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Quantum motion of two trapped ions in one dimension
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We develop models for the motion of two trapped ions in one dimension, including both har-
monic trapping forces and the Coulomb interaction between the ions. Mathematical and physical
consistency dictates that the divergence of the Coulomb interaction. at small distances be tempered
with a soft core. A split-operator method is used to analyze numerically the energies and eigenstates
of the motion of the two ions. Classification and closed-form expressions are also presented for the
energies and the eigenstates in the limits when the equilibrium distance due to the Coulomb repul-
sion is either much smaller or much larger than the amplitude of the zero-point motion of the ions.
Implications of the results for the properties of two identical ions with Bose-Einstein or Fermi-Dirac
statistics are discussed.

PACS number(s): 42.50.Vk, 05.30.Jp, 03.75.Fi

I. INTRODUCTION

The long-standing eff'ort on spin-polarized hydrogen [1]
and more recent developments in laser assisted manipu-
lation of atoms [2] are now approaching the point where
the eKects of the statistics of the atoms, for instance Bose
condensation, become observable. What kinds of exper-
iments will be done and what kinds of new phenomena
will be met with cannot be anticipated at the moment,
but it is time for theorists to start sharpening their tools
in "quantum field theory of cold atoms" [3]. Some initial
steps have already been taken [4], but more methods and
concepts in atomic degeneracy, and transparent examples
on degeneracy, are needed.

The particular case we have in mind is an o8'shoot
of a recent experiment of Eichmann et al. [5], in which
interference fringes were seen in the light scattered from
two trapped ions. We wonder under what circumstances
quantum statistics of the ions might affect the results,
at least as a matter of principle. Quantum statistics, of
course, will only be significant if the occupation numbers
of individual quantum states are at least of the order of
unity. The point here is that the entire set of quantum
numbers, internal and center-of-mass degrees of &eedom
for both ions, needs to be specified in order to discuss
atomic degeneracy in a meaningful way.

The present paper is our first step toward the analysis
of the degenerate version of the interference experiments
analogous to those of Eichmann et al. [5]. We study the
motion of two harmonically bound ions, taking into ac-
count the Coulomb repulsion between them, but in the
main body of the paper we ignore the internal degrees of
freedom altogether.

A full description of the interference experiment would
involve the motion of the ions and the internal degrees of
&eedom with the added constraint of symmetrization of
the state vectors, and the quantized light field as well. In
view of the many facets of the problem, one should take
advantage of as many simplifications as possible. In the
present paper we therefore seek to analyze the motion of

the ions in one dimension. It is not advisable simply to
drop two dimensions, because the 1/r divergence of the
Coulomb repulsion between the ions is mathematically
more severe in one dimension than in three dimensions.
In Sec. II we discuss a physical way out of this dilemma.
We then introduce the model interaction used in the rest
of the paper.

In Sec. III we present our numerical method for find-
ing the eigenvalues and eigenvectors of the Hamiltonian
describing the coupled motion of the ions. Section IV
contains the core of our results. The Coulomb inter-
action tends to push the ions apart. Distinct physical
regimes emerge according to whether the classical equi-
librium distance between the ions would be much larger
or much smaller than the amplitude of the zero-point mo-
tion. We analyze these cases separately. The intermedi-
ate regime when the equilibrium distance and the ampli-
tude of the zero-point motion are comparable is harder
to treat, but a few numerical results will be shown.

I"urther discussions are contained in Sec. V. We de-
scribe brieQy the complete state of the ions, including all
degrees &eedom. We ponder on a qualitative principle
that surfaces &om our analysis: the eKects of statistics
are significant only if the ions are operationally indistin-
guishable. Finally, we consider the prospects of degener-
acy experiments with trapped ions. On the basis of the
present work they admittedly appear bleak. We specu-
late about possible ways to circumvent this problem.

