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Energy, fine-structure, and hyperfine-structure studies af the care-excited states
1s2s2p2(5P) and 1s2ps(5S) for Be-like systems
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Variational calculations using multiconfiguration interaction wave functions are carried out on
the 1s2s2p ( P) and the 1s2p ( S) states for the Hei isoelectronic sequence from Z = 3 to 10. For
each species, the upper bound, the nonrelativistic energy, the transition wavelength, the oscillator
strengths, the radiative lifetime, the fine structure, the hyperfine parameters, and the coupling
constants are reported. The relativistic corrections and the mass polarization are included. The
upper bounds and the nonrelativistic energies obtained are much lower than the previously published
values for each member of the Bet isoelectronic sequence. The calculated fine-structure results are
compared with the existing theoretical and experimental data. The predicted results of the hyperfine
structure in this investigation provide useful data in the experimental analysis of fine-structure
transitions between the 1s2s2p ( P) and the ls2p ( S) states for berylliumlike isoelectronic sequence
spectra.

PACS number(s): 31.15.Ar, 31.25.—v, 31.30.Jv, 31.30.Gs

I. INTRODUCTION

In the past two decades, studies of energies, the fine
structure, and. the hyperfine structure for the Li-like
quartet system [1—12] have been of great interest to spec-
troscopists because there are many strong optical transi-
tions suitable for spectral and hyperfine-structure mea-
surements. On the one hand, the energy spectra of
the excited levels were determined by a high-resolution
beam-foil technique and the hyperfine parameters and
coupling constants were precisely measured by means of
the atomic-beam magnetic resonance technique; on the
other hand, high quality theoretical calculations have
been made, which are in good agreement with exper-
iment. The energies, the fine structure, and the hyper-
fine structure for the Li-like three-electron quartet system
are among the most thoroughly studied both by theory
and by experiment. However, for the corresponding core-
excited four-electron quintet system, considerably fewer
theoretical and experimental studies are available.

Bunge [13] first identified an unclassified, cascade-&ee,
and medium-intensity line at A = 3489.7+0.2 A. and v. =
2.9 +0.2 ns in a lithium beam-foil spectra to be the core-
excited Li transition between the ls2s2p ( P) and the
ls2ps(sS) states. The predicted values 3489.5 + 1.1 A.

and v = 2.86+ 0.01 ns agree well with the experiment.
This has stimulated considerable interest on the study of
the energies and the fine structure of core-excited. Be-like
quintet system. Theoretical and experimental progress
[14—21] has been made. Calculations have been made
by a variety of theoretical methods; generally speaking,
the accuracy is not very high when compared with the
experixnent [14—16,22—26]. Although the results of Bunge
[13] agree well with the experiment of Berry et al. [27],
the uncertainty in the theory is more than five times that
in the experiment.

Theoretically speaking, the observed fine structure of

an atomic system may be affected by its hyperfine in-
teraction. When the hyperfine interaction is considered,
the total angular momentum F = I + 3 becomes a good
quantum number, where I is the nuclear spin angular mo-
mentum. The components of 3 and I are no longer rigor-
ous, good quantum numbers. Consequently the apparent
fine-structure separations in an observed spectrum may
differ substantially &om the real fine structure. This is
clearly shown in the experimental study of lithium quar-
tet fine structures [1,2].

In recent years, many theoretical methods, such as the
Hylleraas expansion approach [28], xnany-body perturba-
tion theory methods [29], the nonrelativistic multiconfig-
uration Hartree-Fock method [30—32], and the relativis-
tic multiconfiguration Dirac-Fock method [33], have been
used to study the hyperfine structure. Their main inter-
est has been the hyperfine parameters and the coupling
constants of low-lying states for Be-like isoelectronic se-
quence. To our knowledge, no calculations of the hy-
perfine structure have been reported for the core-excited
states ls2s2p ( P) and ls2ps(sS). Since the hyperfine
structure may affect the experimental analysis of the fine
structure, which has been reported in the literature [1,2],
it would be useful to carry out a complete hyperfine struc-
ture study on the core-excited states ls2s2p ( P) and
ls2ps(sS) for the Be-like system.

