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Dispersion forces between molecules with one or both molecules excited
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Dispersion energies between molecules involving one in an electronically excited state are calculated
using fourth-order perturbation theory within the framework of the multipolar form of quantum electro-
dynamics. There are signi6cant difFerences between the energies for these cases and those where both
molecules are in their ground states. The calculations are performed within the electric-dipole approxi-
mation for the interaction of the molecules with the electromagnetic field. The energies found are valid
for all separations beyond the electronic overlap region. The results of previous investigations are shown
to be incomplete and the origin of the incompleteness is traced to the neglect of certain real-photon con-
tributions. The energies obtained in this paper are in agreement with our earlier calculations based on a
form of response theory. They are made up of two types: one resulting from virtual-photon exchange
and the other from real photons. The virtual-photon term has the same structure as the Casimir-Polder
potential for ground-state molecules. The real-photon term is a polynomial in the inverse intermolecular
separation R, in contrast to the modulated contributions in the previous incomplete investigations.
The asymptotic forms for the total energy are discussed. The far-zone behavior is dominated by the
real-photon term and shows an R dependence. The near-zone behavior shows an 8 dependence,
arising in the multipolar formalism from both virtual- and real-photon exchange.

PACS number(s): 34.20.Cf, 33.80.Ps, 12.20.—m

I. INTRODUCTION AND THEORY

The dispersion interaction between two nonpolar mole-
cules separated by a distance R beyond electron overlap
has been studied extensively when both molecules are in
their ground states. In the electric-dipole approximation
the interaction energy shows an R dependence for R
smaller than the wavelengths of molecular electronic
transitions, and R for much larger distances. For a
pair of randomly oriented molecules A and B, the former
is given by the well-known London formula [1]

23''c a( A)a(8)
Casimir 4 R

(1.2)

The full interaction energy for which (1.1) and (1.2) are
the asymptotic limits was obtained by Casimir and Polder
[3] using quantum electrodynamics. It may be expressed
as an integral over an imaginary wave number u, namely,

where p '(A) and p '(8) are the transition dipole mo-
ments, and E,0 and E,0 are the transition energies for the
transitions r= 0 and s: O. The interaction energy at long
range can be expressed in terms of the static polarizabili-
ties of the molecules. It is [2]
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where

k„,lp"'I'
a(icu) =

(k„o+u )
(1.4)

is the polarizability at the imaginary frequency cu. An alternative expression for V(R) in terms of the combinations of
sine and cosine integral functions si(x) and ci(x) [4]

f (x ) =ci(x)sinx —si(x )cosx,

g (x)= —ci(x)cosx —si(x)sinx,
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where R has been introduced to separate differentiations. After differentiating and putting R equal to R, we obtain
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When one or both molecules are excited, the interac-
tion is significantly different from the above. One impor-
tant difference is that the force between the molecules can
be either attractive or repulsive in contrast to the force
between ground-state molecules which is always attrac-
tive. This is easily seen in the small-R limit from the for-
mula analogous to (1.1) which for the excited state lm )
of 2 reads

vestigations I5 —7] are incoinplete and the correct results
obtained here using perturbation theory in quantum elec-
trodynamics agree with our earlier calculations I8,9] us-
ing a form of response theory.

The starting point for these calculations is the multipo-
lar Hamiltonian (1.9) for the interaction of the molecules
with the electromagnetic field. In the electric-dipole ap-
proximation we have

lp-'(»I'lp~'(»I'
(E,o —E „)R

(1.8)
where

~A +~B+~rad +~int (1.9)

For some downward transitions (E,o E„)can be n—ega-
tive and the resulting V(R) may be positive. As we shall
see in Sec. II, downward transitions lead at large separa-
tions to an R potential of either sign. In this paper we
determine the complete interaction potential at all sepa-
rations for such pairs and contrast these potentials with
those for ground-state pairs. We show that previous in-

8;„,= —p( A ) d(R & ) p(B) d(R&—), (1.10)

where d(r) is the Maxwell displacement vector field
operator. In the multipolar formalism, the intermolecu-
lar coupling between two neutral molecules is entirely
due to transverse photon exchange. The leading contri-
bution to the energy shift for a pair of nonpolar mole-
cules is found using fourth-order perturbation theory,

(ilH, „,lyre) (xnlH, „,

Ill�)

(nlH;. , Ir ) ( xlH, „,li )
b,E, =—

I, II,III E )(Eii E )(Ein

for the unperturbed state li ). Evaluation of (1.11) is fa-
cilitated with the use of time-ordered diagrams.