II. ONE-DIMENSIONAL MOTION

We consider two identical ions o. = 1, 2 with mass
m and charge q. We start with the three-dimensional
motion under a quadratic binding potential. The coor-
dinates and momenta of the ions in the principal-axis
directions of the trap are denoted by (x' ) = x and
(p' j = p, with i = 1, 2, 3. If the oscillation frequen-
cies of the ions in the trap in the absence of the mu-
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tual Coulomb interactions were v;, the total Hamiltonian
reads

2

= 1 gH= (p +p)+ —) i;** +
2m 2 - 4~op ~~1 —x2

2qCk

We reduce the model to one dimension right away. A
quasi-one-dimensional motion would naturally ensue if
the restoring forces were much softer in one principal-
axis direction than in the two orthogonal directions, say,
v1 (( v2 3, and if furthermore the quantum energies in
the 2 and 3 directions, hv2 3, were much larger than any
other relevant energies of the physical situation. Then
the 2 and 3 components of the motion are neither excited
nor deexcited during the evolution, but are effectively
frozen. We assume that the transverse components of
the motion remain in the ground states l0)2 and l0)s.
The Hamiltonian for the degree of freedom 1 is then

H(1) = 3(012(0IH(1 2 ~)10)210)'

Interestingly, when the transverse &equencies are
taken to be equal, v2 ——v3 ——v~, the expectation value
may be carried out analytically. We write all of our re-
sults in terms of the length and energy scales of the quan-
tum harmonic oscillator (HO) in the direction 1,

6= Avl ~

For the Hamiltonian 'R = H(1)/e we have

1
1,2

12 =

is essentially the ratio of the length scales of the trans-
verse and longitudinal harmonic oscillators, and erfc(x)
stands for the usual complement of the error function [6].

At large distances the interaction V behaves like the
Coulomb potential,

v(&„r.) -
l

Vp

However, the divergence of the Coulomb interaction is
absent,

V(& &) =
t,

. (10)

In fact, as may be seen &om Fig. 1, the interaction V is
overall approximated quite well by the transparent form

Vp

v'(&i —&2)' + 6'

In Sec. II we have basically carried out two tasks.
First, trivially, we have introduced the HO model and
scalings. Second, we have successfully reduced the
Coulomb interaction to act in one dimension. In one
dimension the divergence of the unmodified 1/r inter-
action is much more drastic than in three dimensions.
For instance, in one dimension perturbation theory with
the 1/r interaction fails on mathematical divergences.
The simple solution is to adopt a Coulomb potential
with a softened core, such as V &om Eq. (6) or V from
Eq. (11). The same trick [7], for similar reasons, is now
in widespread use in one-dimensional simulations of high-
intensity photoionization of an atom.

Our physical motivation for the soft core, &ozen mo-
tion in the transverse directions, is strictly valid only in
the limit b -+ 0. However, in what follows we not only
disregard this condition, but also model the Coulomb in-
teraction with the heuristic form V.

are the scaled coordinates in the direction 1 for the ions
1 and 2, 1.80

I
'

I
'

I

VO ((1 (2)'
V((i, (2) = —exp erfc

Vrb2 6 ~ )
(6) 1.40

1.20

is the effective one-dimensional interaction between the
ions,

g
2

Vp ——
47T'Cpo! E

is the Coulomb interaction energy in units of the HO
energy e for two ions at the HO characteristic distance o.
&om one another,
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FIG. 1. Comparison of the "exact" one-dimensional poten-
tial V (solid line) and our simplified model V (dashed line).
Here the potential strength is V0 ——1, and the core size pa-
rameter equals b = 1/~s.
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III. NUMERICAL METHODS

We study the eigenvalues and eigenstates of the mo-
tion of the two ions numerically by integrating the time-
dependent Schrodinger equation in imaginary time using
the split-operator method [8,9].

