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In three-level atoms where one level is the ground state and one is a metastable state, even low-
intensity resonance radiation can lead to bleaching. This effect causes the radiation trapping to become
nonlinear and thus greatly complicates the simulation of such a system. We set up equations to model an
optically excited three-level atomic vapor in a two- or three-dimensional cylindrical cell; the model in-
cludes the effects of radiation trapping, particle.diffusion, and quenching. We then develop a fast and
efficient approximate method for the solution of these equations. Results are compared to Monte Carlo

simulations; agreement within 15% is achieved.

PACS number(s): 32.70.Jz, 32.50.+d

I. INTRODUCTION

Resonance radiation is emitted by excited atoms when
they decay to a lower state. If these atoms are surround-
ed by atoms of the same kind, e.g., in an atomic vapor,
the resonance radiation can be absorbed and reemitted
many times before it reaches the boundaries of the vapor
cell. This effect is known as “‘radiation trapping” [1]. It
is of great interest in atomic physics, e.g., atomic and
molecular spectroscopy [2] and atomic line filters [3].
Radiation trapping has furthermore been investigated ex-
tensively in astrophysics (see, e.g., Refs. [4,5], and refer-
ences therein), but for a range of parameters (high opaci-
ty, thermal excitation of atoms) that is of little interest
for the laboratory situations of atomic physics.

Most of the papers on radiation trapping under labora-
tory conditions deal with trapping in two-level atoms,
where the lower state is the ground state (see Refs.
[6-11], and references therein). In such a system, pho-
tons are absorbed and reemitted at roughly the same
wavelength. Nonlinearities, i.e., saturation in this case,
only set in when the excited-state density becomes com-
parable to the ground-state density. This happens when
intensities become comparable to the saturation intensity
I,. For transitions in the visible spectral region, I, is
rather high, on the order of 10 W/cm? [3].

In a three-level system where one energy level has a
large lifetime (a metastable level), the situation is much
more complicated. Such a system is of considerable in-
terest not only from a theoretical but also from a practi-
cal point of view. Three-level atomic vapors play an im-
portant role in gas lasers and in atomic line filters [12,13].
Thallium (T, see Fig. 1 for a partial energy-level scheme)
is a typical example.! An upper-state (7s) atom can de-
cay either to the ground state (6p; ,) or to the metastable

1As an example, in the following we specialize the discussion
to Tl, but of course all considerations are equally valid for other
three-level systems.
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state (6p3 /,), emitting a 378 nm uv or 535 nm green pho-
ton, respectively. The reabsorption rate will now depend
on how many atoms are in the ground state and how
many are in the metastable state. If all atoms are in the
ground state, then the uv transition will be trapped, while
the green transition will not be trapped and vice versa.
Suppose now that we have a vapor cell where initially all
Tl atoms are in the ground state and we illuminate this
cell with external uv radiation (henceforth called “pump
radiation”). In the beginning, the uv transition is
trapped, while the green transition is not. This implies
that the absorption of one pump photon will lead to the
creation of a metastable atom with a probability that is
higher than the green-to-uv branching ratio of 50%, be-
cause the “‘effective decay rate” (Einstein A coefficient
times the probability of escape) is higher in the green
than in the uv. The metastable atoms are very long
lived—they act as a kind of storage reservoir—so that
even quite low pump light power will deplete the ground
level. This in turn leads to a decrease in the absorption of
pump photons (since there are fewer absorbers), to de-
creased trapping of the uv transition, and, due to the
creation of the metastable atoms, to increased trapping of
the green transition. These effects result in a decreased
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FIG. 1. Partial energy-level scheme of thallium; hyperfine
splitting not to scale.
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production rate of metastable atoms. The whole process
is thus highly nonlinear. Due to the large lifetime of the
metastable state, these “bleaching” nonlinearities (as op-
posed to “saturation,” which implies the presence of
stimulated emission) set in at an intensity that is orders of
magnitude lower than that required for saturation.

To our knowledge, the trapping problem in three-level
atoms has not yet been analyzed for laboratory condi-
tions, although nonlinear trapping has been treated in the
astrophysical literature. In a laboratory problem, we
have to take into account many effects that are of no
relevance for astrophysical computations, such as
reflecting cell walls, particle diffusion, and wall quench-
ing. Especially, the astrophysical computations are re-
stricted to one-dimensional geometries (slabs or spheres),
while we are interested in the finite cylinder geometry,
which is two or three dimensional.

