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Various energetic, geometric, and other properties for the ground and first vibrationally excited
S states (L = 0) of Coulomb three-body systems having unit charges are obtained by means of

accurate exponential wave functions.

The mass dependence of the properties for these systems

has a relatively smooth form for the ground states. The results presented should be useful as a
basis for further investigation of these three-body systems. The prethreshold (weakly bound) exotic

nonsymmetric systems (d*t*p

,pintp™, and u+1r+7r_) considered have sharp cluster structures,

i.e., the lighter positive ion moves in the field of the neutral pair (e.g., d* in d*¢t*p~ moves in the

field of t*p™).

PACS number(s): 36.10.Dr, 31.10.+z, 31.20.Di

I. INTRODUCTION

In our previous study [1] of the Coulomb three-body
systems with unit charges we considered the problem of
the stability of the various bound states in such systems
and in particular focused on the determination of the
boundaries of the regions of stability. Similar and re-
lated problems have been studied in other papers (see,
e.g., [2-9]). Here we consider various energetic, geomet-
ric, and other properties of such systems. Without loss of
generality, we shall designate the systems as XY +Z—,
where XT,Y*, and Z~ are point particles with unit
charges and masses mx,my, and mz, respectively. In
general the X+tY+Z~ system has bound state spectra
which contain (i) a finite number of bound states, (ii) only
one bound state, (iii) no bound states (empty spectrum),
or (iv) an infinite number of bound states. We shall con-
sider only cases (i) and (ii). An arbitrary state in such a
system can be designated by two quantum numbers, i.e.,
the rotational quantum number L and the vibrational
quantum number v. We restrict ourselves to consider-
ation of only the ground and the first vibrationally ex-
cited states, i.e., the (0,0) and (0,1) states in terms of
the (L, v) classification scheme. In another paper [10] we
considered the bound P(L = 1) and D(L = 2) states of
the muonic molecular ions.

For the Coulomb three-body systems with unit charges
it is useful to introduce the dimensionless variables
vx,vy, and vz [1]
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mx
vx = ’
mx +my +mgz
my
vy = ) (1)
mx +my +mz
mz
vz =

mx+my+mz,

instead of mx,my, and mz. Obviously, 0 < v; < 1,
where ¢ = X,Y,Z. Without loss of generality, we can
further choose mx > my, i.e., vx > vy. Since vy +
vy + vz = 1, only two of the v’s are independent, e.g.,
vy and vz, and for simplicity we assume that mz is the
minimal mass.

We shall use the quasiatomic units in which A =1,e =
1, and My = mz = 1. In these units the Hamiltonian of
the Schrodinger equation for the X 7Y+ Z~ system takes
the form (in terms of the variables vx and vz)

VZ 2 4 2 1o2
H = el v/
('Ux,’Uz) 2’UX X 2(1 —vXx — vz) Y 2 z
1 1 1
—_———t+— (2)
Xz Tyz Tyz

Since all coefficients before the V? and r% operators
(¢,7,k =1,2,3 and j # k) in this equation are analytical
functions of vx and vz, its solutions must be, in principle,
analytical functions of these two variables. For the sym-
metric systems Xt X+Z~, vx = 1—vx—vz = 3(1-vz).
Therefore, the Hamiltonian is

A A 1
H(\) = -5v§( - EV% - 5sz
1 1 1
—_————t —, (3)
TxXz Tyz Tyz
where A = & = *Z is the single dimensionless vari-

m v
able. The other cases when mx > mz > my and
mz > mx > my can be treated in an analogous man-
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ner. In this paper we consider the six muonic molecular
ions (mesomolecules for short) ppu, pdu, ptu, ddp, dtu,
and tty and seven exotic systems: four symmetric ones
ttttp=,dtd*p~,ntwtp~, and ptutnr™ and three non-
symmetric ones d¥ttp~, uTrtr ™, and ptrtp~.

