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Convergence of relativistic perturbation theory for the ls2p states in lour-Z
heliumlike systems
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In a recent paper, Plante et aL [Phys. Rev. A 49, 3519 (1994)] presented relativistic all-order
many-body calculations for n = 1 and n = 2 states of heliumlike ions with nuclear charge in the
range Z =3—100. They were, however, unable to obtain converged solutions for the P& states for
low Z (Z & 6). We demonstrate iu the present work how application of the "extended model space
formulation" by Lindgren [J. Phys. B 7, 2441 (1974)] leads to convergence also for these cases.

PACS number(s): 31.10.+z, 31.15.Ar, 31.25.Jf, 31.30.Jv

I. INTRODUCTION

Recent experimental developments have raised the de-
mands for accurate calculations including relativistic as
well as quantum electrodynamic (@ED) effects. Al-

though much of the methods developed for nonrelativistic
many-body calculations can be taken over, the relativis-
tic generalization encounters problems of both practical
and formal character. The electron-electron interaction
is no longer simply the Coulomb interaction between the
electrons. Magnetic interactions lead to the Breit inter-
action and also retardation efFects must eventually be
considered. I'urther, unless contributions &om crossed
photons are included, the energies obtained depend on
the choice of gauge [1—4]. The existence of negative en-

ergy solutions to the one-electron Dirac equation requires
special treatment. As a erst approximation, they are ex-
cluded (the "no-virtual-pair" approach), by surrounding
the electron-electron interaction with projection opera-
tors onto positive energy states. This is now routinely
handled by excluding the negative energy states &om
the summation over the basis functions [5—7]. Methods,
based on @ED, are now being developed to go beyond
the no-virtual-pair approach and include retardation and
radiative effects [8—12].

The demands on computer time and storage increase in
the relativistic treatment since the quantum numbers nl
of a nonrelativistic orbital are replaced by nl j, where j =
]I+I/O]. In addition, each relativistic orbital is associated
with two radial functions, whereas one function suKces
in the nonrelativistic case. However, this problem is less
serious due to the development of computers.

The formal problem we consider in this work may be of
a more unexpected character: In the nonrelativistic hmit
the orbital energy does not depend on the total angular
momentum j, but only on n and l. For the two-electron
case, the nonrelativistic configuration 182p, e.g. , leads in
the relativistic case to a linear combination of the 182pzy2
and 182p3y2 configurations, with slightly difFerent energy.
Both configurations enter for the 2 ~Pq and 2 Pq states.
The mixing between these two configurations cannot be

expected to be well described by a perturbation expan-
sion starting from only one of thein. Plante et al. [13]
attempt to circumvent this problem by using as a start-
ing point for the J = 1 states a superposition of these two
con'gurations obtained by diagonalizing the Hamiltonian
between the two unperturbed con6gurations. Neverthe-
less, they were unable to obtain convergence for the 2 Pq
state for low Z (& 6).

A general formalism, capable of dealing with quaside-
generate as well as degenerate and nondegenerate model
spaces, was developed two decades ago by Lindgren [14]
with a view to problems like the 18 2s ground state of
beryllium, which has a very large admixture of the 1822p
configuration. The Be problem has, indeed, been studied
by several groups using extended model spaces [15—21]
and the formalism is used extensively in quantum chem-
istry. The use of an extended model space sometimes,
like in the case of Be, leads to problems with intruder
states and various approaches have been devised in at-
tempts to circumvent the resulting convergence problems
[17,20,21]. We have, however, not encountered intruder
problems in the calculations presented here.

