) increasing
the guided power by a factor of 5, from 100 mW to
500 mW, allows the detuning to be increased from 10
GHz to 50 GHz without lowering the confining potential
barrier. The fiber loss rate is then about 0.3 per second
per atom, about 30% of that for the trampoline, corre-
sponding to an absorption limited confinement time three
times longer. However, it is expected that trampoline
cavities will be improved by techniques such as enhance-
ment of the evanescent field using a surface waveguide
[11].

We next consider a fi.ber cavity constructed from a
genuine hollow optical fiber, rather than from a capil-
lary tube. Hollow fibers with doped high index cores
and 2-pm-diameter holes have been manufactured. For
the 2 Pi ++ 2 Si transition of metastable helium with
wavelength 1.083 pm, the hollow fiber described in Ref.
[12] supports only two optical modes. Since these modes
are straightforward to calculate we can make accurate
estimates of the guided powers required for confinement

Using the atomic parameters of Table I we find that
metastable helium requires only 25 pW of laser power
at a detuning of 10 GHz to confine the atoms. However
computer simulations predict a corresponding loss rate of
about 6 per second per atom. This figure is high because
the atoms hit the wall more frequently in a narrow hole.
Laser power can be traded for detuning to obtain a loss
rate of 0.2 per second per atom with 0.75 mW of laser
power at a detuning of 300 GHz.

IV. THE QUANTUM CAVITY

So far we have considered the atomic motion to be clas-
sical. We next consider the limit in which the atoms be-
have like de Broglie waves and hence obey a Schrodinger
equation. Naively quantizing the approximate Hamilto-
nian Eq. (6) gives,

np ——I mv/nM. , (12)

where I' is the natural linewidth of the atomic transition,
v is the transverse speed of the atom on entering the
evanescent field, and 1/n is the characteristic distance of
the exponential decay of the evanescent field (0.21 pm
for [2]). Using the atomic parameters of Table I and the
mean incident velocity gives for the trampoline experi-
ment n„=0.06. With a period of 0.05 s this produces an
average loss rate of about 1 per second per atom.

Our simulations give us the transverse velocity at each
wall bounce and hence allow us to estimate the average

1 2+—A,'s mgrScos P.
2

(13)

Canonically quantizing the full Hamiltonian Eq. (5) in
Cartesian coordinates and then using B « o and ~s~ &&

4a gives the same result.
The quantum regime is relevant at low energies where

the atomic de Broglie wavelength is of the order of the
tube diameter. In the following we assume a hole di-
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ameter of 2 pm [12]. A cesium atom with a 2 pm de
Broglie wavelength is subrecoil cooled (the recoil cooled
wavelength equals the transition wavelength of 0.852 pm)
and has a kinetic energy of 2.4 x 10 J.

In the limit of motion characterized by small quantum
numbers the atom is confined to the bottom of the Gber
where (s/4a) « 1. Then, as in Sec. II, the Hamilto-
nian Eq. (13) separates into decoupled longitudinal and
transverse parts

g2 g2 1 2II,' =—
2m Os2

18( 8) 1 0'
——

~

r
~

+ — + mgr cos P. (15)
2m r Br ( Br) r2 8/2

The longitudinal Hamiltonian 0&' is just a harmonic
oscillator and hence has energy eigenstates [13]

4'l l(s)= C„H„(s/s)oexp —(s/so) (16a)

mes
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where H is the nth Hermite polynomial and C is a
normalization constant. The energy eigenvalues are

z~" = (n+ -,')n .

For cesium atoms, we have so —(1.7 x 10 )a ~ m and
an energy level splitting of Ru (1.7 x 10 s4)a '~2 3,
with a in meters. For a cavity with length scale a =7 mm,
so 5 pm, which is the scale of the ground state, and
her = 2 x 10 J, which corresponds to a temperature
of approximately 0.3 nK.

Achieving such low atomic temperatures will be a
formidable problem, although it is in principle possible,
for example, by velocity selective coherent population
trapping (VSCPT) techniques. Two-dimensional cool-
ing to temperatures of 300 nK using VSCPT has been
reported [14]. At such low temperatures various heating
mechanisms such as those associated with the acoustic
vibrations of the Gber will have to be understood and
controlled [15].

The energy level spacing between the lowest eigen-
states of H~" can be estimated by ignoring its gravita-
tional part and using the boundary condition that the
eigenstates are zero on the Gber walls. This gives eigen-
states that are Bessel functions in the radial coordinate
and which have energy spacings of about 7h /mB2
3 x 10 s~ 3 for cesium [7]. This is about two orders of
magnitude greater than the spacing of the longitudinal
energy eigenvalues. Hence it should be possible to popu-
late only the lowest transverse eigenstate.

Calculating the loss rate from an eigenstate must take
account of the quantized motion of the atoms and of the
spatial variation of the confining evanescent field. We
have not done this. However, the straight Gber case has
been considered by Marksteiner et Ol. [8], who predict loss
rates of about 0.01 per second per atom for recoil cooled

cesium. They also considered the lowering of the effective
potential barrier by the Casimir-Polder interaction of the
atoms with the glass walls.

V. DISCUSSION

We next discuss a potential cooling scheme using a
hollow optical fiber gravitational cavity. We also consider
the experimental feasibility of such cavities.

Cooling might be achieved using an adiabatic potential
change such as discussed by Zaugg et al. [16]. The req-
uisite slow change in potential could be made by slowly
Hattening out the fiber. This would adiabatically increase
the length scale a and hence decrease the energy scale Ru.

The extremely low energy splitting of the longitudi-
nal eigenstates of practical Gber waveguides prompts us
to consider ways to increase it. This would facilitate
population of the ground state. To increase the energy
splitting the effective acceleration g in Eq. (16c) could
be increased. This could be done by using ions instead
of atoms and applying a uniform vertical electric Geld.
Field strengths that change the acceleration by many or-
ders of magnitude are possible. Ramping the field would
provide another method for adiabatic cooling.

Although our work has identified potential advantages
of hollow fiber gravitational cavities, many difliculties re-
main to be explored. Light in the Gber's hole can be
avoided by suitable optical coupling, or by making the
fiber sufFiciently long that the end into which light is cou-
pled is far from the end into which atoms are coupled.
Light in the hole will then have completely leaked out.

The quality of the vacuum in the fiber's hole will be
important for reducing collisions with background gas.
One technique for evacuating the fiber's hole would be to
Hush it with helium. Its solubility in glass will allow the
helium to permeate out through the walls of the fiber.
This evacuation technique has the advantage of being
relatively insensitive to the fiber's length [17].

A problem common to both classical and de Broglie
regimes is detection of the atoms. However, laser in-
duced Huorescence detection through the glass fiber ap-
pears feasible.

We believe that our work shows that hollow Gber
atomic gravitational cavities are in principle competitive
with trampoline type gravitational cavities. Their ad-
vantages arise first from their mechanical flexibility and
second from their optical properties. We hope that this is
just one of many potential applications of hollow optical
Gber atomic waveguides.
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