II. INTERACTION BETWEEN A GROUND-STATE
MOI KCULE AND AN ELECTRONICALLY EXCITED

MOLECULE

We consider two nonidentical molecules A and B, and
take A to be in the excited state

I
m ) and B to be in its

ground state. The unperturbed state li ) is then
IE,Eo ', 0) where the electromagnetic field is in the vac-
uum state. For contributions to the shift (1.11) from in-
termediate states of A lying above lm ), the calculations
are identical to those for the ground state. The result has
the same structure as (1.7) with p" replaced by p™,k„o

I

by k, , and the r sum restricted to E, & E . The
significant differences from the ground-state result arise
from downward transitions of A. These differences are
conveniently studied by confining our attention to one
downward transition of A and one upward transition of
B. The complete result is easily obtained by generalizing
this two-level model. We denote the downward transi-
tion energy of A by AckA and the, upward transition ener-
gy of B by AckB. The associated transition moments are
denoted by p, ( A) and p(B) and, without loss of generali-
ty, taken to be real. The 12 topologically distinct time-
ordered diagrams for this case are shown in Fig. 1 and
their associated energy denominators in Table I. It
should be noted that, in contrast to the ground-state case,
the denominators can vanish for those graphs where
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(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)

TABLE I. Denominators D, in Eq. (2.6).

1/denominator

1/(p +k~ )(p +p')(p' —k~ + ic)
1/(p '+ k )(p +p')(p' —k„+p z )

1/(p +kg )(k~ —k~ )(p' —k~ +i c.)

1/(p+k, )(k, —k„)(p +k, )
1/(p'+ k~ )(p +p'+ k~ —k~ )(p' —k~ + ic, )
1/(p'+ k~ )(p +p'+ k~ —k~ )(p +k~ )

1/(p —k~ —ie)(p +p')(p'+ kg )

1/(p —kz —ic)(p +p')(p +kz )

1/(p —k~ —ic)(k~ —k~ ){p'+k~ )

1/(p —kz —ic)(kz —kz )(p' —kz +i c)
1/(p —k~ —ic)(p +p'+ k~ —k~ )(p +kg )

1/(p —kq —ic, )(p +p'+ k~ —kq )(p' —k„+ic, )

real-photon emission or absorption is possible. The cor-
responding singularities in the integrals over the virtual-
photon momenta p and. p' are dealt with by the prescrip-
tion of adding +is depending on whether a real photon
can be emitted or absorbed. This corresponds to giving a
spectral width to the excited state Im & of A. To carry
out the virtual-photon integrations, we use the identity

1 P=—Tim5(x) (2.1)Xkl6 X

and the product identity
1 1
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We now examine the contribution from diagram (i) to
the energy shift. The relevant intermediate states for this
diagram are

p

0

Il&=Io, o;(P,x ) &,

In& = Ik&, o;(p, x},(P,x') &,

Inc& = Ik„,k„(p,z) &,

(2.3) pi

ks

where (g7, A, ) and (p', A, ') are the virtual-photon modes
with momenta p and p', and polarization labels A, and A, '.
With the aid of these states (2.3) and the interaction
Hamiltonian (1.10), this contribution is found to be

(x) (xi) (xii)

FIG. 1. Tine-ordered diagrams for two-photon exchange be-
tween an excited- and a ground-state molecule.