Formally, let us assume that we had the exact time
stepping operator for the imaginary time —i7. ,

exp[~(e~+2 eA:+1)]—

(18b)

Our numerical implementation of the algorithm goes as
follows. Let (; and vr; denote the canonically conjugate
coordinates and momenta of the ions; then we approxi-
mate the time stepping operator T(w) as

T(~) = e

at our disposal. Let us denote the eigenvalues and the
corresponding eigenstates of 'H in the ascending order
of energy as e, and li), i = 0, 1, . . . . Suppose further
that at the present stage k of the iteration we already
know the eigenstates li), i = 0, . . . , k, and that we have
selected a (possibly random) state vector lg)

+ ' . For
m = 0, 1, . . ., we now define the iteration

T(~) e
—(~/2)f(C) ~—1 e ~g(~) y e (~—I2)f(4)

Here X denotes the Fourier transform g ~ 7r, and

Vp
f(&) = —2'((i+4) +

+ 1 2

~(~) = 2(~i+~'). (20)

(13a)

I&") = T(&)I&') (13b)

(13c)

If the m, th iterate wave function is

then the (m + 1)th iterate wave function becomes

lq)
A'+i, m. +1 +1 o' exp[ 7.('* 'i+1)]li) . (15)

E,=a+1 la*i "xp[—2~(e; —"+i)]

It is clear that, if the eigenvalue eg+q is not degenerate,
then every step m of the iteration amplifies the lk + 1)
component of the wave function at the expense of the
other components. Finally we have the results

lim iv))"+' = lk+1),

llm
"+' WIT(&)l@)

+'
= ~k+X- (17)

+1)ll
p[ ( i+ — ~+ )]

(18a)

Given the eigenvectors and eigenvalues up to k, the it-
eration neatly spews out the (k + 1)th eigenvector and
eigenvalue. If the iteration is already close to converging
and the dominant impurity is a small &action of the state
lk + 2), we find using Eq. (15) relations such as

We naturally discretize the position variables (1 2, and
use the fast Fourier transformation to implement the
Fourier transformation operator T. In the imaginary
world of infinite-precision arithmetics the step (13b) has
to be done only once and the normalization (13c) is not
needed at all, but for numerical stability we proceed in
practice exactly as in Eqs. (13). However, instead of
Eq. (17), we obtain the energy directly as the expecta-
tion value of the Hamiltonian, using Fourier transforms
to calculate the kinetic energy. Useful convergence crite-
ria may be extracted from Eqs. (18).

Three remarks about our particular split-operator al-
gorithm are due. First, we do the ( space evolution last
(and first). In the pure Coulomb case with 6 = 0 the
wave function should be zero at (1 ——(2 in order to avoid
an infinite Coulomb energy. Our algorithm would en-
force this condition, which we count as a bonus. Sec-
ond, there are higher-order versions of the split-operator
method that are arguably advantageous for the integra-
tion of the Schrodinger equation in real time [10]. We
have tried these in our imaginary-time case, but they
proved violently unstable.

Third, in an attempt to avert convergence problems
with degenerate states we ran into a bizarre example of
the perils of numerical computations. We tried to mod-
ify the algorithm so that, in addition to the steps of
Eqs. (13), we had a choice of symmetrizing or antisym-
metrizing the state vector with respect to the exchange
of the ions. Thus modified, the algorithm should have
produced symmetrized or antisymmetrized state vectors.
Instead, the computations ran amok. The reason turned
out to be accumulation of round-ofF errors. Even if we
start with a real initial guess for the wave function,
round-off errors gradually generate an imaginary part.
When symmetrization was added, round-off errors be-
gan to accumulate catastrophically. We included another
step to remove the imaginary part into the algorithm,
which restored Bawless function.

The finite value of v and the discretization of space
both cause truncation errors in the results. In our cal-
culations we typically use w = 0.01. To choose the
spatial discretization we first pick the number of spa-
tial points for the two-dimensional grid representing the
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one-dimensional motion of both ions, typically N = 64
for each dimension, then calculate the discretization step
A( in such a way that the ensuing discretization step
in momentum space satisfies Am = E(. If there were
no Coulomb interaction in the Hamiltonian (4), by the
symmetry of the HO such a choice would be optimal.
Coulomb interactions complicate matters, but we may
nonetheless reach a ten-digit accuracy in energy eigen-
values with very modest numerical efFort.

