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Toward understanding the exchange-correlation energy and total-energy density functionals

Robert G. Parr* and Swapan K. Ghosh~
Department of Chemistry, University ofNorth Carolina, Chapel Hill, North Carolina 27599

(Received 28 September 1994)

If an accurate ground-state electron density po for a system is known, it is shown from calculations on
atoms that a strikingly good estimate for the total electronic energy of atoms is provided by the formula
E [po]=g,.s; —(1—1/N) J[po], where N is the number of electrons, J [po] is the classical Coulomb repul-
sion energy for po, and the c; are the Kohn-Sham orbital energies determined by the Zhao-Morrison-
Parr procedure [Phys. Rev. A 50, 2138 (1994)] for implementation of the Levy-constrained search deter-
mination of the Kohn-Sham kinetic energy. The surprising accuracy of this formula is attributed to the
fact that the exchange-correlation functional is equal to —J/N plus a functional that behaves as if it
were approximately homogeneous, of degree 1 in the electron density. A corresponding exact formula is
given, and various approximate models are constructed.

PACS number(s): 31.15.Ew, 71.10.+x

I. INTRODUCTION

The core problem in the density-functional theory of
electronic structure is to obtain a satisfactory specific
form of the energy functional in terms of the electron
density p(r). For an ¹lectron system characterized by
an external potential vo(r), the Hohenberg-Kohn energy
density functional E„[p)can be written as

E„[p]= fdr &(ur)p(r)+ J [p]+T, [p]+E„,[p], (1)

where J [p], given by

J[p]= ,' fdr—fdr'p(r)p(r') (2)

is the classical electrostatic energy, T, [p] represents the
kinetic energy of the corresponding noninteracting N-
particle system having the same single-particle density
p(r), and E„,[p] stands for the exchange-correlation en-
ergy functional. Minimizing Eq. (1) over all trial densi-
ties normalized to N gives the ground-state density po.

The Kohn-Sham method for solving this problem is to
self-consistently solve the single-particle Kohn-Sham or-
bital equations

[ ——,'V +u,ff(r)]=s;P;,
where the density satisfies

(3)

(4)

and the effective potential is given by

u,ff(r) =uo(r)+ uJ(r) +u„,(r),
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vz(r) = fdr'po(r')/ r —r'l

u„,(r) =5E„,/5p(r) .

At the solution point, where p =po, there result

T, [p]= —
—,
' (P; lV lP; ) = g E; —fdr p(r)u, ff(r)

E[p]= gE; —J[p]+[E„,[p] —f drp(r)u„, (r)], (9)

where E[p]=E,[po] is the correct ground-state energy
for the system of interest. Note that the potentials v,ff(r),
vJ(r), and u„,(r) each depend on the density. To em-
phasize this, one may write v,ff[p], vz[p], and u„,[p].

Calculations with these equations are straightforward.
Once we know u„, [p] (or if one can determine the whole
u ff [p ] directly), one can determine the Kohn-Sham orbit-
als by solving Eqs. (3)—(8). If in addition one knows
E„,[p] [or if one can determine the bracketed term in Eq.
(9) by other means], one can then determine the total
electronic energy from Eq. (9). There are two problems:
determining v„„and determining E„,.

A particular method of determining u, ff[po], u„, [po],
and T, [po] has been proposed [1,2], developed [2,3], and
successfully applied [3,4]. The idea is to take advantage
of the fact that Eqs. (3) and (4) above may be thought of
as the constrained search determination of the kinetic en-
ergy T, [p] [5,6]. Namely, these are the equations for the
minimization of the quantity ( D

l

—( 1/2) g; V; l
D ),

where D is a Slater determinant composed of the orbitals
p;, subject to the constraint of Eq. (4), with v,ff the local
position-dependent Lagrange multiplier associated with
this constraint. Alternatively, it suffices to attach a single
global multiplier to the constraint
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(12)

with v~=vJ[p ] and

Avc(r)=A, f dr'[p (r') —po(r')) ~r —r'~, (13)

become the Kohn-Sham Eqs. (3) and (4) as A,~~. That
is to say,

C(i ) =—,' —ff d r d r'[p (r' ) —po(r') ]

X [p (r') —po(r')] ~r —r'~

during minimization of (D
~

—
—,'g;V; ~D ), and to demand

that the solution p (r) for a given value of the Lagrange
multiplier A, converges to the correct density po(r) in the
limit A,~ ~ at which C (A, ) goes to zero. More
specifically [4], the single-particle equations

[ ——,'V +vo(r)+(1 —1/N)vz(r)+Ave(r)]P; =s;P;,

energy as the sum of successively computed highest occu-
pied orbital energies. But we wish to develop ways to cal-
culate the energy without that much information; that is,
from pp and vp alone.