2786 i(p+p ) RcP —(k)(~)—(A,')(~i) (A.)(~) (A.')(~i) e

D;
(2.4)—p;(&)p, (&)pk(&)p~(R) g

p~A,

p, A,

where R =R~ —R ~ and D; =(p +k~ )(p +p')(p' —k„+iE). The polarization and angular sums are carried out using

pe' '( )e' '( )e*'~' dQ= ( —V' 5 +V V } (2.5)

We note that the relation (2.5) is employed in the calculation of all 12 contributions. Thus the total energy shift for a
pair of randomly oriented molecules is the real part of
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Pic
I p( ~) I'I p(~)I'( —V'5,,+V, V, )B—( —V'5,, +V,.V,. )B—'

X11

X f f —,'(sinpR sinp'R+sinp'R sinpR ) g dp dp', (2.6)
0 0 &=1

with R put equal to R after di8'erentiation. From (2.1) it is clear that the principal value alone contributes to the integral
for all diagrams except (x) and (xii). For these two diagrams we see from identity (2.2) that there is a real part, in addi-
tion to the principal-value contribution, arising from the 5-function products. It is given by

Ip(&)l Ip(&)l ( —V 5;1+V;VJ )"—( —V 5;, +V;V, )"—
9fic lJ / J

oo 00 1X —,'(sinpR sinp'R+sinp'R sinpR) - +
0 0 B A B+ A

n. 5(p —k~ )5(p' —k„)dp dp'

I p( A ) I I p(8) I ( —V'5;, +V; V, ) —( —V 5;, +V'; V', ) —,sink „R sink „R . (2.7)

To evaluate the principal-value integrals over p and p in (2.6), we use the identity
T

P P
x y

P P P +m. 5(x)5(y) .
x y y x (2.8)

The only graphs that give a nonzero 5-function product contribution for (2.8) are (x) and (xii) with x =p —k~ and
y =p —kz. In fact, this term is equal to that arising from (2.7), and the total energy therefore includes a contribution
which is twice (2.7).

Finally, we use the identity (2.8) and determine the contribution arising from the resultant 5-function-independent
part of the energy shift (2.6). The sums can be carried out in a manner similar to that for the ground-state case [10],
leading to

Ip(A)I Ip(8)I ( —V 5; +V;V )"—(
—V 51+7;V'J)"=

9 Pic
EJ / J R 1J l J

2( —k~+kB+p) 1 1X f f —,'(sinpR sinp'R+sinp'R sinpR), —,dp dp',
0 0

(2.9)

which, on performing the p' integral, becomes

Ip(~)I'I~(a)I'( —V'5,, +V, V, )"—'( —V'5,,+V, V, )'='
9 Ac R V 1 J R

2( —k„+kB+p)
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B A 0 0

I p( A ) I I p(8) I (
—V 5,J +V; Vi ) —

(
—V' 5,J +V; VJ )"=9' 1J

CO 1 1 1 1

o (kB —k„)(p —k„) (kB —k„)(p + kB ) (kB+k„)(p k„) —(kB+k„)(p +kB )

( —V'5, +V, V )"='(—V'5, +V V )"='
9~c (k& —k2) ' ' R ' R

X [ —
kz f(kB(R +R ))+kBf(kz(R +R )) nkBcos[k—„(R+R )]]

where the Snal steps uses the principal-value integral [11]

P f dx = f (ab)+m. cos(ab), —a, b )0 .
o (x b)—

(2.10)

(2.11)

(2.12)

(2.13)

We remark that the energy shift from the f-dependent terms of (2.12) is the negative of the corresponding shift (2.14)
for the pair of two-level molecules in their ground states. As may be seen from (1.6), the shift for a pair of two-level
molecules in their ground states is
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V (R)= — "'"' "' '
(

—V'n +V, V )' '—
(

—V'S, +V, V )"='9' (k' —k') " ' ' R " ' ' R

X [k„f(k (R +R )) ks—f(k~(R +R ))]I

—:N(R), (2.14)

where Ack„and Acket are the energy spacings for A and B; 4(R) has been introduced for use in the subsequent work.
The total energy shift for an excited molecule A and a ground-state molecule B is the sum of (2.12) and twice (2.7).

