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Theoretical charge-exchange Galilean invariant cross sections for the 8 ++He collision
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Galilean invariant cross sections were calculated for one-electron capture in collisions of B + with He
at velocities between 0.063 and 0.63 a.u. The collision was described within the framework of the per-
turbed stationary-state approach with the potential-energy curves and nonadiabatic couplings computed
with highly correlated configuration-interaction wave functions. A procedure was also proposed to in-
corporate Galilean invariance without the explicit calculation of translation factors and a method
developed to solve the coupling integrals. Cross-section results are in good agreement with existing ex-
perimental and theoretical data.

PACS number(s): 34.70.+e, 34.10.+x, 03.65.Sq

I. INTRODUCTION

Collision processes involving multicharged ions and
neutral atoms have been a subject of continuous research
interest [1,2]. These studies have been motivated not
only academically with theoreticians seeking a better un-
derstanding of the theories describing the collisions and
their approximations [3-5] but also by the scientific and
technological applicability associated with such processes
[6].

Reactions in interstellar medium [7—10], controlled
thermonuclear reactions [11,12), and the development of
lasers in the ultraviolet and soft-x-ray regions [13-16]are
examples of research areas where ion-atom collisions are
very important.

In this study we have focused out attention on the col-
lision of boron ions with helium atoms according to the
equation

B +(ls )+He(ls )~B +(ls nl)+He+(ls),

and for velocities in the range of 0.063—0.63 a.u. It is
well know, however, that in this range of velocities a
correction in the electronic movement due to the nuclear
motion become important since the molecular method
usually employed to treat this problem does not obey the
asymptotic condition of the collision [17], and
Schrodinger's equation is not invariant under a Galilean
transformation in this context. As a consequence, to in-
corporate this invariance, a translation factor [4] is gen-
erally included in the molecular expansions describing
such collisions.

The importance of boron in controlled thermonuclear
fusion experiments and the suitability of four-electron
systems to high-level electronic description make the
[BHe] + system ideal as a model to test solutions to the
problem of the translation noninvariance of the cross sec-
tion.

In this paper, using highly correlated electronic wave

functions of the configuration-interaction type, cross sec-
tions for one-electron capture are calculated within the
framework of the perturbed stationary-state (PSS) [5] ap-
proach. A proposal to eliminate the calculation of
translational factors as in the usual approach is also
presented. In Sec. II, a brief account of the theory under-
lying both the electronic structure calculation and the
collision cross sections are presented, and the steps lead-
ing to the elimination of the translation factors explained.
Section III contains the principal results and a discussion
of their meaning. Finally, in Sec. IV the main con-
clusions are presented.

II. METHODOLOGY

A. Electronic structure

The electronic structure was described at the
configuration-interaction (CI) level as implemented in the
MELD [18] codes, and having the Hartree-Fock
configuration as the zero-order function. Single and dou-
ble excitations relative to the Hartree-Fock configuration
were then generated and selected by second-order pertur-
bation theory using an energy threshold of 1.0X 10 a.u.
Although singly excited configurations do not contribute
to the energy, in this order they were kept, and the final
wave function restricted to 1000 terms. Electronic ener-
gies and wave functions were finally obtained as the
lowest eigenvalues and eigenvectors of the CI Hamiltoni-
an matrix for the states of 'X+ and 'Il symmetries. These
calculations have been carried out assuming C2, point-
group symmetry.

In the calculation of the molecular orbitals to be used
in the CI excitation process, the sets of Cartesian Gauss-
ians ( 1 ls, 6p)/[Ss, 4p] for boron [19] and (6s, lp)/[4s, lp]
helium [20] were employed. The boron set was still aug-
mented with three d-type polarization functions with
coefficients 1.11, 0.402, and 0.145 [19].

B. Scattering equation, radial and rotational couplings

'Present address: Instituto de Fisica "Gleb Wataghin, "
Universidade Estadual de Campinas, Caixa Postal 6165, Campi-
nas, SP, 13084-100, Brazil.

