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Refractive index of a dilute Bose gas
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We derive the dispersion relation for the propagation of quasiresonant light with frequency ~L,
in an ultracold gas of bosoruc atoms in the dilute regime, i.e., for an atomic density po (( (uL, /c)
In our calculation, valid up to order 2 in density, two types of corrections to the Lorentz-Lorenz
formula for the refractive index appear. The 6rst one is due to the bosonic nature of the atoms and
its contribution is related to the two-body correlation function. The second correction originates
from multiple scattering of photons within pairs of close atoms, giving rise to the resonant van der
Waals interaction. The temperature dependence of the refractive index gives a clear signature of
quantum statistical effects, even if the degeneracy threshold for Bose-Einstein condensation is not
reached.

PACS number(s): 03.75.Fi, 42.50.Ct, 32.80.—t

The physics of cold atomic gas has had a very rapid
expansion during these last years. Using laser cooling
and/or evaporative cooling, samples of hydrogen, alkali-
metal atoms, or others have been brought to microkelvin
temperatures [1]. A major goal is the achievement of
strongly degenerate systems, where Bose-Einstein con-
densation could occur for bosonic atoms. The purpose of
the present paper is to investigate the optical signature of
the quantum degeneracy of the gas that a measurement
of its index of re&action close to an atomic resonance
would provide.

We consider a dilute gas with a density po such that
po (( kl, . Here kl, = 2vr/AL, ——wl, / rcepresents the wave
vector in vacuum of the light used to probe the system.
For usual optical transitions, this condition limits po to
10 atoms per cm, which is actually above the max-
imal densities that have been achieved by laser cooling
techniques [2,3]. This dilute limit assumption allows us
to treat multiple scattering of photons by the gas in the
binary approximation, using a virial type expansion: we
take into account all photon scattering processes by iso-
lated atoms or pairs of close atoms, but we neglect pro-
cesses where three atoms or more would sit within the
same k& volume and where a photon would undergo
multiple scattering inside this subsystem.

Our treatment leads to an expression of the refractive
index n valid up to order 2 in po. In addition to the usual
contribution to n —1 which is linear in po, three terms ap-

pear. The first one is the standard Lorentz-Lorenz local
field correction [4]. The second one involves the quantum
corrections to the two-body correlation function p(r, r '),
giving the probability for detecting simultaneously a par-
ticle in r and another one in r'. The third term in po
contains corrections to n —1 originating &om pairs of
close atoms whose absorption frequency and linewidth
have been modified by the resonant dipole-dipole inter-
action.

By contrast to our dilute gas limit we note that the
re&active index of a dense Bose gas (po ) kL) with con-
densate has been addressed in [5] and [6]. As for the
polariton efFect in solid state physics, a &equency gap
with a width ppokl appears around the resonance
frequency, where p stands for the half width of the ex-
cited state. Inside the gap, no &equency can propagate
in the medium which should be perfectly reflecting. Res-
onant exchanges of photons between atoms can also be
included in the binary approximation [5], provided the
narrow line condition Mp (( hkL is fulfilled, where M
is the atomic mass. We work here in the opposite limit
of a broad line Mp )) hkL, which is the suitable one
for alkali atoms probed on their resonance line. In addi-
tion, as shown in [5], we remark that no noticeable gap
will appear in our treatment because of the low density
hypothesis.

We start with the atom-field Hamiltonian written in
the electric dipole approximation (length gauge) [7]:

1

II = ) ' +) ) h((u~+b(u~)~i: e )(i: e ~+ d k) hckakt, ai„
rn= —1 ski(A:M

—) D,- . E(R,) + —) ) D, . D, S(R, —R, ) .
8'p

i j&i

The quantity E is the electric field operator, which rep-
resents the electric displacement vector (up to a factor
eo) in the length gauge used in (1), and ai,„a&t are the
photon annihilation and creation operators for a photon
with wave vector k and polarization e in vacuum. The

atoms are assumed to be identical, with a "bare" reso-
nance &equency ~&, R;, P; represent the position and
momentum operators for the center of mass of the ith
atom, and D; is the electric dipole operator of the ith
atom. For simplicity we consider here an atomic transi-
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tion between a ground state g with angular momentum
Jg = 0 and an excited state with J, = 1; m denotes
the magnetic quantum number for e. We therefore re-
strict the present discussion to the bosonic case. Also
we note d the reduced dipole moment for this transition
(p = d u&/6msohc ), and kM the cutoff parameter in
reciprocal space [7]. The correction 8~~ = d kM/9vr so
to the atomic frequency u& corresponds to the dipole
self-energy, which arises when one uses the length gauge.