The purpose of this study is twofold: first, to reduce
the theoretical uncertainty in the Li quintet transition
to make a more critical comparison with experiment, and
second, to investigate the effect of the hyperfine interac-
tion on the observed Gne structure to determine whether
it should be considered in the experimental analysis. By
constructing wave functions of sufticiently high quality,
a Inore accurate calculation of properties such as the
upper bound, the nonrelativistic energy, the transition
wavelength, the oscillator strengths, the lifetime, the
fine structure, the hyperfine parameters, and the cou-
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pling constants can be made. The results of the fine-
structure and hyperfine-structure energies of the core-
excited 18282p ( P) and 182ps(sS) states will be used to
compare the observed transitions in the optical spectrum
of the Be-like isoelectronic sequence. In connection with
an x-ray laser, it has been proposed to use 18282p2(sP)
as an energy reservoir, which can be stored in a ring
before undergoing photodissociation into the 1s2p2(4P)
state [34]. Accurate theoretical data could be useful in
this regard.

The remainder of this paper is divided into four sec-
tions. Section II describes the theory of energy, fine
structure, and hyperfine structure. Section III describes
how to make the choice of our basis functions and how
to get nonrelativistic energies for the core-excited states
ls282p ( P) and 1s2p ( S) of the berylliumlike isoelec-
tronic sequence Li, Bet, BII:, CIII, NIv, Ov, F vr,
Ne VII. Section IV presents our main results and discus-
sions; some comparisons are also made. Section V makes
some concluding marks.

II. THEORY

where M is the nuclear mass, si and p; are the spin and
the linear momentum of the ith electron. The basic wave
function for the four-electron system can be written as

@s(1,2, 3, 4) = A ) C,4'„(,) )(,)(1,2, 3, 4),

where A. is the antisymmetrization operator and
O„(;) ((,) (1,2, 3, 4) is given by

C „(;))(;)(1,2, 3, 4) = P„(,) )(;)(R)Y;(,) (0)Pss, ,
LM

where

4

(L)„(,) )(;)(R) = r,
"'exp (. n, r,—)

A different set of a~ is used for each l(i). The angular
part is

Yi(') (0) = ) (L1L2m1m2~L12m12)
mj

x (L12L3m12m3~L123m123)

A. Energy

The nonrelativistic Hamiltonian for the upper bound
is given in atomic units by

x (l123L4m123m4~LM) Y&, , (O~). (11)
j=l

To simplify notation, this angular function is denoted as

N
1

Ho ——) ——V' +)
The perturbation operators due to the corrections &om
the kinetic energy (H1, ), the Darwin term (HD), the
electron-electron interaction (H„), the mass polarization
(H ), and the orbit-orbit interaction (H ) are

l(i) = [(L1, l2)L,2, L3]L123) l4. (12)

XSSM [(81)82)812) 83]8123)84 ~

In this expression, it is implied that l]23 and l4 couple into
a wave function of the total orbital angular momentum L
and the azimuthal component M. The four-electron spin
wave function can also be represented in this notation as

where

H' = HI, + HD + H„+H + H (2)

(3)

The linear parameters C, and the nonlinear parameters
o.j are determined in the energy optimization processes.

The upper bounds of the 18282p2(sP) and the
182p3 (sS) states are calculated using the Rayleigh-Ritz
variation method

N

Hr) =,) b(r, ),
i=1

N

H..= ——,) [1+-s,s, s, ja(r,,),

(4)

(5)

(14)

Once the basic wave function 4b and the corresponding
upper bound Eg are obtained, we can implement the re-
stricted variational method [35,36] to improve Eb This.
is done by using 4'p as a single term to expand the total
wave function as

@),(1 2 3 4) = Do%'a(1 2 3 4) + 4' (1 2 3 4) (15)

(6)
where

(16)

@,(1,2, 3, 4) is a function to saturate the functional
space. It takes the same form as )I'g(1, 2, 3, 4), but the
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nonlinear parameters 0.
&

are much diferent &om the o,z's
of @s(1,2, 3, 4). Thus another secular equation can be
constructed and an. energy improvement over the upper
bound. Eg could be obtained. In fact, one can include
a very large number of linear parameters into the wave
function by using a set of 4 's whose contribution can
be computed individually. The total improvement to the
nonrelativistic energy LE, , is the sum of the contribu-
tion &om each of the 4 's. For more details we refer the
reader to Refs. [35,36].