As it is well known, in the perturbative stationary-state
(PSS) [21] method the nuclear motion is described classi-
cally, whereas the electronic movement is treated in a
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quantum manner. Within this context, the wave function
can be written as

%(r, t) = g a„~(t)%'„~(r;R(t) )

X exp i—fE„z(R( t) )dt

wave function of the final state (f)[t I= lim, „a&(t) ],
subject to the initial conditions a (

—oo ) = 1 and
a/( —oo ) =O.

The diffusion amplitude can then be expressed by the
integral

f I(8,k ) =ik f db bJM(2kb sin(8/2) )[t~I(b) 6 I—],0

where a„A(t) is the time-dependent perturbation
coefficient, E„Ais the Born-Oppenheimer CI energy of
the state n A, and A is the total orbital angular momen-
tum of the state n A.

For a total wave function given by expression (1), the
PSS scattering equation reduces to

where j and f represent the initial and final states, respec-
tively; k is the linear momentum; and J~ is the cylindri-
cal Bessel function of order M =

~A~
—

A& . This integral
was solved with the aid of the EIKON program [24]
modified by Harel.

Cross sections were finally computed by the expres-
sions

X exp i —(E„.A, E„~)dt'—. ,
0

and

o.,/= f dA ' =2mfd. b bltj/(b) 5)Il' —.do /(8)
0

(7)

where u is the classical nuclear relative velocity, b is the
impact parameter, H, &

is the electronic Hamiltonian, and

Ly is the y component of the total electronic angular
momentum in the molecule reference system.

Equation (2) clearly shows that the terms I)/()R and
iL couple different Born-Oppenheimer states, and which
allow the total wave function to evolve into these states
as a function of a classical parametric time. These cou-
plings terms are known as the radial and rotational cou-
plings, respectively, and are given explicitly by the ex-
pressions

gCn

(3)

and

D. Cross sections and their origin dependence

The problem of the origin dependence of the solutions
to Eq. (2) and the associated Galilean noninvariant cross
sections were discussed by Bates and McCarroll [17] late
in the 1950s. Plane waves describing the translation of
electrons bound to a nucleus that moves relative to the
origin of the coordinate system have been introduced in
the literature as an ad hoc attempt to incorporate Galile-
an invariance and have since been known as translation
factors (TF) [17,25 —27].

As shown by Bates and McCarroll [17], the expansion
of Eq. (1) does not obey the asymptotic condition of the
collision. For a fixed origin, the dynamic couplings de-
pend on the origin of the integration, and therefore this
dependence is also transferred to the cross sections. Ex-
plicitly, this dependence can be written as

(4) ( qyCIi iqyCI )
AIR 0

where the C;"'s are the CI expansion coefficients for state
n, N 's are the orthonormal and symmetry-adapted
configuration state functions, P"& is the transition densi-
ty matrix, R is the internuclear distance, and x and z are
electronic coordinates.

In this work, the derivatives of the CI expansion
coefficients were computed by finite differentiation, and
Eq. (2) was solved using the PAMPA program [22]
modified by Errea, Mendez, and Riera [23] to include
what is known as the common electronic translation fac-
tor if so required.

C. Transition and di8'usion amplitudes and cross sections

After the solution of Eq. (2), the transition amplitude
( tj'f ) for each trajectory is computed as the scalar product
of the total wave function in the limit of t~ ~ and the

and

0'

—( qgCIi L iqyCI) R ( qyCIi P i@CI ) (9)
0

where 0 and 0' are the origins of two different electronic
coordinate systems, R00 is the separation vector between
these origins, and p and p, are the components of the
electronic linear momentum operator.

This origin dependence introduces physically unac-
ceptable situations like transitions at infinity when the
Stark effect is also present. In the usual formulation
without the TF, the radial coupling ((I)/BR ) ) is a con-
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stant and the rotational coupling ((iI. ) ) behave asymp-
totically as R, whereas decays varying as R and R
would be expected [28].

transformed to a central-field-type description by choos-
ing an origin P; defined by the relation

E. Galilean invariance without the translation factor
CX +CXJ. CX +CX~

(10)

As it is well known, Galilean invariance is initially im-
plicit in Schrodinger s equation, and its solutions are ex-
pected to preserve this property. When the adiabatic ap-
proach is used to separate the various modes of motion of
a molecular system the localization of the origin of the
electronic coordinates is critical to maintaining Galilean
invariance during the collision.