In our approach to the problem, we first model the
relevant physical processes mathematically. We then de-
velop an approximate method for the computation of the
steady-state spatial distributions of the atoms in the three
states—the upper, the metastable, and the ground state.
Our method allows computations within reasonable time
even for two- or three-dimensional geometries. These re-
sults are then compared to Monte Carlo simulations. A
simple, closed-form equation for the average density of
metastable atoms is proposed that gives a first idea on the
influence of the involved parameters. As an application,
we show that this method can be used to predict the ab-
sorption efficiency of a thallium atomic line filter.

II. MODELING OF THE PHYSICAL PROCESSES

Figure 2 shows the geometry of the problem. A cylin-
drical glass cell of length L and radius R is filled with a
three-level atomic vapor, thallium in our example, and a
foreign gas—a noble buffer gas is often necessary to
achieve high metastable lifetime in a cell of small dimen-
sions. The cell boundaries may be mirrored, the
reflection coefficients of the mirrors can vary over the cell
radius 7, over the cell length z, and over the circumfer-
ence angle ®. The reflection coefficients can be different
for the uv and the green. uv and green radiation is in-
cident on the cell boundaries (top, bottom, and side
walls). The incident radiation can vary with 7, z, and .
This geometry covers most practically occurring situa-
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FIG. 2. Geometry of the problem.
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tions. We wish to compute the steady-state distribution
of the metastable and the ground-state atoms. For our
computations, we make the following assumptions.

(i) No stimulated emission occurs, i.e., the intensities
are considerably below 10 W/cm?.

(ii) The flight time of the photons is much shorter than
the natural lifetime of the upper state (7s in our case)
atoms. For the usual excited-state lifetimes, this condi-
tion is fulfilled for cells that have dimensions of less than
1 m.

(iii) We have complete frequency redistribution in the
laboratory rest frame—the frequency of the reemitted
photon does not depend on the frequency of the previous-
ly absorbed photon. This is a good approximation if a
buffer gas is used [14].

In a first step, we set up the steady-state rate equations
for the three levels involved. For the metastable state, the
density is increased by 7s atoms that decay to the meta-
stable state. It is decreased (i) by the reverse process—
metastable atoms absorbing green photons, (ii) by radia-
tive decay of the metastable atoms to the ground state,
(iii) by self-quenching due to TI-TI collisions, and (iv) by
foreign-gas quenching. Furthermore, the spatial distribu-
tion of metastable atoms is changed by particle diffusion,
and all metastable atoms that hit the cell walls are
quenched. The resulting rate equation for the metastable
atoms is

Agn7s(?)Ntot=nm(?)

B& o= N
XNy [ [ 1507, 8,v) CE k8(v) dvd
+nm(?)Ntot _—L+_l""+ 1

nat Tq,T1 T4¢,BG
—DV?[n,(F)N ] » (1)

where A% and B¢ are the Einstein coefficients for the
green transition, N, is the Tl atomic density, n,; and n,,
are the fraction of Tl atoms in the 7s and metastable
states, respectively, I¢ is the intensity of the green radia-
tion, 7 is the location in the cell, Q is the spatial angle of
the direction of the radiation, v is the radiation frequen-
cy, D is the diffusion constant of the metastable atoms
through the buffer gas, and 7, 7,1 and 7, gg are the
lifetimes of the metastable atoms due to natural decay,
self-quenching, and buffer gas quenching, respectively;
k&(v) is the absorption line shape of the green line, and

c5=1/fkg(v>dv

is the line-shape normalization constant. The boundary
condition for the metastable atoms is that all metastable
atoms that hit the cell walls are quenched. It can be
shown [15] that these absorbing boundary conditions can
be approximated very well by a Cauchy-type boundary
condition

—

on,, (¥,t)

n — =nm(?hound!t) ’ (2)
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>
Tbound

where 7 is the normal on the cell boundary and 7 is 0.71
times the mean free path u of the diffusion. The mean
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free path is related to the diffusion constant by D =upv,
where U is the mean relative velocity of the colliding
atoms. In most practical cases, the left-hand side of Eq.
(2) is so small that we can use the Dirichlet boundary
condition n,, =0 at the cell walls without significant er-
ror.