The relativistic and mass polarization corrections are
given by

The fine-structure energy levels are calculated by

(BEEFS)j = (@'Lsjj, IHs + H + H I@Isjj.) . (25)

C. Hyper8ne structure

The hyperfine interaction describes the interaction be-
tween the electrons and the magnetic and electric mul-
tiple moments of the nucleus. For an N-electron sys-
tem, the magnetic dipole and the electric quadrupole
hyperfine-structure contribution [37,38] to the Hamilto-
nian in atomic units is

AE = (@s~Hi, + Hlj~C s)
+(e,~H., +H +H..~e.) =~E, +~E„(17)

where LEi is the first-order energy from the one-particle
perturbation operators and. LE2 is &om the two-particle
operators. The total energy becomes

where

Hhfs —~c + ~SD + ~l + ~q &

Cl
N

H, = grg, I .) 8vrs, h(r, )6m„

(26)

(27)

Etotal Eb + +Eres + +E ~ (18) is the Fermi contact term,

B. Fine structure

The fine-structure perturbation operators are given by

+PS 08O + +88 + +SOO)

N

HsD = —— ~loglg, I .) [C( ) (i) x s;]T,
p 4=1

is the spin dipolar term,

(28)

where the spin-orbit, the spin-spin, and spin-other-orbit
operators are mp

N

gIgiI ).1'r; (29)

+SO

N

, ) 1;.sr,. ',
2c (2o)

is the orbital term,

N
/(2) . g(2)r —s (30)

N

H..= ) Sq S~
C T

3(r;j . s, )(rV si) 21
"%2

&8OO = 1 1) (r; —r~) x p; (s; ~ 2s~) . (22)
i,j=1

OL,sjj = ) (LSMS,
~

JJ,)4r, sMs
M, S

(23)

The 1; and s; are the orbital and the spin angular mo-
mentum of the ith electron. The wave function used to
calculate these perturbations in the ISJ representation
is

is the electric quadrupole term, and I is the nuclear spin
momentum. The tensor C,. is connected to the spherical

harmonics Y'i (i) by C =
2&+~ Yi . Q is the nuclear

electric quadrupole moment ((I, MI = I~pe ~I, MI(2)

I) = ~2). gI is the nucleus spin g factor, gi = (1 —
M

'
)

is the orbital electron g factor, and g, = 2.0023193 is
the electron spin g factor. m„ is the mass of the proton.

The hyperfine interaction couples the electronic (J)
and the nuclear (I) angular momenta to a total angular
momentum F = I + J. In the ~IJFMp) representation,
using 3j, 6j, and 9j coeKcients, the hyperfine energy
corrections [37,39] associated with the four perturbation
operators are

where

@LsMs, = +) Gi4'm(i), l(i)(+)Y&(i) (~)Xss (24)
LE = LE~ )+LE +LE) +LE( )

where

(31)

b E( ) = (IJFMJ; iH, iIJ'FMy )

GMg. ( l)I+j+F+—+~+ —Q+(2J + 1)(2J'+ 1)
i+,-I O I, &-S O S

(32)
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= (IJFMF ~HSD~I J FMF)

I J/F 'S LJ
1 2 1

&EI" = (»FMF ~%~»'FMF)

= G~&~( 1)'+—'+ +'+'+'+'V'(2J+1)(»'+1)
I I 0 I) 0 LO —L)

J I 1J'JS (34)

AE~ l = (IJFMF~H~~IJ'FMF)

= —(-1)'+'+ +'+'+'+'V'(2J+ 1)(»'+ 1)
i4 I 0 I) 4 LO —L)

x JI 2 J/ JS bq (35)

» Eqs. (32)—(35), GM = "' (pl is the nuclear mag-

netic moment); a~, asD, a~, and bq are the Fermi contact,
the spin-dipolar, the orbital, and the electric quadrupole
hyperfine parameters, which are given by [37]

and

-', C(C + 1) —I(I + 1)J(J + 1)

a, = SLSL ) 8vr8(r, )so(i) SLSL
i=1

where C = F(F + 1) —J(J + 1) —I(I + 1) and K =
I + J + F. These Ag, AJ g 1, and BJ are the hyperfine
coupling constants [37].