The ground state with L = 0 [(0,0) states or S states]
is bound for each of the muonic molecular ions, while
excited S states exist only in the three heaviest systems:
ddu, dtp, and ttu. Thus there are, in total, nine bound S
states for the muonic molecular ions. The energy spectra
for each of the considered exotic systems contains just
one bound S state.

II. CALCULATIONS
A. Wave functions

In all calculations we have used the exponential vari-
ational expansion in relative (Hylleraas) coordinates
r31,732, and ra; for the wave function. In the case of
bound states with L = 0 [i.e., (0,v) states or S states]
they take the form [11-16]

Yr=o(rsz2,Ts1,721)

N
= (146Pn) ) Ciexp(—airsz — Birs1 — %ir21), (4)

=1

where § equals 1 for symmetric systems and 0 for non-
symmetric systems and P»; is the permutation operator
for the identical particles (2 and 1). The linear parame-
ters C;i(t = 1,2,...,N) are determined from variational
calculations. The nonlinear parameters «;, 3;, and «; are
selected quasirandomly [11,12,17] from three positive in-
tervals [0, A], [0, B], and [0, C],

o = ((3i(i +1)v2)4, (5)
Bi = ((3i(i + 1)V3))B, (6)
vi = ((%i(i + 1)V5))C, (7)

where ((z)) is the fractional part of z. The values of
the constants A, B, and C have been chosen as 1.377 13,
1.45581, and 2.047 47, respectively (see [7]) for the me-
somolecules (in muon atomic units m, = 1,A = 1, and
e = 1) and as 1.051, 0.717, and 0.674 for the exotic non-
symmetric systems (in quasi atomic units mmyin = 1, =
1, and e = 1). In view of the number (V) of terms used,
no further optimization of a, 3, and v has been carried
out.

For the symmetric exotic systems dtd*p~,ttttp—,
wtntu~, and ptutw~ a more general choice of oy, G,
and -; was used. They were generated from the intervals
[0, A2], [By,i, Bz], and [G1,i, G2] as

a; = ((3i( + 1)V2)) A, (8)
Bi = ((3i(i + 1)V3))(Bs — B1;:) + By 4, (9)
% = ((3i(6 + 1)V5))(G2 — G1,i) + Gy, (10)
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To choose the values of By ; and G1; for each i, we
used the prescription

B;; = —ka; = —0.075¢;,

G1,; = —kmin(o, B;) = —0.375 min(a;, B;) if B; >0,

Gii=—Pi if B <O0.

)

This means that the parameters 8; and «; can be neg-
ative, but to guarantee square integrability the follow-
ing three sums must always be positive: a; + 8; > 0,
a; +v; > 0, and B; + -; > 0. For the lightest symmetric
exotic systems 7t nt = and pt put 7w~ the constants A, B,
and C were taken to be 1.157, 0.783, and 0.819, respec-
tively, while for the dtd*p~ and t*¢*p~ systems the val-
ues taken were 1.334, 1.259, and 1.391. It should be noted
that this approach is a simplified version of the integral
transform (generator coordinate) method [11,12,17,18].

B. Values of the physical constants

In all our calculations of the bound S states we used the
following particle masses relative to the electron mass m.:
m,/m. = 206.768262, m,/m, = 1836.152 701, ma/m.
= 3670.483014, m:/m. = 5496.92158, and m,/m. =
273.126 95.

The conversion factor m, was used to convert the to-
tal energies from muon atomic units (m, = 1,2 =1, and
e = 1) to the usual hartree atomic units (m, = 1,A=1,
and e = 1). To convert energies to hartree atomic units
the conversion factor Ej ~ 27.2113961 eV was applied.
All values of the particle masses were taken from CO-
DATA 1986 (see, e.g., [19]). The numerical calculations
for the muonic molecular ions, as well as for the systems
containing one muon, have been made in muon atomic
units. The bound statesindtd*p—,t*tt*p~,and dtttp~
were computed in proton atomic units (m, = 1,A = 1,
and e = 1).

