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CutofF in molecular harmonic-generation spectra resulting from classica& chaotic dynamics
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The plateau in the harmonic-generation (HG) spectrum of a bound quantum system is 6rst associated
with classical chaotic dynamics. The molecular cutoff in the HG spectra was obtained at Q =m m, where
m is the frequency of the time-periodic Seld and m is the area of the bound chaotic region in the phase
space divided by 2m'.

PACS number(s): 42.50.Hz, 42.65.Ky, 05.45.+b, 72.15.Rn

The spectra emitted from strongly irradiated low-
pressure rare gas were found to consist of high harmonics
of the fundamental frequency co of the irradiative field [1].
A characteristic harmonic-generation (HG) spectrum ex-
hibits an exponential decay of the intensity of the fIrst few
peaks relative to the intensity of the fundamental fre-
quency ~. This decay is followed by a plateau, which
ends in an exponential decay. The cutoE' in the atomic
HCx spectra was associated by Krause, Schafer, and Ku-
lander with the minimal energy that is required for ion-
ization [2]. A cutoS'of the plateau in the HG spectra can
be obtained, however, for bound systems as well. The
high-order HG spectra were studied by Sundaram and
Milonni [3] and, more recently, by Kaplan and Shkolni-
kov [4], Roso and Plaja [5] for two-level systems, and by
Zuo, Chelkowski, and Bandrauk [6] for a three-level sys-
tem. The quantum vs classical chaotic dynamics of
periodically driven bound systems was extensively stud-
ied over the last decade. (See, for example, the book by
Haake [7] and the papers on quantum vs classical dynam-
ics of periodically driven systems [8].) To the best of our
knowledge, the plateau in the HG spectra and the cuto6
phenomenon have never been associated so far with the
chaotic dynamics of a classical system. Our study shows
that the "longest" plateau in the HG spectra is obtained
when the infinite-level driven system (i.e., a driven rotor
in our case} exhibits a chaotic behavior.

The Hamiltonian of a rigid rotor in high Gelds in di-
mensionless units is given by

Py
H(P, t) = ——cos(P)f(t)cos(cot ),

where f (t) describes the amplitude of the cw laser as a
function of time. Like the kicked-rotor model studied by
Blumel, Fishman, and Smilansky [9], the continuously
driven rotor presented in Eq. (1) describes the dynamics
of a heteronuclear diatom, such as CsI, in high-intensity
laser fIIelds. The relevant experiment, however, is much
easier to perform with the cw laser. When the cw laser is
turned on sufFiciently slowly, the solution of the time-
dependent Schrodinger equation, y(t), for the initially
given free-rotor state is approximately the quasienergy
solution (i.e., Floquet solution) of the time-periodic Ham-
iltonian,

H(P, t)= coco—s(P)cos(cot ),Py

y(t =0)=n '~ sin(mP},

y(t =0)=m. '~ cos(mP) .

(4)

For the free-rotor ground state, m =0, y(t =0)
=(2m. )

'~ . A quasienergy state is given by

where

I (P, t) =I (P, t + T)= g y„(P)e'""' .

@ (P, t) and E are, respectively, an eigenfunction and an
eigenvalue of the Floquet Hamiltonian,

%„(P,t) = ih +H—(f, t) .a

As shown by Moiseyev, Korsch, and Mirbach [10] the
continuously driven rotor [Eq. (2)] exhibits a bounded
chaotic motion, which is presented in Fig. 1 for co=1.
For %=0.02, it is expected to 6nd 4 symmetry-adapted
regular quasienergy states (the prediction is made by di-
viding the area of the inner-regular island by 2rrirt) and 92
symmetry-adapted chaotic states. The HG spectra is as-
sociated with the Fourier transform of the time-
dependent dipole moment amplitude

crHG(Q)= I e ' 'D(t) (9)

where

D(t)=&y(t)Igloo(t) &

and in our case

(10)

P =cosP,

where Eo is the maximum field amplitude (taken here to
be unity). That is, within the framework of adiabatic ap-
proximation,

y(t)=g (P, t), t &0,
where for initially excited free-rotor states, m %0:
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state on the mth free-rotor state. ] Figure 3(c) shows the
HG spectra obtained for 1 out of the 92 QE states, which
are located in the chaotic bounded region in the classical
phase space. [See the Husimi distribution plot presented
in Fig. 3(b).] This QE state, like all the other 92 chaotic
states, is dominated by 92 free-rotor basis functions [see
Fig. 3(a)]. In Fig. 4(c), a typical HG spectra of one of the
regular states, which are embedded in the quasiperiodic
region in phase space, which is outside of the chaotic
bounded region [see Fig. 4(b)], is shown. As one can see

FIG. 1. Poincare section of classical phase space at t =nT,
(n =0, 1,2, . . . , ) taken from Ref. [10]. Only the upper region,

p&
~ 0, is shown because of symmetry. All points in the chaotic

region result from a single classical trajectory.

when

Q=nu .

When the field is turned on sufficiently slowly as dis-
cussed above, then

o Ho(0=neo) —= iDP(neo)i

where
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and a indicates the quasienergy solution, which is associ-
ated following adiabatic theorem with the given initial
free-rotor state y(t =0). In the absence of quantum in-
terferences (the mechanism that "kills" the quantum-
mechanical (QM) interferences will be discussed later) the
HG spectra are given by

7K/ 2

O' Ho (0= 11co ) = cT Po (14)
0-

(c)

We first shall show that the QE-HG spectra defined as

(16)

[and, therefore, crHG [Eq. (12)] in the more generalized
case] is exponentially localized at n =1 (i.e., the funda-
mental laser frequency) and is not followed by a plateau.