The T, [po] values themselves already give a good esti-
mate,

(16)

The virial theorem gives E[po]= —T[po], where T is the
true kinetic energy, so that the error in Eq. (16) is the
exchange-correlation contribution to the kinetic energy,
usually called T, . Since T, (T (Hartree-Fock), this error
is less than the conventional correlation energy and so
Eq. (16) is a good approximation; see Table I. Note that
Eq. (16) clearly cannot provide a basis for a variational
determination of pp.

Can the bracketed term in Eq. (9) be constructed from
the information provided by Eq. (14)? Not easily, surely,
because there is a multitude of E„,[p], the functional
derivatives of which are given by Eq. (14). One certainly
may write

v„,(r) = —(1/N)vJ(r)+ lim [Avc(r)],
A,~ 00

(14) E„,[p) = —(1/N) J[p]+G„,[p], (17)

v,s(r)=vo(r)+(I —I/N)vz(r)+ lim [Avc(r)] .

There are a number of reasons why the resolution of
v„, as given by Eq. (14) is appropriate. The idea of the
first term as a self-interaction correction is 70 years old; it
may be called the Fermi-Amaldi term [7]. It guarantees
the correct long-range behavior of v„,(r ) and assures that
the exchange-correlation hole correctly normalizes to—1. The second term has a relatively short range. Plots
of these quantities for the atoms He through Ar may be
found in the literature [3,4].

It is important that, with the use of Eq. (14), the solu-
tions of Eqs. (3) and (4) give correct Kohn-Sham eigenval-
ues without any constant shift [3,4]. The computed
highest occupied orbital energy is the negative of the ac-
curate erst ionization potential.

A more quantitative argument for the vJ/N term in
Eq. (14) is as follows. If the canonical Kohn-Sham orbit-
als are subjected to the unitary transformation that takes
the E;~ matrix (diagonal in the canonical form) to a circu-
lant matrix, the new orbitals, called the circulant orbitals
[8], have the property that their densities oscillate about
the average total density. In the case of Be there are no
oscillations whatever. In the more general case, ignoring
the oscillation gives Ng, J,,

=J exactly, wh. ere J;; is the
self-repulsion for circulant orbital i.

In the present paper we address the determination of
the total electronic energy itself, given only pp and vp.

II. APPROXIMATE TOTAL-ENERGY FORMULAS

Should accurate electron densities be available for a
species S and its successive positive ions S+,S +, . . .
down to the one-electron system, successive applications
of the method described above will give the accurate total

TABLE I. Energy prediction (in a.u. ) from approximate viri-
al theorem. The numbers in the third column are calculated
values from CI or other accurate wave functions, taken from
Refs. [3] and [4]. The numbers in the fourth column are deter-
mined in Refs. [3] and [4] by method described in present text.

Atom

He
Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar

z
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Eexact

—2.904
—7.478

—14.67
—24.65
—37.84
—54.58
—75.05
—99.72

—128.93
—162.24
—200.02
—242.30
—289.28
—341.17
—397.99
—460.00
—527.39

—TS

—2.867
—7.440

—14.59
—24.56
—37.72
—54.43
—74.86
—99.47

—128.63
—161.92
—199.69
—241.94
—288.86
—340.76
—397.60
-459.59
—527.18

Error

0.037
0.038
0.077
0.090
0.12
0.15
0.19
0.25
0.30
0.32
0.33
0.36
0.42
0.41
0.39
0.41
0.21

where the first term has the first term in Eq. (14) as its
functional derivative and G„,[p] has the second term of
Eq. (14) as its functional derivative. But what is G„,[p].
An exact formula for G„,[p] will be derived in the next
section. Here we obtain a simple approximate formula
from a single approximation, that G„,[p] is a homogene
ous functional of degree I in p. This would mean that

G„,[po]= fdrpo(r) lim [Avc(r)] (I&)
g~ 00
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E„,[po]= —(1/N)J[po]+ J drpo(r) lim [Avc(r)] . (19)

Hence the total energy is approximately given by

TABLE III. Energy prediction (in a.u. ) from new approxi-
mate formula. The energies in the third column are for wave
functions employed in Refs. [3,4].