The density of upper-state (7s) atoms is decreased by
spontaneous emission, and is increased by absorption of
green and uv photons. The rate equation for the 7s atoms
is thus

(A3+A“V)n7s(?)Nmt

=n,,(F)N m4 = [ [ 1%7,8,v) C& k¥(v) dvd©

thng (?)Ntoti ffI“" 7,Q,v)
XCYW k™v)dvdQ , (3)

where superscript uv denotes parameters for the uv tran-
sition, and ng _is the fraction of atoms in the ground
state: n, ~1 n,,. We can neglect energy-pooling col-
lisions of the metastable atoms in both rate equations.
The cross section for such collisions is usually much
smaller than the self-quenching cross section, so that they
are not a relevant loss mechanism for the metastable
atoms. Furthermore, the production rate of upper-state
atoms by such collisions (either directly or via some
higher-lying level) is much lower than the production
rate by photon absorption (note that the metastable den-
sity is related to the light intensity). Two-photon pro-
cesses do not occur, since we deal with quite low light in-
tensities.

For the thallium metastable level, the relevant parame-
ters are a natural lifetime of 230 ms [16], self-quenching
cross section o,p=5X 1071® cm™2 [17], foreign-gas
quenching by argon, o0,,=5X10"%* cm™% [16],
diffusion constant D =D, /p, where D, is 0.3 cm 2bar/s
and p is the Ar pressure [16].

The equations of radiative transfer for the green and uv
transitions are

d O — A8 n7s(r)
—I87,Q,v)=—k8F,v) |I&F, Q V) ——— 4)
ds B¢ n,,(F)

d

IY(#,Q,v)

= IY(F,Q,v)=—k"™(F,v)
df h% r,v

uv s(_’)
_ A __] )

B™ 1—n, (7)

where d /ds is the derivative in the considered direction
of the radiation. As boundary conditions of the equa-
tions of radiative transfer, we have reflecting walls with
reflection coefficient I', which can be different for uv and
green radiation. We furthermore have a certain
prescribed distribution I™9ent  at  the cell walls.
Mathematically, these boundary conditions can be for-
mulated as
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(6)

uv(> o uv ruv O
I (rwall’ ‘Q’inwards! v)=T"I™(7, Fwall» ‘Q’inwards! v)
uv,incident o
+1 (rwall’ ‘Qinwards’ v).

Equations (1)—(6) completely describe the problem, incor-
porating all practically occurring physical processes.

III. APPROXIMATIONS

The most straightforward approach to solving the
above system of integrodifferential equations is to spatial-
ly discretize the atomic densities, to discretize the radia-
tion intensities in frequency, space, and angle, and then
to replace all integrals by sums and all derivatives by
differences. We get a huge system of algebraic equations
that we have to solve. This approach is commonly used
in astrophysics.

In a two-dimensional geometry, however, such an ap-
proach would lead to prohibitively large CPU-time re-
quirements. We would have to discretize five variables
(two spatial coordinates, two angular coordinates, and
the frequency) instead of the three that are common in
astrophysics. Even if we use only ten spatial and ten an-
gular discretization steps for the additional two variables,
the computational effort increases by a factor of
100°=10° In a three-dimensional geometry, the situa-
tion is even worse, since we have to include yet another
spatial dimension. We thus have to find suitable approxi-
mations to reduce the size of the problem.

In a first step, we try to eliminate the dependence of
the intensities on the considered direction. We expand
the intensity I in a series of spherical harmonics

I(Q)= 2 I,P,(u)+ 2 [a,'cos(m @)+ b, sin(m )]
=1

XPMu) , (N

where u=cos(6), and 6 and ¢ are the angles in a spheri-
cal coordlnate system. We then assume that
I,=al=bl=0 and also that all higher harmonics are
zero [18]; this means physically that we neglect fast varia-
tions of the intensity with u and @. Since the reemission
of resonance radiation is isotropic, we can expect that
this assumption will be fulfilled quite well. With this
simplification, the equation of radiative transfer becomes
angle independent (Eddington approximation [18,19]).
With f I dQ=4mI,=J, we can then reduce Eq. (4) to
%VZ[JS(?,V)]=3—1(_T)V[Jg(?,v)]-ﬁ[nm(?)]
7

+ (k& (v) 1y (P2
A% 1o, (F)

J8F,v)—d47m—
B¢ n,,(F)

(8)

We define k§;(v) so that k(7,v)¥=k&,(v)n, (¥); this
defines k§ as the opacity that would occur if all atoms
were in the metastable state (analogously for k™).
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Hence, k&, n,, is the actual green opacity when a percen-
tage n,, of the Tl atoms is in the metastable state. For
the uv transition, Eq. (5) reduces to

1
3[1—n,, ()]

+ kS (V[1—n,, (F)]}?