2kB g 2 g 2

V (R)= —e(R)+ ' "'"' "' '
(
—V'S +VV )'—'( —V'S +VV )"='

EG 9$c (k2 k2) 'J ' J R v
A B

X jcos[k~(R +R )]+2sink„R sink„R J (2.15)

The trigonometric terms in (2.15) correspond to real-photon exchange. These simplify to the polynomial expression
(2.16)

P(~)l l~(B)l k
1 + 1 +

(k —k )
" k R k4R k R' (2.16)

Hence

(R) @(R)
4k~ lv( &)I'IP(B) I' k6

k„'R' k4R4 (2.17)

which, for multilevel systems, generalizes to the result (2.18), in agreement with the potential given in Ref. [8].

3m' „o (k +u) uR uR uR uR uR

Ip "(~)l a (ck,)k6„+ + (2.18)

E„&E

We note that in the real-photon term, only downward transitions contribute. However, in the virtual-photon term,
both upward and downward transitions from

I m ) contribute and the sum over r is unrestricted; the sign of the indivi-
dual contribution is determined by that of k

It is instructive to examine the asymptotic limits of this energy shift. In the near zone, i.e., for small-R separations,
the lead terms in both the real- and virtual-photon exchange contributions are proportional to R . When added they
give the result (1.8). On the other hand, for large R the real-photon contribution dominates and the resulting potential
falls ofF as R . It is given by

4

VEG(R)= ——', g lp "(A)l a (ck „) (2.19)

E &E

where a (ck „)is the polarizability of B at the transition frequency ck, of A.
The method is easily extended to the case of two electronically excited molecules and the result confirms the interac-

tion potential found using response theory, and presented in Ref. [8].

III. A SPECIAL CASE:
IDENTICAL MOLECULES

The explicit form of the Casimir-Polder potential as given by (1.7) cannot hold exactly when the molecules A and B
have one or more common energy spacings, in particular for identical molecules. This is because the denominator van-
ishes when the spacings are equal. However, the multiplicative factor in (1.7) also vanishes under the same conditions
and we therefore can obtain a modified expression for the potential. The essential features are easily seen from a con-
sideration of two molecules under the two-level approximation. For this case the potential energy is given by (2.14),
and for identical molecules we have
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lim 4(R)= —
~p~ ( —V 5,"+V,V } —( —V 5,"+V,.V )"—

k„f(k~(R +R )) k—~f(k„(R +R ))
X lim

kg ~kg(=—ko) k~ k~

ipse ( —V 5; +V;V )"—( VBi+—V;VJ)":

f(ko(R +R )) ko(—R +R )g(ko(R +R ))
X

2ko
(3.1)

where A'cko is the common energy spacing. After carrying out the differentiations in (3.1) we obtain the explicit form
(3.2) for the potential:

~S ~'ko

9Mc R2
+

q
—f (2koR )

—1+1 6 7
kpR koR koR

+g (2koR ) 2koR—3

koR

6 6

k,R
(3.2)

The results for multilevel molecules follow in a straight-
forward manner. The complete interaction energy is
given by (1.7) (where the summation excludes k„0=k,o)
plus the r sum over terms (3.2) with ko =k„o and p =JM" .

A similar treatment can be made for two molecules in
the same excited state. In the two-level approximation,
the potential can be found from the appropriate limit.
The limit of the virtual-photon term is, of course, (3.2),
and the limit of the two terms associated with real pho-
tons is

2 ~S ~'ko

9&c
3

(3.3)

As for a pair of ground-state molecules, the result for
multilevel molecules in excited states may be obtained by
generalizing the two-level model. Care must be taken in
the multilevel case to include upward transitions from the
excited state.

Finally, we point out that the limiting procedure used
above does not apply to the calculation of the potential
for two identical, two-level molecules when one is in the
excited state and the other in the ground state. The limit
ks~kz of (2.15) does not exist. That (1.11) does not ap-
ply may be seen from the graphs (iii}, (iv), (ix), and (x)
where the intermediate state iII& is degenerate with the
initial state. The degeneracy is lifted in lower order of
perturbation. The resultant molecular stationary states
are. the superpositions

(3.4)

The energy shifts for these states are orientation depen-
dent and vanish on random averaging.