All-order methods based on the formalism by Lind-
gren have been used for a long time in our group within
the "coupled-cluster approach" [22]. Our first applica-
tions used a numerical solution of the resulting two-
dimensional radial equation in a nonrelativistic frame-
work [15,23—26], and attempts were also made to gener-
alize this approach to the relativistic case [27,28]. Later
work in our group has instead relied on a numerical basis
set obtained by diagonalizing a discretized one-electron
Hamiltonian, relativistically as well as nonrelativistically
[7,29]. Recent applications have included ground and ex-
cited states of heliumlike [7,29—32], lithiumlike [33—35],
and berylliumlike [36—38] systems, as well as large-scale
calculations for heavier alkalilike systems [39,40,34] and
other atoms with one valence electron [41—43]. The calcu-
lations for the 282p states in Be-like systems by Lindroth
and Hvarfner [38] are completely analogous to the calcu-
lation for the 182p states in He-like systems, except for
the added complication of a 18 core to deal witIjL in the
four-electron case.
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Generalised Rayleigh-Schrodinger perturbation
theory

We summarize here briefly the general Rayleigh-
Schrodinger perturbation formalism by Lindgren [14].
The starting point is the choice of a model Hamiltonian
Ho and a suitable model space, spanned by d eigenstates
40 to Ho..

4 p = (ls2p) Pi = 2Co,

(6)

H g within the model space. For low Z a diagonalization
of the electrostatic interaction, 1/ri2, in the model space
spanned by the functions in Eq. (2) leads, to a very good
approximation, to the singlet and. triplet states

Hoc'0 = Eoc'0. 4p = (ls2p) P, = 24o.
There is considerable &eedom in choosing the model
space, and it is advantageous to include strongly mixing
configurations. In the case of the ls2p states of He-like
systems, a natural choice includes the two 182p configu-
rations, coupled to J = 1:

For low Z, these coeKcients are good approximations also
after inclusion of correlation effects. Even for Z = 10,
the weight of the dominating configuration in the model
function is only 69%%uo.

@o = ( ' »/2) J=l)
C", = ( ls2p, ],)~,).

The generalized Bloch equation (4), together with the
expression (5) for the efFective Hainiltonian, and the
model space spanned by the states in (2) provide the
necessary formalism to treat the 182p states in helium-
like systems. We present here results for a few low-Z
systems, where the convergence is slower than for higher
Z. The relativistic pair program based on a numerical
basis set developed by Salomonson and Oster [7,36] was
used in the calculations.

Since we base our calculation on the Bloch equation
(4), including both the ls2p configurations in the model
space, the small energy difference between them never
leads to small energy denominators —all mixing between
them is treated by diagonalizing the 2 x 2 matrix of H g
in Eq. (5) between the J = 1 states.

There are several ways of rearranging terms in Eq. (4),
corresponding to resummation of various series of terms
[45,46], which may afFect the convergence, for better or
for worse. Plante et al. [13] have shifted part of the en-

ergy correction term OPVA to the left-hand side. They
then solve for one state at a time: after the initial diago-
nalization which gives a first approximation to the model

functions 40 and first-order energies E, each state is(i)

treated separately. Wave-function corrections within the
model space are accounted for by a perturbative treat-
ment of ofF-diagonal elements of the Hamiltonian matrix
betwen these states:

The projection onto the model space is denoted by

and Q = 1 —P gives the projection onto the orthogonal
space, spanned by all other configurations. Here, d is the
dimension of the model space, and there are normally d
well-defined eigenstates 4 of the full Hamiltonian, which
have their major part within the model space and satisfy
the equation

H4" = (H, + V) 0 = E;0 .

In intermediate normalization, the "model functions" @0
are given by the projections of the eigenstates, 4, onto
the model space, i.e.,

(a = 1, 2, ..., d).4, =PC

If the model functions are linearly independent, there
is a one-to-one correspondence between the d exact so-
lutions and the model functions. It is then possible to
define a single nave operator 0 which transforms all the
model states back to the corresponding exact states,

(a = 1, 2, ..., d).=BC,

(2) II. THE ls2p STATES IN HELIUMLIKE SY'STEMS

The existence of a single energy-independent wave op-
erator is in contrast, e.g. , to the Brillouin-Wigner form
of perturbation theory, where the wave operator is en-
ergy dependent, and we note that also the calculation
by Plante et al. [13] uses energy-dependent expressions.
The wave operator satisfies a generalized Bloch equation
[44,14]

[A, Hp] = VA —APVB.