N

asD: SLSL 2CO i so i r,. SLSL, 37
i=1

and

N

a) —— SLSL lo i r,. SLSL
i=1

N

bq: SLSL ) 2Co~ l(i)r' SLSL
i=1

(38)

After the Fermi contact, the spin-dipolar, the orbital,
and the electric quadrupole hyperfine parameters a~, asD,
a~, and bq are calculated, we can easily get the diagonal
and ofF-diagonal hyperfine coupling constants by using
the following equations [37,39]:

b,E~ l(J, J) + b,EsD(J, J) + AE( (J, J) = —AgC,

(40)

~E&'~(J, J —1) + aE,"(J,J —1) i ~E,&'~(J, J —1)
1 1= —Ag g g [(K + 1)(K —2F) (K —2I) (K —2J + 1)]~,

(41)

III. CHOICES OF BASIS FUNCTION
AND NONREI ATIVISTIC ENERGIES

In order to achieve accurate calculations for various
properties of the core-excited berylliumlike system, a
choice of basis function with suKciently high quality is
critical and it is our major concern. In this section we
will discuss how to choose the best basis function to ob-
tain the nonrelativistic energy beginning with the I i
negative ions.

For the 13232p2(sP) state, the parity (—1)~' &'l is
even. There are many important angular series [lql2l3l4]:
[00l, l], [Oll, (l+1)], [ill, l], [02(l+1),(l+1)], [ill, (l + 2)],
[02(l+1), l+3 ], etc. For the ls2ps(sS) state, the par-
ity (—1) ' ~~' is odd. Hence the available angular
series should be [Oll, l], [ill, (l + 1)], [02(l+1),(l+2)],
[12(l+1),(l+1)], [12(l+1),(l+3)], [22(l+l), (l+2)], etc. In
both cases, the initial value of l is 1. To select the best
basis function, our criterion is that for each l1, l2, l3, and
14 angular component with more than 1.0 x 10 a.u. en-
ergy contribution, it is included in %g. For an angular
component [lql2lqlq] that contributes less than 1.0 x 10
a.u. but more than 1.0 x 10 ~ a.u. , it is included in the
restricted variational calculation. For each set of orbital
angular momenta l1, l2, l3, and l4, there could be several
ways to couple this set into the desired total orbital angu-
lar momentum. In order to make sure that all important
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TABLE I. Angular components [lzlslsl4] for ls2s2p ( P) and la2p ( S) states. [lzl2lsl4] represents collectively the possible
couplings of li, lq, l3, and /4.

[Ool, l]
[oo11]
[0022]
[0033]
[oo44]
[oo55]
[oo66]
[oo77]
[0088]

[Ol l, l]
[0111]
[O122]
[0133]
[0144]
[0155]
[0166]
[O177]
[0188]

[Oll, (l + 1)]
0112]
O12S]
0134]
0145]
0156]
[0167]
[0178]
[0189]

[11l, (l + 1)]
[1112]
[1123]
[1134]
[1145]
[1156]
[1167]
[1178]
[1189]

[11l,l]

[1111]
[1122]
[1133]
[1144]
[1155]
[1166]
[1177]
[1188]

[02(l + 1), (l + 2)]
O22S]
0234]
0245]
0256]
0267]
0278]
0289]

la2a2ps( P)
[O2(l + 1), (l + 1)]

O222]
0233]
0244]
O255]

1s2ps( S)
[12(l + 1), (l + 1)]

[1222]
[1233]
[1244]
[1255]

[ill, (l + 2)]
[1113]
[1124]
[1135]

[12(l + 1), (l + 3)]
[1224]
[1235]
[1246]

[O2(l + 1), (l + 3)]
[0224]
[O235]

[22(l + 1), (l + 2)]
[2223]
[2234]

combinations are included in the basis function, efforts
have been made to avoid missing an important contri-
bution for a particular coupling. In the case of Li, we
obtain a 45 angular component 1004-term wave function
for the la2a2p2(sP) state and a 34 angular component
825-term wave function for the la2ps(sS) state.