IV2AI™(F,v) = VII™(F#,)]-V[1—n,,(7)]

4w ny(7)

B™ 1—n,,(¥)

X |JW™(F,v)—4m

.9

For the boundary conditions, we now only need to
know the incident flux F;,.. The incident flux is defined
as the power entering the cell through a unit area. Using
the above simplifications for the angular distribution of
the radiation, we can write it as

1 oJ (7,v)
3k(7,v) om

—

Finc(r’v)z

%J(?,VH- ., (10)

1
2

where k is kj(1—n,,) or k&, n, for uv and green flux,
respectively. At a reflecting wall, the boundary condition
is that the incident flux is the reflection coefficient times
the emergent flux plus the externally incident flux.
Mathematically, this means

2 1+T J(F)
3k(7) 1-T 3w

In the rate equations, the integration over ) becomes
trivial, [IdQ=J.

In a second step, we can eliminate the frequency
dependence of the problem. We approximate the green
and uv absorption line shapes by equivalent box-shaped
lines so that the whole problem becomes frequency in-
dependent (single-frequency approximation, Milne ap-
proximation [20]). The equivalent opacities k% and k™
are computed from

exp(—kL,,)=C, [ k(v)exp[—L,,k(v)]dv, (12)

J(r)=

+4F () . (11)

where

c,=1/ [kwav

and L,, is a “typical length” of the geometry. In the clas-
sical approximation of Samson [21], L,, is set equal to L.
This works, however, only for a very limited range of
opacities, koL <3. We improve the approximation by us-
ing a kind of harmonic mean between the reabsorption
length and the typical geometrical dimensions,
k(v)dv
L:=C .
n=C.J L2+ (2R)72+[0.18k(v)]?

As we showed in Ref. [11] for the slab case, this approxi-
mation gives good results for center-of-line opacities up

to koL =20. The width of the box-shaped line can be
computed from the Ladenburg relation [1]

A3 g, N
Ay=-0 8« 0
8w 8 k

(13)

(14)

where g, and g, are the statistical weights of the upper
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and the lower levels. We now have to solve Egs. (8)—(11)
only for a single frequency. In the rate equations, the in-
tegration over frequency becomes trivial.

In our context, the Milne approximation poses some
special difficulties which have not been addressed previ-
ously. First, it implicitly assumes that the incident
(pump) radiation has the same line shape as the absorp-
tion line shape of the Tl vapor. This rarely is the case;
even if the pump radiation comes from a thallium spec-
tral lamp, its line shape will usually be distorted by self-
absorption and thus differ considerably from the absorp-
tion line shape. We thus propose to multiply the
(frequency-integrated) incident flux by a “power-
adjustment” factor p,

f{l—exp[—k“v(v)Lm]}k’(v)dv/fk’(v)dv
f{l—exp[—k“V(v)Lm]}k“v(v)dv/fk“"(v)dv ’
(15)

uv —
r

where k/(v) is the line shape emitted by the uv pump
lamp (and analogously for incident green radiation). This
factor is a measure of the “overlap” between the spectral
shapes of the incident radiation and the absorption line
shape in the vapor cell. It becomes unity when the
shapes are identical. Multiplying the incident flux with
p,» we get the correct pump absorption within one ““typi-
cal” distance L,,. However, we cannot get the correct
spatial distribution of the points of absorption. If p, is
very small (e.g., if the incident radiation comes from a
white light source, or, even worse, from a strongly self-
reversed spectral lamp), we can anticipate that the points
of absorption in the Milne approximation will be concen-
trated too much near the side walls. This is a basic prob-
lem of using a single-frequency approximation (box-
shaped line)—it intrinsically neglects the photons in the
wings of the spectral line, i.e., photons emitted at such
frequencies v that kyk(v)R is much smaller than the
line-center opacity. These photons can penetrate much
farther into the cell than center-of-line photons.