IV. R.ESULTS

In Sec. IV we analyze the results from both the numer-
ical calculations and our supporting considerations. The
size of the core 6 notwithstanding, there is basically one
parameter Vp in the problem. To gain additional insight
into the meaning of Vp we consider the classical dynam-
ics of the ions, temporarily assuming the pure Coulomb
interaction with b = 0. In this case there are two obvi-
ous equilibrium positions of the ions, either (q ——Eo/2,
(z —— Io/2, or (q——— Eo/2, —(2 ——Eo/2, with

N = o: (lo, o)y„
1,0)+IO, 1)))„(~(I1,0) —IO, 1))y„,

N =2: 4~(l2, »+Io, »), 11,»).,

(I2, o) —lo, .)))
It is clear &om this example that for even % there are
N/2 antisyrnmetric state vectors; for odd N the num-
ber of both symmetric and antisymmetric state vectors is
(N + 1)/2.

I et us now turn on a small Coulomb interaction with
Vp « 1. Our numerical calculations show that for generic
parameters Vp and 6 the degeneracy of each manifold
is completely lifted. The Hamiltonian remains invariant
under the exchange of particle labels, so the proper state
vectors are still either symmetric or antisymmetric. But
not only are the state vectors difFerent for bosons and
fermions, so are the energies.

To appreciate the remaining complication, consult
Fig. 2. It shows one antisymmetric (a) and one sym-

&o = (2Vo)'~'.

The parameter Ep is the equilibrium distance between the
ions, expressed in units of the HO length scale o.. The
cases Vp « 1 and Vp )) 1 mean that the classical equi-
librium distance between the ions is, respectively, much
smaller or much larger than the quantum-mechanical
length scale of the HO characterizing the trapping poten-
tial. The role of quantum efFects is expected to be quite
difFerent in these two limits. Accordingly, our treatment
is divided into subsections with Vp « 1, Vp )) 1, and
arbitrary Vp.

A. Case V~ && 1

We start from the extreme case Vp —— 0 with no
Coulomb interaction at all. We are then left with a two-
dimensional HO. The energy spectrum is written in our
dimensionless units as

E„,„,= n~+n2+1, nq, n2 ——0, 1) ~ ~ ~ ~

(b)

The possible energies and their degeneracies are E(N) =
N + 1, g(N) = N + 1, with N = 0, 1, . . . . The lowest
degenerate manifolds are of the form

(Io, o)),
&11,o), Io, 1)),
fl2, o), 11, 1), lo, »)

Here the quantum numbers inside the kets refer to the os-
cillator quantum numbers of ions 1 and 2, as in lnq, n2) =
72] y Yl2

So far, we have ignored quantum statistics and written
two-ion kets in total disregard of the symmetry or anti-
symmetry under the exchange of the particles. This is
rectified easily. We write symmetric and antisymmetric
manifolds of states, such as

FIG. 2. Contour plot of an antisymmetric (a) and symmet-
ric (b) wave function from the lV = 2 manifold for the model
potential V with Vo ——O. l and b = 1. Plus and minus signs
indicate signs of the wave function.
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metric (b) wave function from the N = 2 manifold for
Vp = 0.1 and 6 = I. Considering the well-known forms
of the HO wave functions, the identification of the anti-
symmetric wave function as —(~2, 0) —~0, 2)) is straight-
forward. However, the symmetric wave function clearly
is neither one of those listed in (24).

Now, a linear combination of any two symmetric wave
functions is also symmetric, and the wave functions in
(24) simply do not happen to coincide with those linear
combinations that make the approximate eigenfunctions
of the Hamiltonian including the Coulomb interaction.
Degenerate perturbation theory is the method to resolve
this kind of situations. We diagonalize the interaction V
separately in each degenerate N manifold. The required
matrix elements of V between the unperturbed states as
in (23) are obtained numerically from two-dimensional
integrals.