III. PROPERTIES

The S-state properties are listed in Tables I-VI. In
each table IV is the number of basis functions used for the
property values reported. The number of digits presented
is such that they are unchanged by using a basis of N-100
functions and, to this extent, the values are converged.
The total energies E in Table I and the binding energies
€ are more accurate than those previously reported in the
literature (in [7,16,18] different masses were used). The

kinetic energy (T') is reported as well as the virial factor
71, defined by

=i+ 2D "

where (V) is the expectation value of the potential en-
ergy. The deviation of this parameter from zero is an
indication of the quality of the wave functions used (see,
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TABLE 1. The total energies (E) in muon atomic units (m, = 1,A =1, and e = 1) for the ground and excited (*) S states
(L = 0) of the mesomolecules and for the ground S states (L = 0) of the exotic systems. N is the number of basis functions

used.

N

ppu

Symmetric systems

ddp

ttp

ddu”

ttp*

500
600
700

-0.49438682024790
-0.49438682024833
-0.49438682024858

pdp

-0.531111135395
-0.531111135400
-0.531111135402

-0.546374225477
-0.546374225581
-0.546374225598

Nonsymmetric systems

ptp

N

-0.479706380352
-0.479706380364
-0.479706380368

dtp

-0.496762893748
-0.496762894246
-0.496762894248

dtp”

800
900
1000

-0.5127117964991
-0.5127117965003
-0.5127117965008

d+d+p-

-0.5198800897792
-0.5198800897811
-0.5198800897819

1000
1100
1200

Symmetric exotic systems

t+t+p'—

N

-0.538594975052
-0.538594975056
-0.538594975058

oty

-0.488065357819
-0.488065357833
-0.488065357841

prpte

500
600
700

-0.3526256795580
-0.3526256795598
-0.3526256795603

d¥ttp~

-0.4000369456694
-0.4000369456709
-0.4000369456721

600
700
800

-0.2991166915327
-0.2991166915335
-0.2991166915342

Nonsymmetric (weakly bound) exotic systems

phrtp”

pratn

-0.2976892640165
-0.2976892640175
-0.2976892640182

1100
1200
1300

-0.381190901672
-0.381190901682
-0.381190901688

-0.286302242013
-0.286302244854
-0.286302245644

-0.33101694736
-0.33101701177
-0.33101717037

TABLE II. The expectation values in muon atomic units (m, = 1,/ = 1, and e = 1) of some
properties for the ground S states (L = 0) of the symmetric mesomolecules.

System pPUL ddp ttp

Particles 123 123 123

N 700 700 700

€ -253.150192 -325.070689 -362.906555
(T) 0.494386820245 0.531111135391 0.54637422552
n 0.334x10™ ! 0.114x1071° 0.815x1071°
a 0.57352 0.75803 0.92417
(1v3) 0.286758809199 0.37901760388 0.442086314
(ivi) 0.429803280369 0.48840895645 0.5131158217
(ra1) 3.29948618437 2.8344517660 2.652824760
(r31) 2.38566658563 2.1199316476 2.017373311
(r3;) 12.3904084642 8.8767546423 7.662138325
(r3;) 7.76950381445 5.9462232199 5.312898701
Aray 0.37166240852 0.3238555956 0.297929139
Ars; 0.60425930037 0.5684317830 0.552671914
T21 0.151678044543 0.18110529165 0.1948528255
T31 0.544146849143 0.53407920314 0.5293921144
Tear 0.2026254984 0.2535804397 0.2789116867
Tra: 0.6146062688 0.5988509681 0.5905292070
Tpa: 0.0637714384 0.0693629628 0.070499849
T 0.0547556040 0.0535388714 0.050777164
(d31) 0.131500864 0.15873897 0.17036215
(621) 0.39372x10* 0.24395x1075 0.2187x10~°
(d321) 0.5549x10™* 0.4280 x10~° 0.422x107°
(va1) -0.8987883 -0.946676 -0.9637495
(va1)® -0.8987879287820 -0.9466714310522 -0.9637483334950
(v21) 4.4392 8.8692 12.986