In this work we are proposing an alternative solution
to this problem which we named the central-field ap-
proach. The physical basis underlying the procedure
used in this work to avoid the explicit calculation of
translation factors is very similar to that describing the
interaction of two bodies governed by a radial potential
of a Coulombic (or gravitational) type; that is, it can be
reduced to the description of an effective particle of re-
duced charge (or mass) subjected to a central field with
the origin in the center of charge (or mass) of the system.
The choice of an origin other than that of the central field
gives rise to the appearance of noninertial forces and the
motion will consequently become more complex to de-
scribe. Different choices of origins imply different
descriptions.

The calculation of the radial coupling using the CI
methodology can ultimately be reduced to a sum of in-
tegrals of the type (ys ~B/M ~yx ), which is essentially,
in its most general case, a two-center, one-electron in-
tegral, which depends parametrically on the internuclear
distance. This two-center problem can basically be

I

where cz, and a are the exponents of the Gaussians cen-
tered on atoms A and 8, respectively, located by the vec-
tors A and B. This relation is the usual one of trans-
forming the product of two Gaussians on different
centers to a single Gaussian on another intermediate
center [29]. The center defined in this way can be seen as
having an efFective charge which depends both on the
electronic atomic distribution and on the nuclei separa-
tion.

In this work, every integral contributing to a dynami-
cal coupling is calculated as a central-field problem. It is
important to point out, however, that the choice of an
origin is made a posteriori; that is, first the coupling
operator is applied to the Gaussian basis and then the in-
tegral is carried out analytically, choosing as origin that
of the central field defined by Eq. (10).

This way of approaching the calculation of the dynam-
ic couplings renders easy the interpretation of the prob-
lems that usually arise in the limit of separated atoms.
For a fixed origin, if both functions are centered on the
same atom, the parametric dependence on R still exists,
since that origin is now at infinity and is not coincident
with the center of force, the only exception being when
R =0.

Using this approach, the matrix elements between un-
normalized Cartesian Gaussians (p) defining the radial
and rotational couplings can then be written as [30]

& q ~ )a/a& (yx ) =exp .
2

exp O'Ic R %+1 L+1
2 2

mg mg+1 mg
X ' g g (B R) X(K R"+')

b =0 k=0

k
(z~R a~R

X G
M b k (N+L+M —b —k+2)/2—X6 a [f„,d]

ax(M b —k)—
and

(q~ ~iE, ~yx ) =exp
.

2—0'~uz R N L+1
2 2

~& m&+& mz m++1
X ' g g (B-R) (K R)"X

b=0 k =0

b k —(N+L +M —b —k+3)/2

2(mx. + 1)

M —b —kX G
2

nx. (M b——k)(mx+1 —k—)
(M b k)kNax— —

N(m++ 1 —k)(mx —k )—

2R M —b —@+1+,&z
6 [f„,](m++1 k){axN anx )— — (12)
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In the same manner, the rotational couplings (iL~) in-

crease as R in GC calculations and decay as R in the
CF (or GC+TF) approach.

Total, partial, and relative cross section results for
one-electron capture using the semiclassical approach are
collected in Table I. The letters A and 8 label the CF
calculations with and without the inclusion of the state
1 'II, respectively. The values represented by the letter C

are those in the GC without the TF, and those labeled by
the letters D and E include the TF until first and second
orders in the velocity, respectively. Note that the results
obtained with the CF approach ( A ) proposed in this
study are very similar to those calculated with the usual
TF method (D and E) but differ significantly from those
computed without the TF ( C).