The resulting decompositions and energies of the few
lowest symmetric and antisymmetric states are tabulated
in Table I. A few conclusions survive to any accuracy
we have been able to push the computations. First, the
expansion coeKcients in the wave functions are square
roots of simple &actions, as shown in the table. Second,
there is a pattern in the energies. These conclusions seem
to hold for an arbitrary value of the parameter b, not just
6 = 1 as in Table I. Some underlying symmetry evidently
permeates our model, but the nature of the symmetry
remains a puzzle.

Summing up, we have enumerated the symmetries and
the classes of near degeneracy of the energy eigenstates
of the two-ion motion in the limit when the Coulomb in-
teraction is a small perturbation, and given a few state
vectors as concrete examples. The energies of the states
and the dimensions of the near-degenerate manifolds de-

Ng
0+
1

1+
2+
2

3

AR/Vp
0.789640
0.564891
0.789640
0.507195
0.564891
0.789640

0.452516
0.507195
0.564891
0.789640

1
1 1

v~' v2
1 1

1 1 1
2' ~2&2
1 o 1

1 1 1
2& ~2'2-A v! -v! v!

8) 8) 8) 8

TABLE I. Energies and state vectors of the lowest-energy
eigenstates of the motion of two ions in one dimension ob-
tained using degenerate perturbation theory for the soft-core
Coulomb interaction V with the core parameter b = 1. The
states are listed in order of increasing energy. The notation
Nz indicates the multiplet N with unperturbed energy N+1,
and the subscript Z = + specifies a symmetric or antisym-
metric state vector. AE is the perturbation-induced devia-
tion from the multiplet energy, tabulated in units of Vo. The
column labeled ~@) lists the coefficients of the product states
~N, O), ~N —1, 1), . . ., ~0, N) in the normalized state vector

pend on the symmetry of the state vectors, i.e. , on the
quantum statistics of the ions.

B. Case Vo &) 1

In the opposite limit when the Coulomb interaction is
large, Vp &) 1, two observations immediately emerge &om
our computations. (i) Energy eigenstates come in near-
degenerate doublets, one state symmetric and the other
antisymmetric. (ii) Doublet energies are closely matched
by the formula

E = E,'+n, + v3n„ ng, n2 ——0, 1, . . . .

The v3 is the giveaway. If the ions are in near equilib-
rium under the Coulomb interaction, the classical small-
vibration frequencies are 1 and ~3. Equation (25) ob-
viously describes the stationary Coulomb energy corre-
sponding to the equilibrium, plus the quantized energy
of small vibrations.

We erst build on the observation about the mode fre-
quencies. We take the soft-core interaction V with the
range b. Straight &om Newtonian mechanics we obtain
equilibrium distance I, equilibrium energy Ep, and fre-
quencies vg of the small-vibration modes as

I = ge2 —S, Zp = 38p2 —62

v+ = 1, v = (E/Ep)~3.

(26)

n+, n =0, 1, . . . . (27)

The quality of our model may be evaluated by inspect-
ing Table II. We present side by side the values &om
Eq. (27) and the average energy of the two states in the
numerically obtained doublets. For these data we use
the parameters 6 = 1 and Vp = 32, whence Ep ——4. We
present seven significant digits, at which resolution the
doublet splitting can only be detected for a few pairs
n+, n included in Table II. The analytical formula pro-
duces about four usable digits. There is a pattern in
the difference between the analytical and the numerical
results that coukI probably be exploited to find more ac-
curate approximate formulas, but we have not followed
up on this lead.