(v21)® 4.440122200669 8.875837564471 13.29246937327

®The exact value from Eq. (19).
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e.g., [20,21]). In the present mesomolecule calculations 7
never deviated from zero by more than 1 x 10710,

Since particle masses are always under revision, we also
report values of the mass shift (mass gradient) parame-
ters a and 3 defined by

MZnew mZ,our)
MX new MX our

+8 (mZ,new _ mZ,out) (12)

MY new my,our

Epew = Eour + (

and

(13)

MZ new M Z,our
Ejew = Eour + @ ( - :

MX new MX,our

for the X+tY*+Z~ and X+ X+ Z~ systems, respectively,
and My, = m,. The subscript “our” designates the
values used (obtained) by us, while the subscript “new”

stands for the new values which can be available in the
future. The numerical values of @ and 3 were determined
by fitting energies from separate calculations. The other
property we list is 2(V?).

The following geometric properties are supplied: (r;;),
('rizj), and Ar;;; the latter is the dimensionless Pearson
correlation coefficient and takes the form

(%) — (rij)?]
(rij)

This coefficient can be used as a measure of the uncer-

tainty in the expected geometrical structure [18]. The

statistical angular correlation coeflicients 7;; were deter-

mined by

Ary; = (14)

Tij = (i‘,k . f‘jk> (15)

where £;; = r; /7.
In addition, we have calculated two other statistical

TABLE III. The expectation values in muon atomic units (m, = 1,A = 1, and e = 1) of some
properties for the ground S states (L = 0) of the nonsymmetric mesomolecules.

\S&tel_lg pdp ptu dip

Particles 123 123 123

N 1000 1000 1200

e -221.547672 -213.838543 -319.136967
(T) 0.512711796494 0.519880089775 0.53859497499
n 0.605x10~1! 0.625x10~1* 0.628x1071°
a 0.36756 0.39898 0.44797

B 0.28062 0.28182 0.41717

(33 0.28061919520 0.28181756747 0.391076475
(3V3) 0.36746090398 0.39898243020 0.421883781
(1vd) 0.46041133627 0.47313691355 0.500695298
(ra1) 3.1007104035 3.0365243209 2.747914133
(r31) 2.4514875888 2.4612768385 2.117912247
(ra2) 2.0876991487 2.0020112758 2.023720496
(r3;) 10.829021113 10.347734315 8.28732531
(r3,) 8.0334941737 8.0316257610 5.88185390
(r3s) 5.8965262741 5.4044336503 5.39705712
Aray 0.35543346178 0.34965053612 0.31226424
Ars, 0.58028810034 0.57080101390 0.55793250
Arsa 0.59404000719 0.59024999327 0.563754889
T21 0.165076398580 0.17029438462 0.187625971
Taz 0.600402600413 0.61701775054 0.550815275
T31 0.477226952552 0.45600843004 0.512758399
Tra: 0.2226126908 0.2298534862 0.2652371

Traz 0.6873944867 0.7059509348 0.6190988

Tra1 0.5196872193 0.4901256907 0.5701776

Tpa 0.0790214884 0.0792439004 0.07112494
Tpsa 0.0376459140 0.0349782304 0.04412236
Tps1 0.0516163164 0.0539451532 0.05451457
(832) 0.1734562 0.1893821 0.1745146
(631) 0.11770973 0.1136388 0.1545255
(621) 0.146174x10~* 0.89750x1075 0.8871x10~¢
(6321) 0.22833x107* 0.1452x10™* 0.1628x10~°
(vaz2) -0.9466715 -0.963748 -0.963746
(vaz)*® -0.9466714310522 -0.9637483334950 -0.9637483334950
(va1) -0.898789 -0.898789 -0.946674
(va1)® -0.8987879287820 -0.8987879287820 -0.9466704702882
(va1) 5.9186 6.6565 10.640