By acting on Eq. (3) with P, we find the efFective Hamil-
tonian H,g which generates the exact eigenvalues when
operating on the model functions:

H ~ ——PHOP = PHOOP+ PVOP.

The model functions are obtained by diagonalization of

@a(n) @~ +0 0 (7)

The matrix element in Eq. (7) accounts for correlation
contributions to the singlet-triplet mixing. It vanishes in
the nonrelativistic limit and. is, of course, very small for
low Z. However, the denominator can also be very small.
For example, in the case of Z = 2, the converged singlet
energy is very close to the first-order triplet energy. The
resulting small energy denominator in Eq. (7) is an ar-
tifact arising &om a nonsymmetric treatment of the two
states. For higher Z, the problem is less pronounced,
since the energy difference between the 2pig2 and 2p3/2
orbitals is larger. To illustrate this problem, we show in
Table I the first-order energies obtained after diagonaliza-
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tion of the Hamiltonian H = H0 + V within the model
space spanned by the 1s2p configurations. The corre-
sponding nonrelativistic ionization energies are given by

Ei( ' P) = (—Z /8+ 59Z/243) + (112Z/6561). (8)

Analysis of the convergence pattern shows that for
Z & 4 higher orders in the Coulomb interaction are suf-
ficient to bring the singlet energy below the first-order
triplet energy. For these Z values, the triplet state thus
acts as an "intruder, " and it is easily seen that this situ-
ation can lead to an energy denominator in Eq. (7) very
close to zero. Also for Z = 5, 6 the final singlet energy
is suKciently close to the first-order triplet energy to ex-
plain the convergence problems encountered by Plante et
al. for these states.

Convergence

Even when both J = 1 states are treated together in
the model space, the convergence is very slow. About 70
iterations were needed to obtain the results shown in Ta-
ble I for Z = 2. We emphasize that this slow convergence
is not related to the near degeneracy of the two 1s2p
states in the relativistic formulation, but is present also
in analogous nonrelativistic calculations for these states
[47,30]. It can be ascribed to hydrogenic orbitals giving a
somewhat unstisfactory starting point, in particular for
the excited orbitals, which feel the unscreened nuclear
potential and their full interaction with the ls electron
must be treated by sp pair excitations in perturbation
theory.

One possibility to improve the convergence is to use
excited orbitals generated. in a potential which includes
at least the dominating part of the interaction with the
ls electron, while the ls orbital still sees only the un-
screened nuclear potential, e.g. ,

1 ls 1 — ls ls

(9)

where the projection (1 —[1s) (ls~) excludes any effect
on the 1s states by this correction term and still ensures
a Hermitian potential. This approach was tested in non-
relativistic applications, where it; was found to give signif-
icantly improved convergence, in particular for the first
few iterations. As a test we performed iterations includ-
ing only excitations to sp configurations. Just after three
iterations, the result based on the potential in Eq. (9) was
comparable to that obtained after 30 iterations starting
&om the hydrogenic orbitals. Also the continued itera-
tions converge better; the result after 20 iterations con-
verged to about seven decimal places, compared to abc ut
70 iterations needed for hydrogenic orbitals. The con-
verged result is independent of the starting point (apart
&om differences in the no-virtual-pair approach, arising
&om the potential-dependent definition of negative en-

ergy states, which give negligible contributions for low
Z).

III. RESULTS

Table I shows the separate contributions to the ion-
ization energies obtained for the (ls2p) J = 1 states in
the Dirac-Coulomb-Breit (DCB) approximation. For the
low-Z values studied here, the first-order result is very
close to the corresponding nonrelativistic value, Eq. (8),
where the singlet-triplet splitting is proportional to Z.
The Coulomb correlation contributions vary relatively
little for the Z values in the table, and we recall that in
the nonrelativistic limit, the second-order contribution is
independent of the nuclear charge, whereas the contribu-
tions in nth order decrease as Z . Our total ioniza-
tion energies within the Dirac-Coulomb no-virtual-pair
approach are compared to corresponding results, where
available, obtained by Cheng et al. [48] and by Chen et aL

[49] using a relativistic configuration-interaction (RCI)
approach and by Plante et al. [13]using relativistic many-
body perturbation theory (RMBPT).