We next consider the state vectors of the ions. First
take a near equilibrium with the ion 1 (2) around the
position I/2 (—E/2). Denoting the deviations from the
equilibrium by gi, 2, we have

(g ——I/2 + gg, (2 ———E/2+ q2. (28)

Here Ep = (2V&) ~ is the equilibrium distance for the
pure Coulomb interaction, as before. In the common-
motion vibration mode + the ions oscillate in phase, in
the breathing mode —in opposite phases. We finally
write a prediction for the two-ion energies as

E„„=Ep+ (n++ —,')v++ (n + —,')v
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A+ ) 72

0, 0
1, 0
0, 1
2, 0
1, 1
3, 0
0, 2

2) 1
4, 0
12

13.08853
14.08853
14.76558
15.08853
15.76558
16.08853
16.44263
16.76558
17.08853
17.44263

@N
13.09732
14.09732
14.78747
15.09732
15.78747
16.09732
16.48853
15.78747
17.09732
17.48853

On the other hand, the normal coordinates of the small
vibrations may be defined as

q~ = ~(qg +rI2). (29)

One may trivially solve rl~ = rl~((z, (2) from Eqs. (28)

TABLE II. Energies of a few lowest motional states of the
two-ion system in the case when the Coulomb interactions is
large. The soft-core potential U is assumed, with the param-
eters Vo ——32 and b = 1. The erst column lists the quantum
numbers n+, n characterizing the doublet of states. ET is
the theoretical prediction from Eq. (27), and E~ is the aver-

age of the doublet energies from the numerical calculations.

and (29). Now, the quantum representation of a small-
vibration mode is a HO. Given the wave functions
u+ (rI~) corresponding to n~ HO quanta in the oscil-
lators with the frequencies v~, we have a wave function
of the two-ion system,

U„+~ „((g,(2)
= u.;(~+)u. (~-)
= &.+, (~X~+ &2)) u. (~(&~ —t'2 —&)). (30)

We could equally well have started from the equilibrium
in which the ion 1 (2) dwells around —l/2 (E/2). The cor-
responding wave function U is obtained by simply
replacing / with I. in E—q. (30).

It is this possibility of choosing between the two
wave functions U„+ that underlies the twofold near-
degeneracy of the ionic states. Simply put, if the ions
were distinguishable, exchanging them would give two
difFerent but physically equivalent situations.

However, since the Hamiltonian is invariant under the
exchange of the particles, quantum mechanics tells us
that the eigenstates may always be chosen either symmet-
ric or antisymmetric under the exchange of the particle
labels. The two wave functions U+~ do not satisfy this
requirement, but suitable linear combinations thereof do.
We write our final ansatz for the two-ion wave functions
as

U.+, ,- (& & ) = ~(U.+,',. (( & )+(—1)" &.,',. (( ()]
u.;(~(6+(2))

(u. (~(&~ —
&2

—&))+u. (~(&2 —
&~

—&))). (31)

The superscript + refers to the exchange symmetry.
We have compared several numerically obtained wave

functions with the predictions from Eq. (31). The an-
alytical wave functions U+ were always in excellent
agreement with the numerical results.

The splittings of the doublets remain to be discussed.
We are on loose ground here. It is easy to show that no
quadratic (hence, solvable) Hamiltonian can have the de-
generate eigenstates U+, and so we have been unable
to develop a systematic perturbation theory.

Nonetheless, some qualitative insights have emerged
from numerical computations. In our example cases in
the limit Vo —+ oo the antisymmetric state always was
the higher one in energy. Based on the asymptotic form
of the HO wave functions we surmise that the asymptotic
form of the doublet splitting should be

0—

-2
CD

bP0

I

8
g2

l I I

10 12 14 16

where Ko q
——Ko q(E, b, n+, n ) should be slowly vary-

ing functions of /, . In Fig. 3 we correspondingly plot
log~o(AEo o), the ten-base logarithm of the splitting of
the ground-state doublet, as a functions of S . The three

