
PHYSICAL REVIEW A VOLUME 51, NUMBER 5 MAY 1995

Energy sharing and angular distribution in the double photoionixation of helium
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The double photoionization of an atom is considered in the near-threshold domain. The angular
correlation pattern is analyzed for an arbitrary sharing of the excess energy by the electrons. The
motion over the hyperspherical radius R is treated semiclassically which casts the problem in a nonsta-
tionary form. For motion over the hyperspherical angle a the set of classical trajectories is considered.
They converge to the same (R —+ ao ) limit which corresponds to a chosen energy-sharing ratio. For each
a(R) trajectory the quantum wave packet (over the correlation angle 8») is propagated from the inner
zone to the region of free-electron motion. At the border of the reaction zone a realistic boundary con-
dition is imposed. The cross sections exhibit a weak dependence on the energy-sharing ratio.

PACS number(s): 32.80.Fb, 34.80.0p, 34.80.Kw

The description of strong electron-electron correlations
is one of the most fundamental problems in atomic phys-
ics. The correlations can be observed most directly in the
angular and energy-sharing distributions for three-body
breakup processes, such as ionization by electron impact
(e, 2e) and double photoionization (y, 2e). The latter pro-
cess is particularly convenient for the detailed analysis
since the selection rules specify the quantum numbers of
the final-state two-electron continuum. The recent break-
through in experiments on angular distributions in the
(y, 2e) process [1—8] provides a challenge for theory,
where two major approaches are now underway.

The key problem for the theory is the construction of
the correlated final-state wave function for the two-
electron continuum. Maulbetsch and Briggs [9] employ
the method commonly referred to as Brauner-Briggs-
Klar (BBK) [10], i.e., they use the Garibotti-Miraglia [11]
wave function, which accounts on equal footing for all
three two-particle Coulomb interactions but in an empiri-
cal way. This appr'oach was applied recently in a broad
range of energies for both (e, 2e) and (y, 2e) processes.

The alternative theory developed by the authors
[12—14] stems from ideas due to Wannier [15]. In its ex-
isting form it has been limited to the analysis of the angu-
lar distributions in the equal-energy-sharing case. As a
manifestation of this fact, the calculations are confined to
the so-called Wannier ridge, i.e., the region of
configuration space where the electrons recede, being at
equal distances from the atomic core (r& =rz). General-
ly, the %'annier mechanism is operative in the near-
threshold domain. However, in the case when the elec-
trons share equally the energy excess E above the thresh-
old, the extended Wannier-ridge theory reproduces well
the experimental data even for E as high as 20 eV [14].

The object of the present paper is to put forward a
broader scheme which allows us to calculate the angular
distribution for the arbitrary sharing of the excess energy
E between the electrons. Double-photoionization experi-
ments of this type are known to be underway. The same
approach can be extended to the calculation of the distri-

bution differential in both variables. Previously, only the
energy-sharing distributions integrated over the angles
were calculated exclusively within the classical trajectory
approach (see, e.g. , the review by Read [16]).

In what follows collective coordinates are employed:
the hyperradius R =(r&+rz)'~, the hyperangle
a=tan '(r& Ir2), the angle 0&2 between the electron vec-
tors r&, r2, and the set of Euler angles 0= [ctE,P, y]. For
the sake of brevity we consider here only the I"state of
the two-electron continuum which is populated by the di-
pole one-photon transition from the initial (ground) S'
state of the atom. In this case the wave function is
represented exactly [13,17,18] as

V,M(R, a, 6,2, 0)=R ~ (sin2a)

X [/,+,(R,a, 0,2)D'+M, (Q)

where the combinations of the signer functions
D~M. (Q, ) are employed [17]:

D'+ (0)=2 ' [D (0)—D (0)]
(2)

The components Ptt and P» obey the coupled equa-
tions which are the particular case of the general system
of equations presented by Bhatia and Temkin [[17],Eqs.
(70)] and Nikitin and Ostrovsky [[18],Eqs. (2.9)]. The
distinction appears exclusively due to the fact that we
make an additional transformation to the hyperspherical
coordinates R,a [that is expressed by the common factor
before the brackets in the expression (1) which is related
to the Jacobian of the transformation]. The explicit form
of the exact equations in the hyperspherical representa-
tion is
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Equations (7) and (8) can be considered as a generaliza-
tion of our extended Wannier-ridge model [13,14], which
now is not confined to the Wannier ridge a=4m. It
should be stressed that the present development does not
presume any model assumptions but results directly from
the exact two-electron Schrodinger equation with the sin-
gle approximation of the semiclassical motion over R.