The effect of the Breit interaction was obtained as the
difference between the Dirac-Coulomb and results ob-
tained when the Breit interaction was included to low-
est order in the pair equation [37]. For the calculations
for these low-Z values, we did not include contributions
due to two or more orders in the Breit interaction. For
Z = 10 these were found to contribute only 4 phartree
for the 2 P1 state and 0 phartree for the 2 P1 states
[131.

Our Breit contributions, as well as the total Dirac-
Coulomb-Breit results are compared to those obtained in
Refs. [49,48, 13]. The DCB results can also be compared
to the values, J„, ~ + J„~+J„„given by Drake in his ex-
tensive tabulation [50]. (The nuclear size correction J„,is
automatically included in the numerical calculations us-
ing a finite nuclear charge distribution. ) However, calcu-
lations in the "no-virtual-pair approximation" used here
include also certain effects of order (n)s (a.u. ) [51,3,52]
which are part of the QED correction JqE~ tabulated by
Drake [50]. The contribution due to the Coulomb inter-
action alone is (n) (—m/2 —5/3) (b'(rqq)), with a much
larger effect due to the combination of the Coulomb and
Breit interactions: (n) (2vr + 4) (b'(rqq)) [51,12]. Follow-
ing Drake, we use the values for (h(rqq)), obtained by
Accad et al. [53]. The corrections obtained in this way
are included in the values by Drake shown in Table I.
For Z = 10, they amount to 4.29 phartree. [The correc-
tion (19/3 —m/2) (2/243vr) (Za)s given in earlier work
[11,48,13] also includes the correction due to second or-
der in the Breit interaction, which was not included in
our calculations. It also uses the lowest-order approxima-
tion (b(rqz)) = (2/243vr) Zs, which is not valid for low-Z
values. ]

Uncertainties in our calculated values arise &om the
grid extrapolation —our calculations were performed in
three logarithmic grids, with 81, 101, and 121 points in
the range e ' /Z to e ' /Z and extrapolation was used
to remove errors of order O(h ) and O(hs). The remain-
ing error due to the finite step size, h, is believed to
be less than 0.1 phartree and is negligible compared to
the uncertainty due to contributions &om higher angu-
lar momenta. Our calculation included orbital angular
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momenta up to / = 10. To account for higher / val-

ues, we studied the behavior in a sequence as higher and
higher / values were included. For the Coulomb interac-
tion, the decrease of the contributions is essentially de-
scribed by l and /, respectively, for the singlet and
triplet states, whereas the Breit contributions (and also
relativistic corrections to the Coulomb correlation) con-
verge much slower, as l and l, respectively. We note
that for the I (t 4) convergence, the tail amounts to
about 9.5 (2.8) times the contribution due to t = 10 or-
bitals. A problem in going to higher and higher / values
is that the cusp at rq ——r2 in the expression r&/r&+
in the multipole expansion makes the contributions &om
higher angular momenta very sensitive to grid eKects.
In second order, the contributions ft..om higher l values
are very similar for the di8'erent systems; in the nonrel-
ativistic limit, they are, in fact, independent of Z. How-

ever, higher-order eKects reduce the tail contributions to
the Dirac-Coulomb energy from its second-order value
of about 24 phartree for the 2 Pq to 1.4 phartree for
Z = 2 and to about 16(2) phartree for Z = 10. The
angular extrapolation, in fact, dominates the final uncer-

tainty and is a problem shared also by the relativistic CI
approach and by other methods based on expansion in
one-electron basis sets. The angular extrapolation is even
more critical for the Breit interaction, with its slower an-
gular convergence. For low Z, the whole Breit interaction
is so small that this does not pose a problem, whereas for
Z = 10, an estimated contribution of 5(2) p hartree from
higher angular momenta is included in the value for the
singlet state.

We have shown that the coupled-cluster approach with
the technique of extended model space can give accurate
results for the (ls2p) J = 1 states also for low Z. More
detailed applications to systems of experimental interest
will be published elsewhere.
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