In order to derive the re&active index of the gas, we
have to determine how the propagation of a probe field
in a coherent state EL,(r)e ' ~i + c.c. is modified by
the presence of the dipoles. We suppose that the atoms
are moving very slowly so that Doppler shifts can be
neglected, in comparison with p. For atoms cooled at
the recoil limit, i.e. , with a rms velocity of a few recoil
velocities Ski, /M, this requires the broad line condition
Mp )) hk&~. The quantity Mp/hk&~ typically ranges be-

tween 10 and 10 for alkali-metal atoms so that our
assumption is quite reasonable in this case. A direct
consequence is a decoupling between the atomic internal
and external dynamics; we can average over the Geld and
atomic internal states, while keeping the operator char-
acter of the external atomic motion. The average of any
dipole operator (D;)F+i„tover field and atomic internal
state reaches a forced regime d;e ' ~ +H.c., where d; is
still an operator with respect to external atomic degrees
of &eedom. The corresponding average of the electric
field operator is then e (r )e ' ~ + H.c. with

e(r) = EL(r)
1 1

y —) d, b(r —R;) ~ —) [g(r —R,)] d, (2)
8'0

2

where [g(r)] is the 3 x 3 matrix

4 k q k k''y '
q k k' ') ~ 3 (4)

d; = nsoEI, (R;) + n ) [g(R; —R, )] d, . (5)

In Eq. (4) we recover the well-known electric field ra-
diated by an oscillating dipole [8,9]. This field varies
as 1/r at long distances (kl, r )) 1). At short distances
(ki, r (( 1), the 1/r term is dominant and it generates
the resonant van der Waals interaction between an ex-
cited and a ground state atom.

We now neglect counter-rotating terms [rotating wave
approximation (RWA)] and we assume a weak, nonsat-
urating probe 6eld, so that we can also neglect excited
state populations in comparison with ground state ones.
Each dipole d, is driven by the field e (R;), which is eval-
uated from (2) and which can be split into three terms:
(i) the probe field EL, (r), (ii) the field radiated by the
atoms j g i, and (iii) the field radiated by the ith atom
at its own location. To calculate this last contribution
we evaluate the liinits of g(r ) and b'(r ) when r ~ 0 us-
ing the cutoK parameter kM. A term proportional to
kM compensates for the frequency shift bu~. The re-
maining terms lead to radiative corrections to u& giving
the "true" resonance &equency u~, and to a damping
term proportional to p. We obtain the following linear
response of the dipole d;:

tains all the physics governing the propagation of the
probe wave in the gas. In a di8'erent context, it has also
been taken as a starting point in the work of Mazur and
Mandel [10] (see also [11]). In [10], the frequency of the
light field was supposed to be much smaller than the res-
onance frequency of the scatterers. One could then solve

(5) by a perturbative expansion in ag(r), but one had
to keep track at the same time of the modification of
the atomic polarizability due to the ground state —ground
state interactions. The physical problem considered in
the present paper is quite diferent. On one hand, it in-
volves resonant scattering of photons by the gas so that
we have to solve (5) at any order in ng(r), by taking
into account recurrent scattering within any given pair
of close atoms. On the other hand, the ground state—
ground state interactions, which we have left out in the
RWA, have a negligible contribution since the typical in-
teratomic distances are much larger than the range of
these interactions.

We now traiisform (5) into a hierarchy of equations
relating quantities averaged over the external quantum
states of the dipoles. We start with the three following
functions: average density p(r ), average dipole %(r ),
and average electric field 8(r ):

The coeKcient a. is the polarizability of the atom at the
probe &equency:

1

Mo 8+iP ' (6)

where b = uL, —u~ is the atom-laser detuning.
The set of equations (5), written for each atom, con-

From our results, it is possible to recover the prediction of
[10] for the refractive index up to order 2 in ps by expanding
the expression for C in (24) up to order 2 in ng, and by
replacing a in (23) by an effective polarizability n accounting
for the ground state —ground state interactions.
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p(r) = ) b(r —R;))

17(r ) = ) b'(r —R;)d,
p(r )

(9)

The first relation between these quantities is simply
obtained by averaging (2) over the external atomic state:

hierarchy of equations between more and more complex
conditional average dipoles: D(r "/r, r '), . . . . To get an
explicit expression for the re&active index, one has to
break this hierarchy at some stage.