(va1)® 5.919183313052 6.656690661360 10.64418670485

2The exact value from Eq. (19).
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angular correlation coefficients

_ 2(1’,'k . rjk)

Try; = (rz?k) + (r?k> (16)

and
vy (v
TPs T TRy (V)  (VvhH+(3V3)’

(17)

These values as well as 7;; are bounded between +1 and
—1. If 7;; = +1 there is perfect positive correlation where
the position vectors of particles ¢ and j (i.e., rsx and rjz)
are expected to coincide and if 7;; = —1 there is perfect
negative correlation where particles ¢ and j are expected
to be at diametrical positions with respect to the third
particle k. It should be noted that 7;;(7y,;) assesses an-
gular correlation primarly for small (intermediate) sepa-
rations of the third particle from i and j. 7p,; assesses

angular correlation for intermediate momenta p;;. All
these measures of angular correlation for the electrons
in the ground S states of heliumlike ions (H™, He, Li*,
Be?*, etc.) have been found to be negative (see, e.g.,
[22]), while for the Ps~ ion (e*e~e™) they are positive
[23]. In fact, for the series of two electron ions with the
“nucleus” Z*, which includes H~, Mu~ (e"u*e~), and
Ps™, there is an intermediate value of my for each of
these quantities such that 72; vanishes, i.e., it is expected
that there is orthogonality between the position vectors
of the electrons or the electrons are completely indepen-
dent of each other. The latter is not possible for the
species discussed here.

Finally, expectation values of the Dirac delta functions
0;; and d321 are given, where appropriate, as well as the
two-body cusp ratio

{8(rig) X 522

T ) o

TABLE IV. The expectation values in muon atomic units (m, = 1,A = 1, and e = 1) of some
properties for the excited S states (L = 0) of the mesomolecules.

System ddp tty dtp
| Particles | 123 123 123
N 700 700 1200
€ -35.844247 -83.770727 -34.834446
(T) 0.479706380346 0.49676289423 0.48806535776
n 0.274x1071° 0.152x1071° 0.586x1071°
a 0.77168 1.08229 0.50136
B 0.38364
(iv] 0.3588445914 0.5411473341 0.383632748
(V3 0.500357609
(iv3 0.4362350359 0.4560520737 0.447633191
(r21) 5.694739220 4.453656634 5.16122895
(rs1) 3.616306082 2.965847588 3.93323568
(r32) 2.73875105
(r3,) 37.41878622 22.47682796 30.631299
(r3,) 20.54097550 12.88610526 22.397192
(r32) 11.760494
Aray 0.3922123115 0.364947856 0.38716615
Ars 0.7554408014 0.681875424 0.66914142
Arizz 0.75359642
To1 0.099259216895 0.11743429490 0.107147791
T3z 0.535810156225 0.53992533101 0.643593833
1 0.430245915
Tegx 0.089167255 0.012786573 0.10323846
Trss 0.645599380 0.635604174 0.77822311
Trsy 0.47166207
Tpa 0.019412094 0.020957125 0.020474422
Tpsz 0.017536030 0.024610949 0.016185218
Tpa1 0.023842927
(832) 0.1787572
(831) 0.1371458 0.1481590 0.1072330
(621) 0.16752x107° 0.24247x10® 0.7428x10~°
(6321) 0.295x10~® 0.470x107° 0.14x1075
<V32> -0.963741
(va2)® -0.9466714310522 -0.9637483334950 -0.9637483334950
(va1) -0.946670 -0.963752 -0.946670
(va1)® -0.9466714310522 -0.9637483334950 -0.9466714310522
(v21) 8.8758 13.314 10.60
(v21)® 8.874539991861 13.29246937327 10.64418670485

®The exact value from Eq. (19).
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where 6(r;;) is the appropriate Dirac delta function and
(i5) = (21),(31), and (32). The exact value of v;; equals
(24]

m;im;

19
mj+mj’ ( )

Vij = 4:9;

Uy Uz Uz
T32 T'31 T21

(f)=(¢|f|¢>=<¢

= // | (w1, uz, us) |* uiususdudusdus,

can be calculated directly or from the 7;;. The equality
To1 + Taz + 31 = 1 4+ 4(f) (21)

holds for an arbitrary three-body Coulomb system. For
the symmetric systems it takes the form

To1 + 2731 = 1+ 4(f), (22)

where 1 and 2 are the identical particles.

where g; and g; are the charges and m; and m; the masses
of the particles.