C(a, O,z) = —Z/cosa —Z/sina

+(1—sin2a cosO, z)

Our first approximation is the semiclassical treatment
of the motion along the coordinate R. In this case the
Schrodinger equation for the two-electron system may be
approximately transformed to the nonstationary form.
We introduce the "mock" time ~ by the relations

R Zo—'p — =E Z =2 (Z ——')
R ~ & R R ~ 0

Pz

and new functions
r

411 411[BR(R)] ep ' J PR(R

Here Z is the charge of the nucleus; for the details, see
Refs. [12,13]. Excluding also the first-order derivatives
over 0&2 by the transition to the functions

X» =—p»(sinO, z)', one obtains for P' states the set of
two "time"-dependent coupled Schrodinger equations

The proper solution of Eqs. (7) is selected [12,13] by
imposing the model initial condition at some time ~=~0

Xll(a 812 ro) g 11(a 812) (9)

II-'
H = +[C(a,n)+Z(1],

2R r
C(a, m) = —Z/sina —Z/cosa+(1+sin2a)

(10)

which does not depend on 0&2, but incorporates the most
significant part of the interaction over the coordinate a.
Consider the classical trajectory a(r) governed by the
Hamiltonian (11):

aa.
II =—

aII. '
aa.
Ba

(12)

with II being the momentum conjugate to the coordi-
nate a in terms of the Hamiltonian H . We need the par-
ticular trajectory specified by the initial and final values
of the coordinate: a(r=ro)=ao, a(r= T) =al (in the nu-
merical calculations T should correspond to su%ciently
large R). Such a trajectory is the solution of the canoni-

The particular form of the functions g» (a, Olz) is dis-
cussed below. An alternative ab initio approach in terms
of the wave source [14] can also be realized within the
present scheme.

Thus the electron-correlation problem is reduced to the
propagation of the two-dimensional (a, Olz) two-
component (X»,X11) wave packet governed by the time-
dependent Hamiltonian. Generally, the numerical solu-
tion for a two-dimensional problem of this type is accessi-
ble by modern computing facilities. The application of
the fast-Fourier-transform technique is particularly
effective for such purposes [19,20]. However, in the
present particular case the situation is complicated by the
attractive Coulomb singularities in the "eff'ective charge"
C(a, Olz). Indeed, the exact solution of Eqs. (7)—(9} not
only describes the double-ionization process but also in-
corporates single ionization with the population of any
Rydberg state of the residual singly charged ion. Clearly,
the solution of this broad problem implies serious extra
e6'orts of a character beyond the scope of the present pa-
per.

These difticulties are avoided by an additional approxi-
mation which is the key idea of the present study. It con-
cerns the evolution over the hyperangle a and combines
semiclassical, eikonal, and adiabatic elements. There is
some analogy with studies of electron correlations in dou-

bly excited states [21] which tentatively suggested the fol-

lowing hierarchy: the hyperradius R appears as the
slowest variable, the next is the hyperangle a, and the
other variables are considered as fast. In a very broad
sense the present scheme could be considered as an ela-
boration of similar ideas for the two-electron continuum
states. Note, however, that this is only a qualitative con-
catenation. The theoretical framework is substantially
diferent from the schemes employed previously.

Bearing in mind that the Coulomb repulsion favors
electron ejection in opposite directions (81&=m), we in-
troduce an auxiliary Hamiltonian H,
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cal two-point problem, the full (extended) notation being
a(r )—a(a, , T;ao, ro; r ).

The semiclassical propagator for the Hamiltonian H
is expressed as a sum of the contributions related to vari-
ous trajectories a (a, , T;ao, ro;r) (enumerated by the in-
dex j) which start from the point ao and terminate at a, :

5a (r=ro)=0, 5a~(r=ro)=1 . (16)

monic oscillator with a time-dependent frequency where
the Green function is known, due to Husimi [23). Fol-
lowing this analogy in detail, one obtains
DJ=[ml5.aI{T)]', where the solution of Eqs. (15) is
specified by the initial conditions

K(a„T;ao, ro)

=g D (a &,
.T;ao, ro) exp[ iSJ (a &, T;ao, wo) ] .

J

Here S is the action calculated along the trajectory:

(13)

z. BII
D (a&, T;ao, rc)=exp

~o Blx 2R r
(17)

We cite also an alternative expression for D~ (the integra-
tion is performed along the jth trajectory):

(~), &)

SJ(a, T;ao, ro)= f (II ga —M dr) .
(ao vo) ~ a

This formula is related to the well-known Feynman-
trajectory representation of the quantum mechanics. A
similar approach was employed, e.g., by Gutzwiller [22],
but for time-independent Hamiltonians. The Maslov in-
dices are not important in the present study; hence they
are not written down explicitly (one can imply that they
are incorporated in S ). The integral in Eq. (14) is taken
along the jth two-point trajectory.