In principle, after we have obtained the wave function
for the Li negative ions, we can exploit the same type of
basis function for the core-excited berylliumlike higher-Z
system. However, there are subtle changes, for example,
for some angular terins, their contributions to the upper
bound increase appreciably with Z, while others decrease

with Z. Hence some adjustments have been made on the
choice of basis function for different Z accordingly. The
basis functions that are left out in 4'p are again employed
in the restricted variation calculation. In Table I we use
[lgl2lsl4] to represent collectively the various orbital an-
gular momentum couplings &om Ii, l2, l3, and I4, which
are included in the basis functions and in the restricted
variation calculation.

Once the optimized basis function is obtained, we can
use it to compute the upper bound to the nonrelativis-
tic energy for the la2a2p2( P) and the la2p (sS) states.
We notice that the la2p ( S) state converges faster, there

TABLE II. Energies of berylliumlike la2s2p ( P) and la2p ( S) (in a.u.). Rz stands for up-
per bound; AE„, is the correction from restricted variation calculation; En nr i is nonrelativistic
energies; AE„i is the relativistic corrections and mass polarization.

3
4
5
6
7
8
9

10

-5.386 501 9
-10.423 134 8
-17.220 050 5
-25.770 617 7
-36.072 945 3
-48.126 339 7
-61.930 317 8
-77.484 732 6

&Eres

-0.000 070 9(35)
-0.000 073 8(37)
-0.000 081 0(41)
-0.000 084 2(42)
-0.000 082 3(41)
-0.000 078 5(39)
-0.000 078 0(39)
-0.000 101 4(51)

nonrel

la2s2p ( P)
-5.386 572 8

-10.423 208 6
-17.220 131 4
-25.770 701 9
-36.073 027 6
-48.126 418 2
-61.930 395 8
-7?.484 834 0

AE„i

-0.000 599 8
-0.001 972 5
-0.005 009 8
-0.010 728 5
-0.020 413 2
-0.035 616 0
-0.058 057 8
-0.089 917 5

Et otal

-5.387 172 6(35)
-10.425 179 8(37)
-17.225 141 3(41)
-25.781 436 7(42)
-36.093 440 7(41)
-48.162 036 3(39)
-61.988 453 6(39)
-77.574 811 5(51)

3
4
5
6
7
8
9

10

-5.256 052 9
-10.184 685 4
-16.876 423 9
-25.323 439 0
-35.523 208 2
-47.474 621 8
-61.177 040 0
-76.630 168 9

-0.000 044 0(22)
-0.000 042 4(21)
-0.000 056 8(28)
-0.000 057 1(28)
-0.000 056 9(28)
-0.000 034 9(17)
-0.000 037 6(18)
-0.000 036 6(18)

1s2p ( S)
-5.256 096 9

-10.184 727 8
-16.87 6480 7
-25.323 496 2
-35.523 265 1
-47.474 656 7
-61.177 077 6
-76.630 205 6

-0.000 557 2
-0.001 790 4
-0.004 486 7
-0.009 536 2
-0.018 060 0
-0.031 400 7
-0.051 210 2
-0.079 293 2

-5.256 654 1(22)
-10.186 518 2(21)
-16.880 967 5(28)
-25.333 036 6(28)
-35.541 324 8(28)
-47.506 057 4(17)
-61.228 287 8(18)
-76.709 498 8(18)
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are fewer angular coupling terms that make a significant
contribution, and correlation effects between the angu-
lar components are more apparent. By contrast, the
ls2s2p2(5P) state is more difFicult to compute; there
are more important angular terms. The correlation and
configuration-interaction eÃects between the various an-
gular components are very strong. There are many com-
ponents contributing significantly to the energy.