It may be noted that the quantity (f) [23] in rela-
tive coordinates (r3;,732,721) or perimetric coordinates
(ul,U2,U3), where u; = %(’I'ij + Tk — ’I‘jk) and (i,j, k) =
(1,2,3)

U1 U Uz
'¢’> =// | ¢(7‘31,7‘32,7‘21) |2 — —— ——71317327T21d7r31d7T32d72;

732 731 T'21

(20)

A. Mesomolecules

Our results for the bound S states of the meso-
molecules are listed in Tables I-IV. From these tables we
have established that the final accuracy achieved for the
binding energies ¢ in these mesomolecules is ~ 3 x 10~°
eV for ppu, ~ 1.5 x 1078 eV for pdu, ~ 2 x 1078 eV for
ptu, =~ 3 x 1078 eV for ddu, =~ 1 x 10~7 eV for dtu, and
~ 3 x 10~7 eV for tty in the case of the ground S states.

TABLE V. The expectation values in quasiatomic units (Mmin = 1, = 1, and e = 1, where
Mmin is the mass of the lightest particle) of some properties for the ground S states (L = 0) of the

symmetric exotic systems.

System dtd*p~ ttttp~ wtatp” pwtptn=
Particles| (12 3) (123) (123) (123)
N 700 700 800 800
€ -966.684055 -1260.778512 -81.849859 -73.818505
(T) 0.352625679551 0.400036945651 0.29911669156 0.2976892644
n 0.128x1071° 0.265x1071° 0.825x10~1° 0.885%1071°
a 0.24739 0.75803 0.17083 0.17527
(ivh 0.1241936515753 0.164343585105 0.08763308712 0.854120857
(3V3) 0.228370366058 0.29024461432 0.16643303571 0.1675802442
(r21) 5.7977797454 4.7948136985 7.24928710 7.7144121
(r31) 3.8480889333 3.2564605723 4.71133202 4.9047327
(r3) 41.459494488 27.716241473 66.215585 76.585643
(r3;) 22.570533433 15.616944272 34.989971 39.225379
Ara 0.48310499645 0.45339347139 0.50989931 0.53562192
Arg 0.72403999959 0.68750746508 0.75918557 0.79407737
T21 0.064524476149 0.090505407362 0.0375229150 0.002714413
T31 0.574807453303 0.565432012537 0.58497158687 0.599015336
Trar 0.08155705292 0.11262277084 0.05379194 0.02377434
Tra 0.64750080288 0.63960775088 0.65426828 0.66129840
Tpas 0.03436376394 0.04343558663 0.02239316 0.00260748
Tpa1 0.03574268102 0.04539891354 0.02447338 0.00757899
(031) 0.05010598 0.07242510 0.03078332 0.03042574
(621) 0.25780x1073 0.23798x1072 0.217154x1073 0.28457x1072
(6321) 0.13108x107? 0.17672x1073 0.67585x10~* 0.8810x10~*
(va1) -0.666557 -0.749607 -0.569136 -0.56914
(va1)® -0.6665563520030 -0.7496066955496 -0.5691387268936 -0.5691387268936
(va1) 0.99941 1.49664 0.66032 0.499884
(v21)® 0.9995037482452 1.496858506650. 0.6604663292087 0.5