The results for the total cross section calculated in this

TABLE I. Total, differential, and relative cross sections (10 ' cm2) for the system [BHe]'
several relative velocities (in 10 cm/s).

for

Veloc. 0 X(2s) o.X(3s) O.2, /Cr2~

1.383
1.575
1.947
3.085
4.375
6.191
9.779

13.830

2.827
3.460
4.657
7.741
8.789
9.024
7.394
5.744

1.981
2.298
1.854
1.217
2.070
1.199
1.278
1.728

A. CF with
4.235
4.063
4.048
3.473
4.072
4.569
3.461
3.232

the inclusion of
0.016
0.020
0.039
0.038
0.025
0.076
0.224
0.536

the 'H state
9.060
9.842

10.600
12.470
14.960
14.870
12.360
11.240

6.216
6.361
5.902
4.690
6.142
5.768
4.739
4.960

0.455
0.544
0.789
1.651
1.431
1 ~ 565
1 ~ 560
1.158

1.383
1.575
1.947
3.085
4.375
6.191
9.779

13.830

3.116
3.901
5.016
8.481

10.120
9.719
7.850
6.708

4.786
4.504
4.195
2.806
2.691
4.123
4.727
3.626

B. CF without the inclusion
0.016
0.021
0.029
0.027
0.056
0.042
0.086
0.419

of the 'H state
7.917
8.428
9.239

11.310
12.870
13.880
12.670
10.760

0.651
0.866
1 ~ 196
3.023
3.761
2.357
1.661
1.850

1.383
1.575
1.947
3.085
4.375
6.191
9.779

13.830

2.876
3.513
4.682
7.898
9.133

10.020
8.110
7.816

1.964
2.191
1.699
0.083
1.358
0.943
2.313
1.620

C.
4.001
3.786
3.664
2.947
2.879
2.718
1.522
2.461

Geometric
0.006
0.012
0.025
0.017
0.078
0.077
0.162
0.431

center (GC)
8.846
9.502

10.070
11.690
13.450
13.760
12.110
12.330

5.965
5.977
5 ~ 363
3.773
4.237
3.661
3.835
4.081

0.482
0.598
0.873
2.093
2.156
2.737
2.115
1.915

1.383
1.575
1.947
3.085
4.375
6.191
9.779

13.830

2.776
3.407
4.S98
7.683
8.791
9.120
7.418
5.648

D.
2.062
2.334
1.803
1.185
2.100
1.318
1.321
1.989

Geometric center
4.125
3.936
3.893
3.384
4.055
4.681
3.579
3.556

(GC) with
0.008
0.013
0.023
0.018
0.049
0.049
0.1S6
0.385

TF (first order in
8.972
9.690

10.320.
12.270
14.990
15.170
12.470
11.580

velocity)
6.187
6.270
5.696
4.569
6.155
5.999
4.900
5.545

0.449
0.543
0.807
1.682
1.428
1.520
1.514
1.019

1.383
1.575
1.947
3.085
4.375
6.191
9.779

13.830

2.780
3.415
4.611
7.729
8.908
9.241
7.307
5.131

E. Geometric center (GC)
2.052 4.111
2.319 3.917
1.785 3.865
1.148 3.327
1.939 3.988
1.145 4.618
1.413 3.666
2.143 3.986

with TF (first
0.008
0.013
0.023
0.018
0.048
0.049
0.193
0.418

and second
8.951
9.663

10.280
12.220
14.880
15.050
12.580
11.680

orders in velocity).
6.163 0.451
6.236 0.548
5.650 0.816
4.475 1.727
5.927 1 ~ 503
5.763 1.604
5.079 1.439
6.129 0.837
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FIG. 3. Radial coupling as a function of the internuclear dis-
tance. (a) Origin at the central field. (b) Origin at the geometric
center, without translation factors. , 1 'X+ —3 'X+;
1 'X+ —4'X+; ———,2'X+ —4'X+; —-—-, 3 'X+ —4'X+.