In our derivation, we used the assumption “if k& is the
green opacity for the case that all atoms are in the meta-
stable state, then k&, n,, is the actual opacity when a per-
centage n,, of the Tl atoms is in the metastable state”
(and analogously for k2!). This assumption is strictly
valid only for the frequency dependent opacity k (v).
Since the relation between the Tl density (center-of-line
opacity) and the equivalent opacity is nonlinear, it is not
true for the equivalent opacities k. We circumvent this
problem by computing k in each step of the iteration
anew as

&
—0g

kin=— (16)

N

where 7, is n,, averaged over the cell and k¥ is comput-
ed from Eq. (12) with k(v)=k&;(v)A. Strictly speaking,
this also works only for a homogeneous distribution of
metastable atoms; however, the error introduced by ig-
noring the inhomogeneities in the definition of the
equivalent opacity is very small. Finally, it must be em-
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phasized that the single-frequency approximation gives
good results only for opacities smaller than 3 (for the
classical Milne theory) and 20 (for our improved version),
respectively.

Using a single-frequency approximation means that the
computational effort is reduced by a factor equal to the
number of frequency discretization points. This number
usually has to be on the order of 30-100. Hence the
single-frequency approximation is a noteworthy saving.
The error in 7, is smaller than about 10% for the range
of parameters we are interested in (center-of-line opacity
koL <20); this is better than the accuracy of the avail-
able atomic data and thus amply sufficient.

IV. COMPUTATIONAL ASPECTS

The simplified rate equations and equations of radiative
transfer are a coupled system of integrodifferential equa-
tions with Cauchy boundary conditions. As mentioned
in the Introduction, the whole problem is highly non-
linear. However, we can deal with that nonlinearity by a
simple iteration procedure. If we assume that n,, and n;
are known, then the simplified equations of radiative
transfer, Eqs. (8) and (9), are second-order linear
differential equations with nonconstant coefficients; we
solved them by a finite-differences (FD) algorithm to get
the green and uv intensities. If these intensities are
known, the rate equations are linear differential equations
for n;, and n,, which are also solved with finite
differences. These solutions for the densities are then
used for the next solution of the equations of radiative
transfer. Three or four iteration steps are usually
sufficient to get convergence (the difference between the
iteration steps becomes smaller than 1%).

In order for the iteration to converge rapidly, the first
guesses for n,, and n,, should be close to the actual
value. We can usually make a reasonable guess about 7,,,
the fraction of atoms that are in the metastable state,
averaged over the cell (see below). On the other hand, it
is practically impossible to give generally valid guesses
for the shape of the distribution of the metastable atoms.
It is thus reasonable to assume for the first guess that the
metastable atoms are homogeneously distributed in the
cell; only at the cell walls we have n,, =0 according to
the boundary conditions. We thus recommend to use for
the first iteration the distribution

2(1+k&LE ) hv N R*wL | 7"

n,= |1+ P R (17)
where
F! f Kl (x )™ (x)dx
Fabs = (18)

(L72+R™) [klx)dx
everywhere except at the cell boundaries (n,, =0); for n;
we recommend nq,=n,, /A7. A bad initial guess will
usually lead to about two or three additional iterations,
i.e., it will about double the CPU time. These equations
also give a first estimate on the influence of the various
parameters on the average densities.
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Nonequidistant discretization for the finite-difference
computations is essential for efficient calculations. If we
have low particle densities and low buffer gas pressures,
the distribution of the metastable atoms will be quite
similar to the lowest-order diffusion mode, so it drops
slowly from its maximum value near the center of the cell
to 0 at the cell walls. In that case, the choice of the
discretization does not matter very much. If, on the oth-
er hand, the buffer gas pressure is large, n,, has quite
large values at all points except close to the cell bound-
ary, where it rapidly drops from large values to 0. In this
region, we need a quite fine discretization. If we chose
equidistant discretization, the computational effort would
increase like 1/A°, where h is the distance between two
discretization points.

The use of our method allows the computation of a
problem which copes not only with nonlinearities but
also with two- or three-dimensional geometries within
reasonable computer time. On a VAX-Alpha 4000, com-
putations take about 5 sec (with 150 spatial discretization
points). With a standard IBM-PC (486/66 MHz), com-
putation times are estimated to be a factor 15 longer.
These values are typical for two-dimensional geometries,
e.g., a finite cylinder that is independent of angle. Such a
situation is of great practical interest, and the examples
in Secs. V and VI use such a geometry. However, our al-
gorithm is also valid for three-dimensional geometries.