®The exact value from Eq. (19).
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For the excited S state the results are ~ 5 x 1078 eV for
ddp, ~ 3 x 1077 eV for dtu, and =~ 5 x 10~8 eV for ttpu.
This shows that our results are the best so far for the
S states of the mesomolecules. Earlier calculations with
the same particle masses were made by Kamimura [25]
for only the dty ion. Other references to previous work
on mesomolecule calculations can be found in [26].
Tables II-IV contain the results for calculations of
the expectation values of some mesomolecular properties,
most of which have not been calculated before. Where
there are earlier calculations (see, e.g., [17] and [27] and
references therein) there is essential agreement. It follows
from these tables that, since the parameter ¢/E < 0.119,
the ground and first excited S states in all mesomolecules
are relatively weakly bound. The analysis of the “aver-
aged geometries” shows that these mesomolecules have a
cluster structure, i.e., the lighter nucleus (e.g., Y*) moves
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in the field of the two-body neutral cluster X*u~. As
expected, the excited states of ddu, dtu, and ttu have a
much sharper cluster structure than the ground states.
For the ground and excited states in symmetric systems
such as X+t X*u~ we can say that the degree of clus-
tering of their structure decreases as the parameter =X
increases. :

Both muon-nucleon and nucleon-nucleon distances in-
crease as the nucleon masses decrease, since as the nu-
cleon masses become heavier the molecules become more
compact. As expected, the distances are larger for the
excited states than in the ground state [18]. For the sym-
metric systems (X X*u7) the appropriate distances co-
incide in the limit %:L = oo with the parameters for the
adiabatic three-body system (*H*)u~(*°H™") (or the ion
*°H,* in muon atomic units), i.e., {rz;) = R ~ 2, and

TABLE VI. The expectation values in quasiatomic units (mmin = 1,A = 1, and e = 1, where
Mmin is the mass of the lightest particle) of some properties for the ground S states (L = 0) of the

nonsymmetric (weakly bound) exotic systems.

System dtttp~ ptatu~ ptatn=
Particles (123) (123) (123)
N 1300 1300 1300
€ -319.149522 -9.749980 -4.409405
(T) 0.3811909012 0.286302243 0.331020
7 0.565x107° 0.683x1078 0.460x10°°
a 0.2244 0.1379 0.1972
B 0.0699 0.0239 0.0194
(iv] 0.0690228400 0.023876 0.0193
(2V3) 0.22440894619 0.137927 0.1972
(:V3) 0.2717023734 0.158009 0.2144
(ra1) 6.533299192 13.205 17.1
(ra1) 5.822464263 12.447 16.7
(r32) 2.5359591808 3.14210 2.542
(r3,) 57.6218387 274. 490.
(r3) 52.3560224 265. 490.
(rd;) 9.369594677 14.492 9.27
Ara 0.592016179 0.757 0.835
Arsy 0.737827529 0.843 0.878
Arsz 0.675766743 0.684 0.659
T21 0.007667841923 0.033378 0.02124
T2 0.7765842184 0.85599 0.9083
Ts1 0.3406293325 0.26775 0.1970
Trar 0.066484202 0.019332 0.00845
Trsy 0.218466904 0.081669 0.00613
Trsa 0.914804719 0.973130 0.9907
Teay 0.044100140 0.018289 0.0078
Trsy 0.031129118 0.130749 0.0288
Tras 0.013537403 0.003461 0.00046
(832) 0.1035725 0.0495356 0.0826
(d31) 0.02650205 0.00720 0.00667
(821) 0.197210x1073 0.11021x1073 0.130x107%
(d321) 0.12210x1073 0.284 x10~* 0.51x10™*
(vs2) -0.749600 -0.5692 -0.6607
(vs2)® -0.74960669555 -0.56913872689 -0.66046632921
(vs1) -0.666546 -0.49991 -0.5700
(va1)® -0.66655635200 -0.5 -0.56913872689
(v21) 1.1981 0.5683 0.567
(v21)® 1.19863668428 0.56913872689 0.56913872689

®The exact value from Eq. (19).
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both nucleons are stationary. We have found that the
ground and first excited S states in mesomolecules ex-
hibit positive angular correlation, i.e., 7;; > 0, 7,; > 0,
and 7p,; > 0 (in comparision with the negative values for
the heliumlike ions; see, e.g., [22]). We note that our wave
functions give accurate cusps vs;, V32, and vq;. These val-
ues coincide well with the exact values calculated from
Eq. (19). In fact, the agreement between the calculated
and exact cusp values is better than for any other func-
tions in the literature (see the numerical comparision in
[27] and references therein).