Before doing this, we specialize Eqs. (10) and (11) to
the geometry appropriate for the derivation of the re-
6..active index n. To avoid technical problems due to
diKraction and multiple reHected waves, we assume that
the atoms fill the half space z ) 0 with a uniform density
p(r) = po. The two-body density inside the medium is
cast in the form

d(r) = K (rz)+ —f d r [g(r —'r')]gg(r')p(r') . (10) p(r, r ') = po [1 + (p(r —r ')], (14)

We now multiply (5) by b'(r —R;), sum over i, and average
over the external atomic state; we get

gg(r) = rzzoEz(r) + rz f d r'[g(r —r')]

x'D(r '/r ) p(r )

We had to introduce at this stage two other functions:
the two-body correlation function p(r, r') and the condi-
tional average dipole D(r '/r ), giving the average dipole
in r ', knowing that an atom is sitting in r:

where the pair correlation function p depends on the
bosonic nature of the atoms. We choose an incident probe
field EL, (r) varying as e e'"~', inside the medium, ne-
glecting border effects, we look for a solution for 8(r)
and 17(r) proportional to a' e'"~. The real part of the
complex number k gives the re&active index, and the
imaginary part leads to the scattering cross section. We
apply to (10) the operator b,, + k&2, the contribution of
EI. cancels out. We use

(&.+ 4)g-/ (r ) =
I 4~-/ —-~ ~ l ~(r) (»)

c) c) )
(9rdg Brp j

p(r, r ') = ) ) b(r —R;)8(r ' —R~), (12)
i jgi

gg(r'/r) =, ) ) d(r —R;)d(r' —R, )dz)p r, r'
i jpi

(»)
Continuing this procedure, we can derive an infinite

in which only the term in b /s contributes to (10), and
we get inside the medium:

(k'
poD(z) =

i 2
—1 I'so8(z) .

lkl,
(16)

We now perform a linear combination of (10) and (11)
canceling the probe field, and we eliminate the electric
field &om (16), to get

gg(z) 1 — = rzpo f dzr'[g(r —r')](gg(r'/r)[1+rp(r —r')] —gg(r')) .

Let us examine erst the simple decorrelation approx-
imation Z7(r'/r) = D(r'). In this case Eq. (17) is
straightforwardly solved, using 17(r ') = exp[ik(z'—
z)]D(r ), and it leads to the dispersion relation

, =1+~pod 1 —~po «g**(r)e ' ~( ) Il

�b~2

For y = 0, we recover the mell-known result for the re-
&active index of a dilute perfect classical gas [4]. For a
perfect Bose gas we expect (p P 0, so that (18) already
involves quantum statistical corrections, varying as pp.
Note that, at order 2 in pp, we can replace in the integral
term of (18) e '"' by e

Actually, other corrections in pp are expected when one
goes beyond the approximation 17(r '/r ) = N(r ) and we

now have to evaluate them for consistency. We derive
&om (5) the next equation in the hierarchy:

D(r/r") = nsoEL, (r) + a[g(r —r")]%(r"/r)

d r'o. g r —r' 'V r' r, r"
p(r, r")

(i9)

We break the hierarchy at this level, assuming erst that r
and r" are distant by more than 1/kL, . In this case, since
the function g(r —r ') in the integral of (19) favors points
r ' close to r, we can consider that D(r '/r, r "), average
dipole in r ' knowing that atoms are sitting in r and r ", is
approximately equal to D(r '/r ). For simplicity, we also
neglect three-body correlations [p(r, r', r")/p(r, r")
p(r, r ')/p(r )], which could contribute in the ultralow
temperature limit. Subtracting (11) &om (19), we then
obtain
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17(r/r") —n[g(r —r")]D(r"/r) = D(r) . (20)

Exchanging r and r" in (20), we get a 2x 2 system leading
to

D(r /r)=[1 g (r r )]
x(D(r") + n[g(r —r")]'D(r)) . (21)

If r and r" are close to each other, extra corrections

should be included in (20) and (21), originating from
points in the integral of (19) where r, r ', and r" lie within
the same 1/k&~ volume. Fortunately these configurations
have a negligible weight in the final result if pp &( kL, as it
can be shown more rigorously by a systematic expansion
of the electromagnetic field in powers of po/kz.