To improve the energy obtained &om 4'b, we use the re-
stricted variational method to compute energy contribu-
tions &om each chosen angular series. By summing these
contributions, the energy improvement over the upper
bound Eb has been achieved. In this work, we included
the orbital angular component up to l = 9. The energy
contribution &om groups with I ) 9 is small and negli-
gible. Thus, by summing the energies from 4b and the
restricted variation calculation, the total nonrelativistic
energies are obtained. These values are given in Table
II. In this table we have also quoted the possible error in
the energy due to the Inissing angular components and
the fact that the energy &om the restricted variation cal-
culation is not an upper bound.

IV. RESULTS AND DISCUSSION

The energies obtained in this work are substantially
lower than previously published theoretical data; for ex-
ample, for Li negative ions, the most accurate theoreti-
cal data, to our knowledge, are from Bunge [13]. His en-
ergy upper bound for the ls2s2p2(5P) and the ls2ps(5S)
states are —5.386 346 a.u. and —5.255 899 a.u. which are
higher than the upper bounds obtained in this work by
0.000 156 a.u. and 0.000 154 a.u. , respectively. Our ex-
trapolated nonrelativistic energies for the two states are
—5.386573 a.u. and —5.256097 a.u. which are lower
than those of Bunge [13] by 94 pa. u. and 117 pa. u. , re-
spectively. We noted that the upper bounds obtained in
this work are lower than the extrapolated results in Ref.
[13] by 23 pa. u. and 73 pa. u.

We have also used @b and the length, the velocity, and
the acceleration formula to calculate oscillator strengths
and the corresponding transition probabilities between
the ls2s2p2( P) and the ls2p (sS) states for this beryl-
liumlike isoelectronic sequence. These results are pre-
sented in Table III.

Our energies for the Li ls2s2p2( P) and ls2p ( S)
states are much improved over those of Bunge [13] and
our transition energy 28643(1) cm i is well within the
quoted uncertainty of Bunge, 28649(9) cm i; however,
it lies outside of the quoted experimental uncertainty
28 647(2) cm i. The reason for this discrepancy is not
clear. The higher-order relativistic and @ED effects are
negligibly small for this system. This discrepancy seems
to suggest that our ls2s2p2(sP) energy is too high by
more than 10 p,a.u. Judging &om the results &om the
restricted variation calculation, it is diKcult to find the
source of this 10 pa. u.

Our calculated radiative lifetime for the Li
ls2p (sS) state, 2.91 ns, agrees with the 2.86+0.10 ns
of Bunge [13] and the 2.90+0.20 ns of Berry et aL [40];
however, it disagrees with the later experiments of Man-
nervik [41], 2.3 +0.1 ns, and Berry et al. [16], 2.28+0.05
ns. To find the reasol. for this discrepancy, we compare
our calculated radiative lifetime with the best experimen-
tal lifetimes for the entire Be-like series. It seems that
the e8'ect &om the spin-dependent interactions becomes
significant for Z ) 8. But, based on the close agree-
ment between theory and experiment, it is not important
for beryllium, boron, carbon, and nitrogen. This effect
should be even smaller for Li

In Table III we give the results of oscillator strengths
&om the dipole-length, -velocity, and -acceleration for-
mula using 4b. The agreement suggests that the non-
relativistic wave functions are probably quite accurate.
We use the same basis function to calculate the energy
contribution by including the mass polarization pertur-
bation operator H in Ho and the relativistic corrections
HI„HD, H „and H with the first-order perturbation
theory.

The contributions &om higher-order relativistic effects

TABLE III. Transition energy and oscillator strength between 1s2s2p ( P) and ls2p ( S) states.

4
5
6
7
8
9

10

fi/f /f
0.2095/ 0.2093/ 0.2277

0.1777/ 0.1773/ 0.1759
0.1408/ 0.1402/ 0.1497
0.1150/ 0.1150/ 0.1253
0.0970/ 0.0970/ 0.1076
0.0837/ 0.0837/ 0.0852
0.0736/ 0.0736/ 0.0703
0.0657/ 0.0657/ 0.0565

Expt.
9+0.2

2.3+0.1'
1.1+0.1

0.65+0.01
0.49+0.03'
0.33+0.06
0.21+0.02
0.18+0.02"
0.09+0.01~

1.0265
0.6240
0.4510
0.3538
0.2917
0.2483
0.2163

P lifetime (ns)
This work

2.9095 2.
This work

28643(1)

52376(1)
75533(1)
98405(1)

121171(1)
143966(1)
166832(2)
189911(2)

52371 +16"
75533 +4
98419 +5

121131+15
143936 +21
166758 +28g
189879 +36"

52416
75695
98445

121197
143947
166778
189789

99187
121951
144739
167616
190658

Transition energy (cm )
Other theor.