It is interesting [28] that in all mesomolecular S states
the expectation value of the triple Dirac delta function
(8321) is greater than the expectation value of the two-
body delta function (d21) for the positively charged par-
ticles, i.e.,

(d321) = (044-) = (b21) = (64+)- (23)

B. Ground S states in the exotic three-body systems

The numerical results for a few of the so-called exotic
three-body systems are shown in Tables I, V, and VL
The interaction potential between the particles in these
exotic systems is the sum of the Coulomb potential and
the potential of strong interaction. Obviously, the latter
plays a significant role in such systems. However, to a
first approximation we can neglect it and consider these
systems as pure Coulomb three-body systems with unit
charges. Table I includes the total energies of the ex-
otic systems. The symmetric exotic systems are not ex-
tremely weakly bound in contrast to the nonsymmetric
exotic systems considered. These nonsymmetric systems
are close to the boundary of the stability region for three-
body Coulomb systems with unit charges since the value
of the parameter ¢/E < 0.02 (for more details see, e.g.,
[1-3,29]). Such prethreshold systems have a sharp cluster
structure, which can be modeled with good accuracy by
a system where the lighter positive ion (e.g., Y ) moves
in the field of the pair X+Z~ [29].

As may be seen from Table VI, the expected interpar-
ticle distance in the neutral cluster (X*tZ7) is always
significantly less than the other two distances, i.e.,

(r$2) < min {(r§y), (r3,)}, (24)
where k£ = 1,2. We note that for the exotic systems, the
inequality

(644-) < (644) (25)

holds in contrast to that for the mesomolecules [Eq. (23)].
In conclusion, we observe that for all weakly bound (or
prethreshold) systems X+Y+Z~, the kinetic energy of

the lightest positive ion is approximately equal to zero,
i.e.,

1 12
= — —V ~
Tl m, (2 1> 0) (26)

and T is significantly smaller than T3 and T3. Following
[30] we can prove Eq. (26), in the case of L = 0, for an ar-
bitrary prethreshold (weakly bound) state in a Coulomb
three-body system with unit charges.

It appears from the tables that the mass dependence
of the properties for all mesomolecules and exotic sys-
tems has a relatively smooth form. This suggests that
the expectation value of an arbitrary operator b can be
presented as a series in vx and vz, i.e.,

By = amnvkvy (27)

for the nonsymmetric (XY *Z ™) systems, or as a series
in A, where A = min (2%, 2%
vX vz

By =) anA (28)

b

for the symmetric (X*X*Z~) systems. The operator b
in these equations corresponds to one of the properties
presented. For instance, using the data in Table II, we
can predict the following value for (r2, _) in the ground
state of the dtdt7~ system (m,- = 273.126 95m,, [31]):

(r2, _) ~ 6.540 665 5. (29)

The direct value from the numerical calculations is =~
6.536 605. Thus, in this case and for a number of other
properties the agreement is good.

IV. CONCLUSIONS

We have considered various properties of the S bound
states in the Coulomb three-body systems with unit
charges. Among the unexpected mesomolecular results
we draw attention to the following: the angular correla-
tion coefficients are positive and the inequality (6, _)
> (044+) holds true in all such systems. For the exotic
nonsymmetric systems d¥t¥p~, utrtu~, and ptata—
we have found sharp cluster structures. The geomeétrical
properties have a relatively smooth dependence on mass.
These results should be valuable for further consideration
of Coulomb three-body systems with unit charges.
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