FIG. 3. Ten-base logarithm of the splitting of the
ground-state doublet n+ ——O, n = 0 as a function of the
square of the classical equilibrium distance E for the soft-core
potential V. Data are displayed for b = 0.5, b = 1, and b = 2,
choosing Vo = Vo(E, b). Solid lines are linear least-squares fits
to each data set for X & 5.
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data sets are for b = 0.5 (pluses), b = I (diamonds), and
b = 2 (circles). The asymptotic form of Eq. (32) is veri-
Ged. A linear least-squares fit to the numerical data with

& 5 is also shown for each choice of b. The correspond-
ing values of the parameters are Ko ——12.3, Ki ——1.41
for b = 0.5, Ko ——20.8, Ki ——1.19 for 6 = 0.5, and
Ko = 17.6, Ki = 0.86 for 6 = 2. The parameters Ko and
Ki have stubbornly resisted prediction, but at least we

may see that, to the order of magnitude, Ki 1.
All told, we have characterized both the energies and

the state vectors of the two-ion states in the limit when
the Coulomb interaction dominates and pushes the ions
far apart compared with the motional amplitudes of the
ions. Energy eigenstates come in doublets, one state sym-
metric and one antisymmetric under the exchange of the
ions. The energy spectrum of the motional states would
be the same for bosons and fermions, except for a correc-
tion that is exponentially small in the equilibrium sepa-
ration between the ions.

C. Case of arbitrary Vo

9.00

V0

6.00 8.00 10.00

FIG. 4. Variation of the energies of the two-ion motional
states with the strength of the Coulomb interaction for the
potential V, given that b = 1 is fixed. Solid (dashed) lines
follow symmetric (antisymmetric) states.

In the intermediate region S 1 there is little hope for
a transparent classification of energies and eigenstates of
two-ion motion, but they may still be studied numerically
as needed.

In Fig. 4 we plot the variation of the energies of a few
of the lowest eigenstates as a function of the interaction
strength Vo, with 6 = 1 fixed, for the soft-core potential
V. Symmetric and antisymmetric eigenstates, respec-
tively, are represented by solid and dashed lines. One
may follow the continuous development of the pattern of
motional energies &om the limit Vo ——0 to the other ex-
treme Vo ~ oo. Higher up in the energy we have also
found states with the same symmetry that cross when
the parameter Vo is varied. It appears Rom our numeri-
cal calculations that these are true crossings, not avoided
crossings.

V. DISCUSSION

We have been able to classify and characterize the
eigenvalues and eigenstates of energy of the motion of
two ions in two asymptotic limits, when the classical
equilibrium distance due to the Coulomb interaction is
either much smaller or much larger than the amplitude
of the quantum-mechanical zero-point motion. In the in-
termediate regime one may at least resort to numerical
computations.

Our analysis pertains to one-dimensional motion of the
ions. To this end, we have reduced the Coulomb interac-
tion from three dimensions to one dimension in a manner
solidly rooted in physics. Besides, we have resorted to a
simplified model for the interaction. Numerical values
such as in Tables I and II only apply to quite specific
cases; their best use may be in comparisons with numer-
ical schemes that a reader may want to set up. It is the
qualitative understanding that we really were after.

One might pond. er on generalizations to three dimen-
sions. Let us first consider the case when all three trap-
ping &equencies are different, a likely state of affairs in
real experiments. In the lixnit of small Coulomb inter-
actions, degenerate perturbation theory should again be
the proper tool. Computation of the matrix elements of
the Coulomb interaction may be tedious, but we do not
anticipate any qualitatively new considerations. In the
opposite limit of large Coulomb interactions one may set
up the small-vibration energies and state vectors exactly
analogously to one dimension.

However, in the case of precisely degenerate trap fre-
quencies, the trap has rotational invariances and con-
served components of total angular momentum. Degen-
erate states may remain even after the Coulomb interac-
tion is included, and zero small-vibration frequencies are
encountered. In this paper we do not attempt an analysis
of such situations.

In the regime when the separation of the ions owing to
the Coulomb interaction is smaller than the amplitude
of the zero-point motion, the energy spectrum of sym-
metric and antisymmetric states is quite different. In the
opposite case the energy spectrum is the same (except
for small corrections) for symmetric and antisymmetric
states. In the latter case system properties that probe
the energy spectrum, e.g. , heat capacity, do not directly
depend on the statistics of the ions.