Expt. Ref. [19] Ref. [18]
28647+2 28649 (9)

Berry et al. [27].
Bunge [13].

'Mannervik [41].
Mannervik et al. [14].

'Berry et al. [16].
Livingston and Hinterlong [25].

sHardis et al. [15].
"Martinson et al. [24].
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TABLE IV. Fine structures (cm ) for the ls2s2p ( P) states of the Be-like isoelectronic se-
quence.

10

&21

&32

V21

&21

&32

&21

&32

&32

&21

&32

&21

&32

This
with Hhfs

1.00
-1.36
6.16

-2.64
22.40
2.30

58.09
24.53

126.90
78.45

243.19
183.91

694.41
649.98

work
without Hhf.

0.91
-1.32
6.15

-2.63
22.44
2.22

58.09
24.53

126.90
78.45

243.19
183.90
425.22
364.69
694.41
648.98

Ref. [17]

6.65
-0.52
22.98
6.13

59.63
30.21

129.19
86.72

247.34
194.95
433.19
378.50
709.46
665.17

Ref. [15]

57
21

125
73

242
176
426
354
700
633

Expt.

63.5(1.5)
21.3

127(1)
79.5(.8)

254(4)
188(2)

419(20)
396(20)
711(22)
680(7)

Ref.

[16]
[16]
[16]
[16)
[16]
[16]
[24]
[24]
[15]
[15]

TABLE V. Values of the nuclear spin I, the nuclear mag-
netic dipole moment pl, and the electric quadrupole moment

Q taken from Ref. [43].

Species
7L'—

'BeI
"BII

C III' NIv
170V

I
3/2—
3/2—

3+
3/2—

1+
5/2+

pg (nm)
3.256427
1.177492
1.800645
0.964000
0.403761
1.893790

Q (~)
0.0370
0.0530
0.0847

0.03426
0.0193

0.02578

Species
Li
Be I

"BII
"CIII
'4N Iv
"ov

a.('P)
111.1622
266 ~ 1643
525.5163
916.0758
1464.725
2198.949

asD('P)
-0.03797
0.16705
0.43720
0.90217
1.60988
2.60857

TABLE VI. Hyperfine parameters of berylliumlike ls2s2p ( P)
a(('P)

0.18427
0.82458
2.16994
4.47131
7.97872

12.94203

and ls2p ( S)

b~( P)
-0.07603
0.33411
0.87439
1.80434
3.21977
5.21714

states (in a.u.).
a ( S)

106.0230
250.0465
487.7607
843.5378
1340.049
2004.057

Species
Li
Be I

"BII
C III' NIv

170V

Ag( P)
3.19949

-2.76867
4.17822

-7.79631
7.82996

-22.0421

TABLE VII. Hyperfine coupling constants of beryliiumlike ls2s2p ( P) and ls2p ( S)
A ( P) Al( P) B ( P) B2( P)
2.57667 5.74981 6.60968(-4) -6.60968(-4)

-2.24231 4.96801 4.16068(-3) -4.16068(-3)
3.39751 7.48907 -1.74059(-2) 1.74059(-2)

-6.35833 -13.8775 1.45248(-2) -1.45248(-2)
6.39995 14.0157 -1.46011(-2) 1.46011(-2)

-18.0476 -39.4379 -3.16197(-2) 3.16197(-2)

states (in GHz).

Bl( P)
6.60968(-5)
4.16068(-4)

-1.74059 (-3)
1.45248(-3)

-1.46011(-3)
-3.16197(-3)

A(S)
3.66437

-3.12490
4.66082

-8.63057
8.62021

-24.1686
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are estimated by using a method described by Chung et
aL [42). For the core-excited ls2s2p2(sP) and ls2ps(sS)
states, it is more difficult to calculate the @ED contri-
bution. A rough estimate of the @ED efFect shows that
the contribution is very small. They are neglected in this
work.