IV. DISCUSSIGN

The dispersion energies for a pair of molecules (ground
and excited), VGG [Eq. (1.7)] and VEG [Eq. (2.23)], derived
in this paper agree with the results from our earlier work
[8] based on response theory. However, for systems in-
volving excited molecules they difFer from the calcula-
tions of McLone and Power [5], Philpott [6], and Kweon
and Lawandy [7], who employed fourth-order perturba-
tion theory. The 4(R) contributions in the potentials
agree with those of the previous workers and the
differences lie in the real-photon terms. The previous
workers evaluated Eq. (1.11) using the principal value at
every pole. As is seen from our present work, this is in-
complete and the principal-value contribution must be
supplemented by the 5-function product [see identity
(2.2)]. A consequence of including this product is that
(2.7) carries a weight of two in (2.15). The resultant ener-
gy shift due to real photons is a polynomial in (I/k&R)
as given by (2.16). However, the corresponding shift in
previous works [5—7,12] shows modulated behavior
through trigonometrical factors such as sink& R and
cosk& R. The explicit expression for (2.7) is

4k~ ~&(g)~2~&(g)~& k„2 2sink„R cosk„R (3cos k„R —2sin k„R)
2 z s|n k&R+ k„R

+

6 sink„R cosk„R
k~R

3 sin k&R

k~4R 4 (4.1)
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If this is added to the shift based on principal-value in-
tegrations, the resultant is unmodulated and is

4ka blitt(A)i iP(8)i k6 1 1 3

(k —k ) k~R k R k R

where the tensors a;k and p;k are defined by

~ik 5ik RiRk& I ik 5ik IiRk (4.5)

(4.2)

in agreement with (2.16). These manipulations may be
bypassed by using the identity

For the specific case where atom A is in one of the
2p0, 2p~& states, the far-zone interactions following from
(2.18) are

1 1

X EE y+EE
+2~ 5(x)5(y),P P P

x —y y x

(4.3)

& =o(R ) = —4(p( A ) ( tz (ck„)2 B ]I(:A"Z4' (4.6)

E, &E

(M; "(A)p™(A)a(ck „)k „
mr

which follows from (2.2) and (2.8).
It is clear from (4.1) that this additional contribution to

the shift does not a6ect the near-zone limiting form since
the modulating factor of the E. term vanishes for small
R. On the other hand, this correction is important for
the far-zone potential and leads to the physically expect-
ed unmodulated 8 behavior in the asymptotic limit of
the complete potential. Similar arguments apply to the
case of two excited molecules.

The textbook treatment [12] of interatomic interac-
tions involving atoms in particular magnetic substates
sufFers from the neglect of these 5-function product
terms. The potentials presented in [12] are modulated,
but the inclusion of these 5-function terms leads to
correct unmodulated results such as (4.6) and (4.7). It
must be borne in mind that for excited atoms in magnetic
substates, random orientation averaging is inappropriate.
The modified result involving real photons for an excited
atom A is

k
V ~,(R)= —ip( A)i tz (ck„)

R
(4.7)

where we have taken the intermolecular axis as the axis
of quantization. It is to be noted that the 8 dependence
for the m=O case is R " whereas that for m =+1 is
8

The computation of the van der Waals —Casimir in-
teraction between two molecules in their ground states is
an exact stationary-state problem. If one or both mole-
cules are excited, the problem is not one involving precise
stationary states because of the probability of decay.
However, the concept of intermolecular energy shift is
still a valid one provided the lifetimes for decay are
suKciently long compared with the light transit time
R/c. For lifetimes typically of the order 10 s, it is
physically meaningful to examine intermolecular poten-
tials between molecules separated by hundreds of
angstroms. The potentials computed in this paper fall
into this category and can play an important role in phe-
nomena involving excited chromophores separated by
large distances within complex molecules.

~ikI jk ik~j k ~ikPjk
(4.4)
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