It implies that the quantum-mechanical molecular HG
spectra, o Ho(neo), consists almost uniquely of the funda-
mental frequency of the irradiative laser m regardless of
the nature (i.e., regular or chaotic) of the quasienergy
states of the driven rotor. These results are presented in
Figs. 2—4. In Fig. 2(c), the HG spectra for one out of the
four QE states that are located in the inner-regular island
in the classical chaotic "sea" [see Fig. 2(b)] is presented.
As shown in Fig. 2(a) the inner-regular states are ex-
ponentially localized in the free-rotor basis set
[1&&(0)I@ (0) ) i

is the projection of the ath quasienergy
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FICz. 2. The inner-regular quasienergy state, its Husimi dis-
tribution, and the corresponding harmonic-generation spectra.
(a) The projection of the quasienergy solution, @ (t =0), as
defined in Eq. (7) on the free-rotor states y(0) =exp(immi/~2m, .
which are linear combinations of the states defined in Eqs. (4)
»d (5). S=I&~.(0)iy(0)&i'. (b) The Husimi distribution as
obtained in Ref. (10). (c) The quasienergy harmonic-generation
spectra as defined in Eq. (16); o@,denoted by o, and the HG
spectra obtained in the absence of the quantum-mechanical in-
terferences, o g as defined in Eq. (15) denoted by x.
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from Fig. 4(a), those states are dominated by several
numbers of free-rotor states. As the outer-regular QE
state is located closer to the boundaries of the chaotic
sea, more free-rotor states dominate in the basis-set ex-
pansion of that QE state.

The HG molecular spectra is dramaticaBy changed in
the absence of the quantum interference. In such a case,
the molecular HG spectra as calculated from Eq. (15) ex-
hibit the following phenoInena.

(1) In all cases the even harmonics were suppressed,
and only the odd multiplies of the original frequency
were produced. This phenomenon was attributed to the
symmetry property of the studied model Hamiltonian
[11].

(2) For a regular QE state, which is located in the
inner-regular island in the chaotic sea and is exponential-
ly localized in the free-rotor basis set, no plateau in the

HG spectra is obtained; this is exactly as before when the
quantum interferences were taken into consideration.

(3) For the QE state, which is located in the outer-
regular region in the classical phase space, however, a
plateau that ends in an exponential decay is obtained [see
Fig. 3(c)]. The number of the harmonics in the plateau
are equal to the number of basis functions, which dom-
inate in the free-rotor expansion of @(P,r).

(4) The highest harmonics in the HG spectra are ob-
tained for chaotic QE states [see a typical example in Fig.
4(c)]. All the 92 chaotic QE states produce a plateau in
the HG spectra with a cuto6'at 0=92cu.

The fact that the HG spectra of the quasienergy states,
which are localized in the inner-regular islands, show an
exponential localization at the fundamental frequency
co=1 can be explained by simple classical arguments.
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FICx. 3. The same as Fig. 2 for a chaotic quasienergy state.
FIG. 4. The same as Fig. 2 for an outer-regular quasienergy

state.
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ri,„= (Pi=0.02),S
max

where S is the area of the bounded chaotic region and the
inner-regular regions in phase space. A simple classical
explanation for this is as follows: Since a classical parti-
cle exhibits a random walk in the bounded chaotic re-
gion, it may happen that during one optical cycle it
changes its momentum from P,„ to 0; therefore, its en-
ergy changes from P,„/2 to O. The largest frequency of
the radiated photon is Q,„,where

P,„ is the averaged value of the boundary p&(P) between
the chaotic region and the regular region, which is given
by

P S
max (20)

According to semiclassical quantization,

S=2M%,

where N is the number of the chaotic (92) and inner-
regular (4) states (for A'=0. 02, N =96). Consequently,

The inner-regular islands in the stroboscopic map shown
in Fig. 1 are associated with the classical resonances
p&=+~. Therefore, the HG spectra should be dominat-
ed by the fundamental frequency as obtained in the
quantum-mechanical calculations [Fig. 2(c)]. The cutofF
in the HG spectra of the chaotic quasienergy states is
found to be given by

0.02
mRX (23)

exactly as obtained in the numerical calculation [see Fig.
3(c)].

It is a point of interest that the cutoff in the HG spec-
tra is obtained in quantum-mechanical calculation if, and
only if, the quantum-interference effects are neglected.
The exact QM HG spectra show an exponential localiza-
tion at the fundamental frequency to= 1 [see Fig. 3(c)]
even in the semiclassical limit of %~Of Two different
mechanisms that may destroy the quantum interferences
can be considered. The first one is the destruction of the
quantum interferences due to a random noise, which is
provided by arbitrarily varying the maximum field ampli-
tude within an interval of +5% of its maximal value [12].
The second mechanism is a more "natural" one. The vi-
brational modes of the heteronuclear diatom (neglected in
the present study) are coupled to the rotational mode.
The vibrational-rotational coupling may introduce a nat-
ural noise into the calculations, which will destroy the
quantum interferences and a finite plateau in the HG
spectra will be produced.

The fact that the plateau in the HG spectra due to the
classical chaotic dynamics requires high-intensity fields
raises the question whether the system breaks up as the
field intensity is increased beyond a certain value. It was
shown recently by Yao and Chu that when a system is
subjected to a monochromatic laser field, an increase in
the laser intensity does not necessarily lead to an increase
of ionization or dissociation rate [13]. (See also on the
"breathing" above-threshold-ionization and above-
threshold-dissociation spectra in Ref. [14]). In the ex-
treme case for a given frequency and for a strong field, an
almost zero resonance width is obtained. Qn the basis of
this phenomenon, for example, it was suggested to
separate the isotopes of Hz+ [15].

2
2M% A' X

max (22)
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