V. COMPARISON WITH MONTE CARLO
SIMULATIONS

The algorithm described above contains approxima-
tions to the angular and to the frequency distribution of
the radiation. In order to check the errors introduced by
these approximations, we compare the results of our FD
algorithm to a quite different approach, a Monte Carlo
(MC) simulation [22]. In the MC simulation, we trace a
photon on its way through the vapor. Parameters such
as frequency, point of absorption, direction of reemission,
etc., are chosen at random from the appropriate statisti-
cal distributions. Since the distribution of absorbers is in-
homogeneous, we have to compute the absorption
coefficient for each path separately. The vapor cell is di-
vided into many subcells. We assume that the metastable
density is constant within each subcell. The opacity
“seen” by a photon along a certain direction will of
course vary from subcell to subcell. We thus have to
compute the intersections of the photon path with the
subcell boundaries and to add up the opacities of the path
lengths within each subcell. If a uv photon is absorbed
and a green photon is reemitted, this means that the
absorbing-reemitting atom has been transferred from the
ground state to the metastable state (and vice versa); the
metastable population of the appropriate subcell is then
increased by 1. As there are many photons and atoms
(typically in the order of 10'%), we introduce a “reduction
factor” p (e.g., p=10°) by which we divide the number of
emitted photons and the number of atoms in the vapor
cell.

We also have to include the effects of particle diffusion

and quenching. After observing the vapor for a time 7,
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[i.e., after the lamp has emitted P’Tstep/(ph v) photons,
where P’ is the power emitted by the lamp], we compute
the effect of diffusion and quenching for the distribution
of metastable atoms within the time 7y.,. We chose an
analytical computation of metastable decay, because an
MC simulation of the diffusion of metastable atoms
through the buffer gas would take too much CPU
time—each metastable state undergoes typically 10® col-
lisions with the buffer gas during one lifetime. 7, must
be chosen small enough that the vapor does not change
appreciably during that time interval. On the other
hand, 7, must not be chosen too small, or roundoff er-
rors could become a problem. 7., =~0.057 a0 has
turned out to be a good compromise.

In the MC simulation, simplifications that are neces-
sary for the FD computations can be lifted and, in addi-
tion, the temporal development of the metastable popula-
tion can be observed. Furthermore, MC results can be
made very accurate by choosing a sufficiently small
reduction factor p, albeit at the cost of large CPU-time
requirements.

As an example for the good agreement between MC
and FD results, we consider the case of a cylindrical Tl
vapor cell where uv radiation is incident on the cell side
walls. The incident uv radiation comes from a toroidally
shaped thallium spectral lamp. Such a situation is of
practical interest for the design of atomic line filters (see
also Sec. VI).

We use the following set of parameters: cell ra-
dius=2.5 cm, cell length=1.5 cm, buffer gas argon,
single-isotope 2°°T1 in the cell. The top of the cell is mir-
rored for all wavelengths. The uv (pump) lamp has a
center-of-line opacity kyR =15, and we assume a para-
bolic spatial distribution of 7s atoms over the lamp ra-
dius; the lamp contains a natural mix of Tl isotopes and
10 mbar argon. For the FD computations, we approxi-
mate the pump lamp by an equivalent area source (i.e., a
circular band at r =R, where R . is the radius of
the torus of the pump lamp). The angular distribution of
the emergent radiation is assumed to be Lambertian. The

line shape of the emergent radiation is self-reversed; it is -

determined by the line-center opacity and the distribution
of the 7s atoms in the pump lamp.

There are mainly three parameters in the rate equation
and in the transfer equation that can vary over a wide
range: the particle density N, the diffusion constant D
(which in turn depends on the buffer gas pressure), and
the incident flux (which is determined by the pump lamp
power). In the following three figures, we vary these
three parameters. We compare the mean percentage of
metastable atoms as computed by the FD and the MC
method in order to assess the errors introduced by the
underlying assumptions and approximations of the FD
method. Figure 3 shows 7i,, as a function of the T1 densi-
ty, varying over two orders of magnitude (10''-10"3
cm™3) for 80 mbar buffer gas pressure. The agreement
between MC and FD is always better than 129%. Figure
4 shows the average percentage of metastable atoms in
the cell as a function of the buffer gas pressure. We again
see excellent agreement between FD and MC results. In-
creasing the buffer gas pressure increases 7,,, because it
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FIG. 3. Percentage of thallium atoms in the metastable state
averaged over the cell, 77,,, as a function of the vapor density:
FD computations (solid) and MC simulations (dashed). The va-
por cell is filled with single-isotope Tl and 80 mbar Ar. Pump
lamp power is 40 mW.

increases both the lifetime of the metastable atoms (at
least up to p =500 mbar, where buffer gas quenching be-
comes dominant) and the power-adjustment factor p, —
the absorption line becomes broader, so that more pump
photons can be absorbed. Figure 5 finally shows n,, as a
function of the pump lamp power (for N,,, =10'' cm ™3
and 250 mbar argon pressure); we see that population in-
version (i.e., 7,, >2/3) can be achieved with only 60 mW
pump lamp power. Baranov [23] proposed to construct a
laser at 1.28 um by using the population inversion in a
thallium vapor and also experimentally demonstrated the
feasibility of such a population inversion.