work are compared in Fig. 5 with the experimental stud-
ies of Zwally and Cable [31], Crandall [32], Gardner
et al. [33], and Iwai et al. [34], and with the theoretical
results of Shipsey, Browne, and Olson [35], and of Cran-
dall [32] for the remote capture of two electrons. Note in
this figure the similar velocity dependence between these
sets of data, especially the experimental ones. The total
cross section calculated in this work and the theoretical
results of Shipsey, Browne, and Olson [35] also have simi-
lar velocity dependence in the range of velocities studied,
but while our values show a closer agreement with the
more recent experimental study of Iwai et al. [34], those
of Shipsey, Browne, and Olson [35] are concordant with
the older experimental results of Zwally and Cable [31].
Recent theoretical results by Hansen, Dubois, and Niel-
sen [36] (not included in Fig. 5) seem to lie between the
data of Iwai et aI. and of Zwally and Cable. As to the to-
tal cross section for the remote capture of two electrons
of Crandall [32], one can say that the capture channel is
represented by the state 7 'X+, associated with the
configuration IB'+(ls 2s )'So+He +], and is 29.25 eV
higher in energy than the ground state. As discussed by

-1.4
2.0 4.0 6.0

R (a.u. )

I

8.0
I

10.0 12.0

FIG. 4. Rotational coupling as a function of the internuclear
distance. (a) Origin at the central field. (b) Origin at the
geometric center, without translation factors.
1 'X+ —1 'H' ~ ~ ~ -, 2 'X+ —1 'H' ———3 'X+ —1 'll; —- —-,
4 'r+ —1 'II.

Crand all, the capture of two electrons must occur
sequentially with the first electron captured at -7.0ao
and the second at -2.0ao.

In Fig. 6 are displayed the theoretical data of Zwally
and Cable [31] for the total and partial cross sections us-
ing the I.andau-Zener model, the theoretical results of
Shipsey, Browne, and Olson [35] using the semiclassical
approximation, data based on the central-field approach
proposed in this work, and calculations using the
geometric center without the translation factor. It is in-
teresting to note that the calculation of the total cross
section with the origin at the geometric center and
without the inclusion of the translation factor is very
similar to that reported by Shipsey, Browne, and Olson,
despite the oscillation of the 2p, cross section (o.

2~ ). This
fact seems to be an indication that the problem of the
non-Galilean invariance is the reason for the lower values
of Shipsey, Browne, and Olson compared to those of our
study. In fact, the e6'ect of the translation motion of the
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electrons in the computation of the coupling matrix ele-
ments was neglected in the study of Shipsey, Browne, and
Olson.

Although the importance of electron correlation has
recently been stressed by Hansen, Dubois, and Nielsen
[36] in a study where a comparison between one- and
two-electron models was made, we would like, however,
also to call attention to the importance of the core corre-
lation in the description of the entrance channel, since
correlating four electrons increases the interaction be-
tween the entrance channel with the other channels and
therefore increases the cross section. It is also worth
pointing out that the results of Hansen, Dubois, and
Nielsen for the cross sections included the electronic
translational factor and, as pointed out above, they seem
to lie between those of Zwally and Cable [31] and the
more recent determination of Iwai et al. [34], with which
our calculation shows a closer agreement. Unfortunately,
with the exception of the study by Iwai et al. , the unavai-
lability of explicit numerical values of the cross sections
in the published works so far does not permit a more
direct comparison to be made.

Also, as to a possible justification for the oscillatory
behavior of cr2, one can point out that the first oscilla-
tion (U —1.5X10 cm/s) is due to the first pseudocross-
ing, for in this energy region there is practically a transfer
to a state whose asymptotic limit is described by the
configuration [B +(1s 2p')+He+(1s)]. As o2& de-
creases, o.z, increases, for the greater the velocity the
more population is transferred to the state 1 'X+. Also,
the greater the velocity, the more effective the rotational
coupling, with o.

2 showing another oscillation at
-4.4X10 cm/s.