The preexponential factor D (a, T;.ao, ro) ensures con-
servation of the Aux in the vicinity of the jth trajectory.
In order to define it, consider a small deviation
[5a (r), 5IIJ(r)I from the two-point trajectory aJ(r).
The deviation is governed by the linearized equations of
motion

(15)

The linearized problem is equivalent to that of the har-

Xexp[iS (ai T'ao ro)]

Xy), (8)2, [a (r)I, ~) . (18)

The symbol IaJ(t)] in Eq. (18) indicates that y&& is the
functional of the two-point a trajectory aJ(a, T;ao 1 p'r)
which is unique for both wave-function components.
Namely, the functions y»(8, 2, {aJ(r)J,r) obey a system
of equations analogous to (7), but with the substitution
a = aJ(7)and fax. = JVLx, where

The two-point trajectories aJ(a&, T;ao vo g) serve as a
base in our construction of the approximate solution of
the full two-dimensional (a, 8&2) propagation problem.
Namely, each trajectory generates the dependence a (r)
which is used to reduce the two-dimensional propagation
to the one-dimensional propagation over the coordinate
0,2. In this approximation the wave-function com-
ponents are expressed as

y*„(8,~, a, ,R (T))=g f daoD (u, , Ta o~ 0)

&Lx (r) = [1—sin2aJ(r)cos8&2]
' —[1+sin2a& (~)]

2 5 2[L(L+1)—E ]—1

R (r)sill 2o!,{v) 5812 4slI1 812

K I
4 2

(19)

The summation over j in the expressions (13) or (18)
refiects the existence of the (infinite) set of two-point tra-
jectories rebounding from the edges r& =0 or (and) r2=0
of the ( r „r2 ) quadrant. The existence of such trajec-
tories is closely related to the unstable double-Rydberg
resonances below the double-escape threshold [24] and to
the population of the Rydberg series above the threshold
[see the discussion below the formula (9)]. However, it is
expected that for double-escape processes the principal
contribution is given by %'annier-type trajectories which
are free of the rebounding peculiarities. Only one trajec-
tory of this type exists for each (ao, a, ) that lifts the sum-
mation over j in (18) (Fig. 1). Note that high instability
[25] of the classical Wannier trajectory (arising from the
triple-collision point) is irrelevant here since only the tra-
jectories outgoing from the region R &Ro—=R(ro) con-
tribute.

For the final one-electron energies E&,Ez the Anal

I

(R ~&x&) value of the hyperangle is expressed via the
energy-sharing ratio a&=tan 'QE&/E2. For fixed
E, iE2 the angular correlation pattern contains the con-
tributions from the trajectories starting from various ao
and terminating at the same a&. Figure 1 shows that
such trajectories merge quite rapidly. %ith good pre-
cision one can assume that starting from R =R„-SOao a
universal trajectory appears independent of the initial
condition ao. Hence the Inultitrajectory scheme can be
reduced to the single-trajectory one for R & R„, the latter
being much simpler. This observation is extremely im-
portant for the numerical calculations which are quite
time consuming when wave-packet propagation is con-
cerned.

In the case o equal energy sharing (E, E2 ,'E) the- ——
universal trajectory is trivial: a(~)—:—,'m. . Here the single-
(a= —,n ) trajectory approximation coincides with the ex-
tended %'annier-ridge Inodel developed by the authors
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[13,14].
The functions pi i(8i2, [ a( )r],r) should satisfy the ini-

tial (in terms of the "time" r) or boundary (in te ms of R )
condition

Xll(812 [aj(r)] rp) g ii(812 ap) (20)

Below we carry out the concrete calculations for the dou-
ble photoionization of the helium atom. In this case the
initial conditions are specified as the product of the
ground-state helium wave function fp and the transition
operator in the dipole length form —z, +zz
=r&cosO&+r2cos02. For definiteness we assume here the
linear polarization of the light wave [i.e., M=O in Eq.
(1)]. Huetz et al. [8] have shown that this is sufficient to
describe the experimental data obtained by these authors
for E& =E2. Following the scheme outlined by the au-
thors [13]and accounting for the transformation between
the conventional and hyperspherical representations one
obtains

g ii(8i2 ap) cos( 8i2)g+

gii(8i2 ap) sin( 812)g-

g y =N (sln8 i2 ) (cosap+slnap)

XR p sin(2ap)leap(Rp ap 8i2) .

(21)

(22)

The value of the common normalization constant X is
unessential since below we calculate only the relative an-
gular distributions for various energy-sharing ratios
Ei/E2. Our experience [14) shows that the initial-state
correlations in the He atom are of minor importance.
Therefore in the first application of the theory we take
the simplest uncorrelated wave function

gp( a, R ) =exp [ —2«' (cosa+ sina )R ] .