In Table III we compared the calculated 5P - S tran-
sition energy with that of the experiment for Z = 5—9.
For Be I and B j:I atoms, the experimental transition wave-
length is 1909.46 60.60 A. [22]; ours is 1909.27 A. . For Bn
ions, the experimental value is 1323.92+0.07 A. [14]; ours
is 1323.92 A. . Both are within the experimental uncer-
tainty. The calculated result for Ne vie is also within the
experimental uncertainty; however, for other states, we
are slightly ofF from the experimental data (see Table III).

In this work, the fine-structure splittings are calcu-
lated with the H, , H, , and H„perturbation opera-
tors by using the first-order perturbation theory on the
ls2s2p2( P) states We. also wish to see how the hyper-
fine interactions may afFect the "apparent" fine structure
in an experiment. These results are given in Table IV. It
appears that the efI'ect coming &om the hyperfine interac-
tion is very small for these quintet states. A comparison
between theoretical and experimental fine-structure data
has been made. For most of our results, the fine-structure
computations of this calculation are in good agreement
with those of the multiconfiguration Dirac-Fock result
[15,17] and with experiment. However, for the Ne vs2
our result is substantially lower than that of the exper-
iment. Perhaps the neglected @ED efFect in our work
may have contributed to this discrepancy.

The method outlined in Sec. IIC is used to calculate
the Fermi contact (a,), the spin-dipolar (asD), the orbital
(a~), and the electric quadrupole (b~) hyperfine-structure
parameters and the hyperfine coupling constants AJ and
Bg for the ls2s2p ( P) and the ls2p ( S) states of the
difFerent berylliumlike species. By using these parame-
ters and coupling constants, the hyperfine-structure en-
ergies are also calculated. In this calculation, the nu-
clear spin I, the nuclear magnetic dipole moment pI,
and the electric quadrupole moment Q are taken f'rom

Ref. [43]; these values are tabulated in Table V. In Ta-
ble VI we give the Fermi contact (a,), the spin-dipolar
(asD), the orbital (a~), and the electric quadrupole (b~)
hyperfine-structure parameters; in Table VII the hyper-
fine coupling constants AJ and Bg are presented. Un-

fortunately, to our knowledge, no calculations of the hy-
perfine parameters a, asD, a~, bq and the hyperfine cou-
pling constants Ag and BJ have been reported for the
core-excited ls2s2p ( P) and ls2p ( S) states .Hence
we cannot make any comparison with both theory and
experiment.

V. SUMMARY'

In this work, we have made a detailed atomic structure
study on the berylliumlike ls2s2p2( P) and ls2ps(sS)
states for Z = 3—10. For each species, the results for the
upper bound, the nonrelativistic energy, the transition
wavelength, the oscillator strengths, the lifetime, the fine
structure, the hyperfine parameters, and. the hyperfine
coupling constants are reported. The relativistic correc-
tions and the mass polarization are included. The upper
bounds and. nonrelativistic energies obtained in this work
are much lower than the previously published values for
each member of the isoelectronic sequence. This leads
to some improvements in the agreement with the preci-
sion experiment, for example, for the transition energies
of boron and beryllium. However, we find that after we
reduced the theoretical uncertainty in the Li transition
energy, the result is slightly ofF &om the experimental
d.ata. The lifetime is also longer than that reported in
the later experiment. The reason for these discrepancies
is not clear at this time.

We have studied the eÃect of the hyperfine interaction
on the observed fine structure of P. Our conclusion is
that this efI'ect is very small. It is justi6able to neglect it
in the fine-structure experimental analysis.

1Voted added in proof In a th. esis by V. Lodwig
(University of Bochum, 1989), the Li ls2s2p ( P)-
ls2p ( S) transition wavelength is measured to be
3490.26(25) A which agrees with the 3490.22 A. obtained
in this work. We are grateful to S. Mannervik (Stock-
holm) for bringing this result to our attention.
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