This observation suggests an operational meaning of
distinguishability. For small Coulomb interactions mere
quantum Huctuations may put both ions in the same
region of space. If one carries out two measurements,
each of which Gnds an ion in some region of space, one
cannot tell if it was the same ion twice or two difFerent
ions. The case of large equilibrium separation stands in
pointed contrast. If a measurement finds an ion twice in
the neighborhood of the equilibrium position +l/2, it is
intuitively plausible that it tua8 the same ion all along.
Even though the ions are indistinguishable, in effect one
can distinguish them: one is at +E/2, the other at —l/2.
We have here a hint of an intriguing notion: If there is an
operation that may distinguish between particles, there
are manifest properties of the system that are indepen-



JIAJU YIN AND JUHA JAVANAINEN

dent of particle statistics. Indistinguishability is not a
property of the particles alone, but of the physical sys-
tem as a whole. The ions are indistinguishable if one
cannot distinguish them.

Crystalline matter is an everyday example. Techni-
cally speaking the ions (atoms, molecules) that fill the
crystal structure should impose their quantum statistics
on the system, but in ordinary condensed matter the ions
stay put and one need not consider exchange symmetries.
Our case of large Coulomb interaction overs an accurate
analog. The ions make a minicrystal with two degrees
of freedom, and two "phonon" modes and the energy
spectrum of phonons is independent of the statistics of
the ions.

It is tempting to speculate on another related notion.
Depending on the strength of the Coulomb interaction,
there is an intermediate regim. e in which the effects of
quantum statistics vary continuously. Elementary text-
book examples of Bose-Einstein and Fermi-Dirac statis-
tics suggest that the statistics is a matter of yes or no,
black or white. tA'e think that, even at zero tempera-
ture, physics Inay present the whole scale of gray: If the
particles may be distinguished with ambiguity, then the
statistics shows partly.

So far we have considered only the mechanical motion
of the ions. As concerns optical interactions, the internal
degrees of freedom have to be included as well. Indistin-
guishability of the particles dictates that the state vector
is either symmetric or antisymmetric when the particle
labels are swapped, for both the motional and the inter-
nal states. Except for special cases such as an internal
level with zero angular momentum, the state vector for
the two-ion motion may quite well be either symmetric or
antisyrnmetric for both bosons and fermions. It is then
up to the exchange symmetry of the internal degrees of
&eedom to uphold the proper overall symmetry. A rich
phenomenology could be expected when the coupling of
a light field, internal degrees of &eedom, two-ion motion,

and exchange symmetry are simultaneously taken into
account.

Our final item is the experiments. The condition that
the spectrum of the two-ion motional states shows de-
generacy eBects Vo & 1 may also be written

m
hvj & B,

where m and m are the masses of the ion and the elec-
tron, and 1B is one Rydberg, 27 eV. It is clear that this
condition is far beyond the reach of the present ion trap
techniques, which produce radio &equencies for v~. Fur-
thermore, the condition (33) implies that, for any atomic
ion, the vibration &equency v~ would be larger than the
classical orbital &equency of any electron. The separa-
tion of the internal degrees of &eedom and the motion of
the ions, the cornerstone of our analysis, is then impos-
sible.

It seems safe to conclude that conventional ion trap
techniques will never lend themselves to comparisons
of the motional energy spectra of fermions and bosons.
However, the possibility that some optical experiments
might be sensitive to wave-function symmetries remains
to be investigated. An alternative path to experiments
could open up with neutral atoms in optical or mag-
netic traps. For instance, interactions between mag-
netic dipoles might provide a repulsion analogous to the
Coulomb interactions in an ion trap. If workable modifi-
cations of our ion trap scheme are discovered along these
lines, or otherwise, the general methods and concepts we
have introduced should still prove useful.
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