Experimental and theoretical values for the relative
cross section [I(2s)/I(2p) or oz, /cr2&] are shown in Fig.
7. As discussed by Matsumoto et al. [37], by a direct

comparison with the theoretical results of Ship sey,
Browne, and Olson [35], the experimental results might
be showing a loss of intensity of the products in the 2p
sate. Since, as shown in Fig. 6, the results of Shipsey,
Browne, and Olson seem to underestimate the partial
cross section o.z, it is expected that the relative cross sec-
tion should still become even lower. In fact, the results of
this work displayed in Fig. 7 support an even larger loss
in intensity than that originally discussed by Matsumoto
et a/. The same behavior was also displayed more recent-
ly in the calculation of Hansen, Dubois, and Neilsen of
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~ ~

~ W
~ ~

0
0

I I

1 2 3
+ Energy (keg)

FIG. 7. Relative partial cross sections (o.2, /cr») for the col-
lision B' +He. OOO, Ref. [37]; ———,Ref. [35]; —"—", this
work (central field) without the state 'II; —-—-, this work
(geometric center) without TF;,this work (central field).

~ f
~ /
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FIG. 6. Partial and total cross sections for the collision
B ++He. ———.(LZ1, partial cross section o.2„'LZ2, par-
tial cross section crz~,

' LZT, total cross section cr, ), Ref. [31];———(Sl,oz„S2,crz~, ST,o, ), Ref. [35]; (CC, central
field; CG, geometric center without TF; the extensions 1, 2, and
t refer to cr2„o.», and o., ), this work.
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the relative cross section, with their best values also un-
derestimating the experimental results.

We also note that the probability of electron capture as
a function of the impact parameter presented by Hansen,
Dubois, and Neilson is very similar to our results [30],
with a disagreement only for b (2 a.u. For v =0.2 a.u.
and b,„=4a.u. , the total cross section (o., =nb,.„)is
estimated to be equal to 50 a.u. (=1.4X10 ' cm ).

Finally, in Fig. 8 we have collected the reduced

differential cross sections (RDCS, in cm ) (Osin8do /dQ)
for one-electron capture as a function of the reduced an-
gle r (r=EH, in keV deg) calculated using the eikonal ap-
proximation as implemented in the EIKON program [23].
Clearly, the scattering is more favorable at small angles,
and a maximum total cross section should occur for ve-
locities in the range 0.20—0.28 a.u. It can also be seen
that the maxima in Fig. 8 remain invariably in the same
region of ~, independently of the velocity considered.
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This fact shows that the angle O,„corresponding to the
maximum is approximately proportional to the reciprocal
of the collision energy. These points imply that the sys-
tem obeys, approximately, the stationary phase approxi-
mation, and that the oscillations in the RDCS are cer-
tainly Stueckelberg oscillations; they have been measured
by Roncin et al. [38]. Concerning the structure of the
RDCS, further studies are needed for its correct interpre-
tation.

IV. CONCLUSION

A proposal has been made which avoids the introduc-
tion of translation factors in an ad hoc manner to account
for the Galilean noninvariance of the cross section. The
method proposed here is aimed at giving results
equivalent to that which uses translation factors, but
dispenses with their use. In addition, it elucidates the
Galilean noninvariance problem, about which confusing
interpretations have been found in the literature. A mod-
el calculation for the [BHe] + system shows very good
agreement with the traditional approach.

Concerning the collision 8 ++He, its entrance chan-
nel can be represented by the state 3 'X+; around 7.5ao,
the first coupling s appear with the radial coupling
transferring population from the initial state to the 2 'X+
state and the rotational coupling connecting the 3 'X+
and 1 'H states. For R (7.5ao there is always a rotation-

al coupling with the 3 'X+ and 2'X+ states. Part of the
population of the 2 'X state is also transferred to the
1 'X+ state by radial coupling for R -4.5ao, and delocal-
ized couplings are responsible for exchange population
among all states, including the 4 'X+ state, for R (4.5ao.

As to the partial cross sections, that of 2p reaches its
maximum for U —1.6X10 cm/s, since the radial cou-
pling at R -7.5ao is predominant for this velocity. An
increase in the 2s partial cross section is also observed for
increasing velocities until -6.2X10 cm/s, since the ra-
dial coupling is more effective at R -4.5ao. A second
maximum (U -4.4 X 10 cm/s) is also presented by the 2p
partial cross section as a result of the importance of the
rotational coupling at high velocities. At very high ener-
gies, the diabaticity of the system causes a decrease in the
total cross section at higher velocities.
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