We finally inject the relation (21) in (17) and we find
that the dispersion relation (18) is changed to

k2 n2g2(r ) + nsgs(r )e
—ikl, z

, = 1+npo 1 —npo d rg (r)y(r)e '""—po d'r
k~ 1 —n2g2 r I'+ v (')1) (22)

To get more physical insight, we split the tensor g p(r )
given in (4) as g p(r) —b pb(r)/3. The b(r) function in
(22) is regularized using a cutoK in p space. Its respective
contributions to the two integrals of (22) are npop(0)/3
and —ape[i + rp(0)]/3 so that the sum does not depend

on the pair correlation function y. We are left with

k 0!pp+

where the quantity C is given by

(23)

1 ng (r)+n g (r)eC = ——npo —npo d r g (r)p(r)e '" ' —pp d r
3 n2g2 (r )

[1+~(r)] . (24)

The standard expression for the re&active index of the
gas (order 1 in po) corresponds to the approximation C =
0 in (23). Our expression (24) includes all the corrections
to k/kl, up to second order in po.

We now discuss, in the case of an ideal Bose gas, the
three terms arising in (24). The first one is a purely
classical local field correction; if taken alone, it would
lead to the well-known Lorentz-Lorenz formula [4]. Note
that it originates from the contact term —b'(r )/3 present
in the field (4) radiated by a dipole, so that our derivation
of the I orentz-Lorenz term does not rely on the excluded
volume conventionally introduced around the atoms in
the literature.

The second term in (24), which already appears in (18),
is related to a modification of the photon scattering cross
section due to the quantum statistics of the atoms. Con-
sider for simplicity the situation ~h~ )) p, which we can
treat within the Born approximation, neglecting multi-
ple scattering events. In this case, when an atom with
initial Inomentum p; scatters a photon &om k; to kf,
the cross section is enhanced if the final momentum class
p; + h(k; —ky) is already populated. After integration
over the initial momentum class p; and over the scat-
tered photon direction ky in order to get the total cross
section, one recovers the contribution to n" of the second
term in (24).

The last correction in (24) corresponds to the modifi-
cations of the re&active index induced by the resonant
van der Waals interaction. A pair of atoms separated by
a distance r with kl, r & 1 has two pairs of resonant ab-
sorption frequencies ~~ such that ~~ —~~ oc +p/(kL, r)
Also the width of the resonance can be larger or lower

than p, depending on whether the excited state has a
superradiant or subradiant character. These two effects
arise in the last term of (24); for instance for ~8~ )) p, the
zeros of the real part of the denominator 1 —n2g (r ) are
found to occur for values of the detuning b equal to the
resonant van der Waals shift. This last term of (24) can
also be recovered in a scattering theory approach. One
has to sum all diagrams in which two given atoms reso-
nantly exchange a photon; in that case, the analog of the
approximation Z7(r '/r, r ") 27(r '/r ) leading to (20)
consists in neglecting diagrams where a photon would
undergo multiple scattering within a triplet of atoms.
This type of correction is well known &om the physics
of electromagnetic wave propagation in dielectric media
[12,13]. More recently, similar corrections have been con-
sidered for the more complex problem of light diffusion
and transport in random media [14].

We now investigate the result of (23) and (24) more
explicitly. The pair correlation function reQecting the
quantum statistics of the ideal Bose gas p(r —r ') dif-
fers from 0 for ~r —r '[ smaller than a typical correlation
length A. For a weakly degenerate gas, A is on the or-
der of the de Broglie thermal wavelength h/+2vrMk~T
and &p(0) = 1. Around the Bose-Einstein condensation,
A is related to the atomic density A pp . When the
temperature is further decreased, A increases but rp(0)
decreases. At T = 0, all particles accumulate into the
ground state of the system and y =—0. As an example,
we have plotted. in Fig. 1 with a solid line the variations
with temperature of the real part n' and imaginary part
n" of the refractive index (n'+ in" = k/kL, ), for a fixed
density and a fixed detuning b. Since Doppler shifts are
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very small and have been ignored, the only temperature
dependence of n' and n" in Fig. 1 originates &om the
one in Ip. At high temperature (A ~ 0) and at low tem-
perature [Ip(r) + 0], we recover the results for classical
particles (p = 0), which is represented in Fig. 1 as a solid
horizontal line.