The boundary condition should be imposed on the border
of the Wannier [15] reaction zone R =Rp which is the
empirical parameter of the theory. (Note that this pa-

0 I . . I . . I I I I I I Il. , I . . I I . I I I li . . I . , I I I I I I I I, , I . , I I I I I 1l

100 101 10' 103 104

R (a. u. )

FIG. 1. The "classical trajectories" a(R), exposing variation
of the hyperangle a with the hyperradius R as the electrons re-
cede from the charged core (Z=2). The trajectories have vari-
ous initial values ao but the same R ~~ asymptote
a&=tan '2, which corresponds to the energy-sharing ratio
E&.E~=4:1. The excess energy is E&+E2 =10 eV. Note that

rameter does not appear in the source formulation of the
theory [14], where the nuinerical calculations are more
time consuming and will be carried out in future. ) Below,
the value of R0 is chosen to provide a maximum for

g,+, (8i2, ~ m ) considered as a function of this parameter:

27

The second term at the right-hand side of Eq. (7) diff'ers

in sign for y+ and g . As a result, the e6'ective centrifu-
gal repulsion inhibits penetration of the vicinity of the
straight-line configuration 0&2=~ for the component y».+

For the function y&& this e6'ect is absent. More exactly,
near the straight-line configuration one has pii-sin8i2,
Pii-const. This implies that the value of the triple-
diff'erential cross section (TDCS) for 8,2

=m. directly
reflects the weight of the ( —) coinponent in the wave
function (1).

In the boundary conditions (21) and (22) the functions
g»(a) and g»(a) are, respectively, symmetric and an-

tisymmetric under the reAection at the midpoint:
= —,'m —a. This property is retained approximately for

the function y*„(8i2, [a (r) ],r) for all R. For equal ener-

gy sharing (at =—,'m ), it holds exactly and leads to the ex-

act cancellation of the contributions to y»(aI, R ~ m )

which come from the segments 0 & a0 & 4 m and
—m (ap & m. (in particular, this implies zero TDCS for

8i2=m). As a& deviates from ~in the exact cancellation
vanishes. However, the numerical calculations show that
the contribution of g» to the TDCS remains very small.
In this respect, the important circumstance is that the ac-
tions S gained on the different trajectories (see Fig. 1) are
also almost symmetric under the reAection n
and do not vary much.

In the practical calculations an additional
simplification was introduced: the quadratic approxima-
tion for the potential (11) in the vicinity of the saddle

point a =—,'m. The partial cross sections

*(8„)=I@(8„,, R-
were calculated for various excess energies E and the
sharing ratios characterized by n&. Figure 2 shows the
results for the o+(8i2) cross sections. Although the cross
sections are given in relative units, their ratios for
difFerent E and o,& are significant. The cross sections
cr (8i2) at the maximum (8,2=m ) are about 30 times less
than their (+) counterparts. Hence the related contribu-
tions to the observed TDCS's are far beyond the accuracy
of the current experiments. Therefore we do not present
them graphically.

The observed TDSC's are expressed as the squared
modulus of the coherent sum of P» amplitudes. The con-
crete coeKcients generally are functions of 0&z and de-
pend on the experimental geometry. At present there are
no published data for E,AE2 although the experiments
are underway. The prominent qualitative feature of our
results is the weak dependence of the cross-section shape
on the energy-sharing ratio. The TDCS remains negligi-
bly small at 0&2=~ even for quite high excess energies.
These conclusions could be verified directly in the forth-
coming experiments. The value of the TDCS at 0&z=m
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FIG. 2. The partial cross sections 0.+(0&2) for the double
photoionization of the helium atom at various values of the ex-
cess energy E=E&+E2 indicated on the figure. The solid
curves are for the energy-sharing ratio E].Ez=1:4 and the
dashed curves are for E&.E2 =1:1.

could be enhanced due to the contribution of the re-
bounding trajectories. This contribution could be expect-
ed to increase with E. Part of the trajectories could be in-
cluded in future calculations within the present scheme.

%e develop the scheme of calculations based on the
hierarchy of three essential coordinates R, a, and 8,2.
The hyperradius E. is reduced to the effective time; the

hyperangle a is treated semiclassically; due to these
simpliftcations the quantum (wave-packet) treatment of
0,2 becomes numerically tractable. The present scheme
can be compared with that used by Bottcher [26], which
also represents a combination of semiclassical and quan-
turn elements. The latter calculations were restricted to a
very few trajectories and eventually used the semiclassical
approximation for the OIz motion.

The important question is to what extent the interac-
tion of 0&2 and a motion is taken into account within the
present scheme. In fact, the interaction is incorporated
partially by using the accurate phase accommodated by
the 8&2 wave packets for the diFerent trajectories. The
situation is analogous to that in the eikonal approxima-
tion in scattering theory, where the straight-line classical
trajectories are considered, but the phase for each trajec-
tory depends on the impact parameter. This allows one
to calculate the difFerential cross section, thus efFectively
lifting the initial approximation of the straight-1ine
motion.
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