We see that the results of FD and MC computations
agree within 15%, as we varied the particle density, the
diffusion constant, and the light intensities over orders of
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FIG. 4. Percentage of Tl atoms in the metastable state aver-
aged over the cell, #7,,, as a function of the argon pressure: FD
computations (solid) and MC simulations (dashed). Tl density
in the cell is 10> cm 3. Pump lamp power is 40 mW.



3582
g 100
I 80 —
c —Tm - - =
S |Population | e D77
= inversion ~_~
8 60
2 -~
8_ 20 / FD ——
2 / MC [ —
2
«©
% 20 H
©
L d
Q
= 9
0 20 40 60 80 100

Pump power [mW]

FIG. 5. Percentage of Tl atoms that are in the metastable
state averaged over the cell, 7,,, as a function of the pump lamp
power: FD computations (solid) and MC simulations (dashed).
T1 density in the cell is 0.3 X102 cm™3, argon pressure is 250
mbar.

magnitude, and all this with the most problematic pump
line shape (a strongly self-reversed line shape, see Sec.
III). This shows that our method is a very robust algo-
rithm.

VI. APPLICATION

One application of an optically pumped three-level
atomic vapor lies in atomic line filters [12,13]. Such a
filter consists of a quartz cell filled with an atomic vapor,
and two dyed-glass filters. In the vapor cell, signal radia-
tion is absorbed on one atomic transition and reemitted
at another. The two dyed-glass filters are used to elimi-
nate all radiation that is not wavelength converted by this
absorption-reemission process. In the thallium atomic
line filter, green signal radiation is absorbed by metasta-
ble thallium atoms and reemitted in the uv on the
7s—6p, ,, transition. For an efficient filter, it is necessary
to have a large number of metastable atoms in the cell.
These metastable atoms are produced by activating the
filter shortly before use by sending uv pump radiation
from a spectral lamp into the vapor cell. This transfers
atoms from the 6p,,, ground state via the 7s state to the
metastable 6p, ,, state.

We measured the absorption of green probe radiation
in such a filter as a function of the Tl density (i.e., by vari-
ation of the temperature). Green absorption is a measure
of the density of metastable atoms along the axis of the
vapor cell. The Tl density was determined by measuring
the uv absorption of the unpumped vapor; this gives
more reliable results than a temperature measurement
and computing N, from the vapor pressure curves. The
parameters of the vapor cell and of the pump lamp were
the same as those we used in Sec. V. The argon pressure
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FIG. 6. Absorption of the green probe light beam (which is
proportional to the metastable T1 density along the cell axis) as
a function of the absorption of a uv probe light (which is pro-
portional to the total T1 density along the cell axis): FD compu-
tations (solid), MC simulations (dashed) and measurements
(dots). The vapor cell is filled with single-isotope Tl and 80
mbar Ar.

was 80 mbar, and the pump lamp power was 40 mW.

We simulated the experiment with both the FD and
the MC method and determined the metastable density as
a function of the particle density. From this, we can easi-
ly compute the green absorption as a function of the uv
absorption. Figure 6 compares the simulation results to
the experimental results. We see that the agreement be-
tween FD computations, MC simulations, and the mea-
surements is excellent. The difference always stays below
15%. Thus our model allows a good prediction of the ac-
tual behavior of an atomic line filter. The high efficiency
of our FD method makes it a useful simulation tool for
the optimization of such filters.

VII. SUMMARY AND CONCLUSION

We modeled the behavior of a three-level atomic vapor
in a cylindrical cell, including the effects of nonlinear ra-
diation trapping, arbitrary line shape of the incident radi-
ation, foreign gas quenching, finite geometry, particle
diffusion, and reflecting cell walls. We presented a fast
approximate method for the evaluation of the appropri-
ate equations. The results were compared to Monte Car-
lo simulations and agreement within 15% was achieved.
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