E[po] = g s; —(1—1/N) J[po] . Atom Z Eexact Eq. (20) Error

With this construction of approximate formulas for E„,
and E, the errors in E„, and E will be the same. Note
that there is no assumption that G„, is small.

These formulas are readily tested using available data
[3,4] for the atoms He through Ar. To test Eq. (18), ac-
curate E values are put into Eq. (9) to give accurate F.„,
values, and then accurate G„, values are obtained from
Eq. (17). In Table II, these values are compared with
computed values of the right-hand side of Eq. (18). Re-
sults are poor for He and Li but are excellent for Be
through Ar. The homogeneity of degree 1 is remarkably
accurate for Be through Ar. For the atom H, both sides
of Eq. (18) are zero.

To test Eq. (19), accurate E„, values are obtained as
just described; then they are compared with computed
values of the right-hand side of Eq. (19); see Table II. Er-
rors for He and Li are not small, but they are already ob-
scured by the J/N terms. Again errors for Be through
Ar are small. For the atom H, the right-hand side of Eq.
(19) reduces to the first term, which is the correct E„,for
H.

Table III gives the results for total energy. The results
are remarkably good, the errors almost always being of
the order of magnitude of the correlation energy and
often being less than the errors associated with Eq. (16).
For Be through Ar, the average absolute error for Eq.
(16) is 0.27 a.u. and for Eq. (20), 0.48 a.u. Note that the
errors associated with Eq. (20) are sometimes positive and

He
Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

—2.904
—7.478

—14.667
—24.650
—37.841
—54.581
—75.054
—99.716

—128.926
—162.240
—200.024
—242.295
—289.276
—341.172
—397.991
—460.004
—527.388

—2.903
—7.080

—14.518
—24.473
—37.831
—54.825
—75.074
—99.798

—129.213
—160.631
—198.439
—241.194
—290.690
—341.337
—397.975
—460.354
—527.337

0.001
0.398
0.149
0.177
0.010

—0.244
—0.020
—0.082
—0.287

1.609
1.585
1.101

—1.414
—0.165

0.016
—0.350
—0.051

sometimes negative, with a certain regularity in going
from left to right in the periodic table. For the atom H,
no error is associated with Eq. (20).

III. EXACT TOTAL-ENERGY FORMULA

The results just given show that the stated assumption
about homogeneity leads to a good approximation for the
exchange-correlation functional and total energy. We
now investigate the nature of the terms required to im-
prove upon the simple representations of Eqs. (19) and

TABLE II. Test of approximations for G„,. The numbers in the third column are accurate values,
computed using accurate energy as described in Ref. [3]. The numbers in the fifth column are calculat-
ed from Eq. (17) of text employing accurate E„,values in first column. The numbers in the last column
are from Eq. (49) of text using ~=7.5 and A =0.075.

Atom

He
Li
Be
8
C
N
Q
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar

Z

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Exc,exact

—1.068
—1.827
—2.772
—3.870
—5.210
—6.780
—8.430

—10.320
—12.490
—14.440
—16.430
—18.530
—20.790
—23.150
—25.620
—28.190
—31.270

Eex, calc

Eq. (19)

—0.996
—1.431
—2.624
—3.699
—5.195
—6.936
—8.445

—10.399
—12.781
—12.810
—14.854
—17.409
—22.464
—23.346
—25.569
—28.501
—31.604

Gxc, exact

—0.043
—0.471
—0.967
—1.541
—2.234
—3.040
—3.850
—4.783
—5.881
—7.165
—8.438
—9.842

—11.264
—12.904
—14.543
—16.229
—18.369

Gxc, calc

Eq. '(18)

0.029
—0.076
—0.819
—1.369
—2.219
—3.197
—3.866
—4.863
—6.173
—5.534
—6.863
—8.720