Also we have plotted in Fig. 1 with a dotted line the
refractive index obtained by keeping only the first two
terms in (24); the dotted curve stands for the Bose gas
and the dotted horizontal line stands for the classical gas.
The comparison to the corresponding curves in solid line
shows that the dipole-dipole corrections have only a small
contribution to the result. We can in particular use the
dotted line to estimate analytically the maximum devia-
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FIG. 1. Real part n' (a) and imaginary part n" (b) of the
complex refractive index as a function of the temperature.
The solid lines give the result including all the terms of (24)
for bosons and for classical particles (rp = 0). The dotted
lines give the result, also for bosons and classical particles,
obtained by keeping only the first two terms of (24), i.e. , by

isregarding the efFect of multiple scattering within pairs of
close atoms. The atom-laser detuning is 8 = 2p and the
atomic density is po ——kr, /16m' . The vertical dashed line
indicates the threshold for Bose-Einstein condensation at this
density.

tion of n' and n" from their classical values; it is obtained
for a temperature on the order of the condensation tem-

perature, and scales approximately as po with density.5/3

The classical nature of the optical response of a Bose
gas at T = 0 is also found in the case of an inhomogeneous
sample since the two-body distribution still factorizes in
this case: p(r, r ') = p(r )p(r '). For instance, several
authors have considered the scattering of light by a cloud
of size a )& AL, with N atoms in a Bose condensate, either
in the cw regime [15,16] or in the pulsed regime [17]. In
particular, for N )) (kL, a), they have shown that the
total cross section 0(uL, ) has a very broad component,
with a width pN/(kl, a) instead of p for one atom. In
fact, such a cooperative feature is not specific of Bose
statistics and can be obtained from a continuous classical
distribution of dipoles [18].

We have ignored here the contribution of atomic mo-
tion to the dispersion relation. As stated above, for iso-
lated atoms cooled at the recoil limit, this is valid in
the broad line limit. For a pair of atoms separated by
a distance r & k& and excited resonantly by the probe
light, we have also to check that the acceleration by the
resonant van der Waals potential +p/(kL, r) leads to
a negligible displacement of the atoms during the life-
time of the excited state. A simple classical calculation
of this displacement, following the lines of [19], shows
that this pair of atoms is still resonant with the light
after a time p if we restrict to sufhciently small de-
tunings: !h!/p ( (Mp/hkl ) / . For alkali-metal atoms,
this imposes detunings not larger than a few linewidths.
For ultralow temperatures, where atomic delocalization
is much larger than the wavelength. , a more quantitative
treatment of this radiative heating process would require
a quantum approach such as the one developed recently
in [20].

Our treatment can be extended to more complex
atomic transitions with a nonzero angular momentum Jg
in the ground state. The three components of a given d,
have to be replaced by the (2J,+ 1) x (2J~ + 1) quantities
;(m„m~) = ( Ii: e, m, )(i: g, mg! )F+I„t,with —J~ (

mg & J~ and —J & m, & J . Also the ground state ma-
trix elements G;(m~, m') = (!i:g, mg)(i: g, m'! )F+I„i
are new dynamical variables. For a weak nonsaturating
probe, two damping time constants then appear in the
evolution of the averaged atomic operators. The first one
is the optical pumping time T„,scaling as the inverse of
the probe intensity. It corresponds to the average de-
lay between two successive photon scattering events by a
given atom, and it gives the characteristic time required
for the G;(mg, m' )'s to reach a steady state. The second
time scale, p, is much shorter and it gives the time
scale for the d;(m„mg)'s to adjust to a given value of
the set (G;(mg, m' )). For a measurement of the refrac-
tive index of a gas cooled at the recoil limit, we require
that the probing time t is much smaller than T in orderp)
to minimize the heating due to the emission of Buores-
cence photons. If the detuning b is not larger than a few
linewidths, the light shifts of the various ground state
sublevels are comparable to 5/T„and we can therefore
neglect any evolution of the G, (mg, m' )'s during t. Con-
sequently, for p i

&& t &( T„aset of equations with
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the same structure as (2) and (5) is obtained, where the
d; are replaced by the d;(m„mg) and where the scalar
polarizability o. is replaced by polarization tensors de-
pending on the ground state averages G, (ms, m' ).

To summarize, we have emphasized in this paper that
the symmetrization principle manifests itself in the ra-
diated mean Geld when quantum pair correlations are
nonzero. The contribution of these quantum correlations
has been explicitly derived in the case of the index of re-
fraction of an homogeneous gas. As indicated in Fig. 1,
this should allow an observation of quantum statistical

eKects before the threshold for degeneracy is obtained.
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