—12.939
—13.100
—14.492
—16.541
—18.70

Gxc, calc

Eq. (49)

—0.318
—0.603
—0.983
—1.468
—2.072
—2.804
—3.681
—4.723
—5.905
—7.241
—8.726

—10.370
—12.215
—14.156
—16.309
—18.627
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(20). Can we get the exact E from v[] and the exact po?
The methods of Sec. I sufBcing to determine the accu-

rate u„, and ge; (for a given po and v[]), Eq. (9) shows
that this problem will be solved if one can carry through
some functional integration of the form

E„,[p2]=E„,[p, ]+f fdr5p (r)u„, [p],

u„,(r) = u—z/N+Auc —wo(r) .

Note that (A,uc) =0 and wo=wo
From Eq. (28) follow

[p Iu„", ] = —(1/][']27 —(p" iim [iuuu])

and

(29)

[ ——,'V +uo(r)+(1 —1/N)vt(r)]i)[", .

FA
~

2
p

0
p

FA
( r )

(22)

the intermediate densities satisfy

[ ——,'V +uo(r)+(1 —1 /N)v ~(r) +Av, (r)][I[;=e;P;,

y ly,'I'=p'( },
(23)

where E„,[p&] is known. The path of integration for p
can be any path of ground states going from p, to p2 for
which U„, is accurately known for all intermediate states
on the path.

Equations (11) and (12}provide a candidate for such a
path, parametrized by A, . Namely, these equations may
be applied for all densities between the X=O solution of
Eqs. (11) and (12}to the A, = ~ solution. Call the first the
Fermi-Amaldi density p =p, the second is the true
density for the ground state of the system with potential
vp pp=p". Thus, the Fermi-Amaldi density satisfies

(p'lu'. .) = —(1/N}2J' —(p'lwo') . (30)

with(28) in Eq. (21)

woA, ] (31)

On integration by parts this gives

E„",= —[[IN]1"+(p" iim []uu])+(pu]wu]

+E„,+(1/N)J + f dA f drp"(r)(B/M)

and the resultant-energy formula

E"=pe;"—(1—1/N) J"

X [w[] Avc] (32)

+ (p ~wo)+E„, +(1/N)J

Also, inserting Eq.
dp (r)=(Bp (r)/M. )dA, ,

E„", E„,=—fdAf dr[Op (r)/M, ][ vJ/—N+Auc

while the true density satisfies

—
—,'V2+uo(r)+(1 —1/N)uj" (r)+ lim [Av, (r)]

(24)

+ f dA, fdrp (r)(B/M. )[wo —Auc]

(33)

g lg,"I'=p" =po .

As has by now been amply demonstrated, the (t[; and E,
"

are accurate Kohn-Sham orbitals and orbital energies for
the ground state of the system with external potential Up

and electron density pp.
Equation (23), for any A, , also is an exact Kohn-Sham

equation, because it is the constrained search procedure
[5,6] for generating the Kohn-Sham T, [p ] that the
present series of papers has been exploiting [1—4]. How-
ever, one must take care in identifying the exchange-
correlation component of the effective potential

(34)

and

E[p[]]= g E; —(1—1/N) J[pa]+b, , (35)

These are exact formulas, for which Eqs. (19) and (20) are
good approximations. Recall that the superscript 0 here
denotes Fermi-Amaldi quantities; superscript ~ denotes
quantities for the ground state of the external potential
Vp.

Reverting to the more perspicuous notations, Eqs. (32)
and (33) read

E„,[p ]=[]—(1!N)J[po]+f drpo lim [Auc(r)]+A. ,

v,[r(r)=uo(r)+(1 —1/N)uJ(r)+[Ave(r)] . (25)

u,„,=vo(r)+w0(r), wo =0 . (26)

The problem is that, except for A. = ao, p (r) is the ground
state not for the external potential Up, but for a different
external potential U,„„

where

( FA~ FA ) +E [ FA]+(1/N}J[ FA]

+ f dA (p (r) ~(B/M, )[w —Auc] ) . (36)

That is,

u, [r
=uo(r)+ w o (r)+ vz (r)+ u „,(r),

where

(27)

Note that no homogeneity assumption has been made in
the derivation of these formulas.

Values of 6 can be read from Tables II and III. In fact
they generally are small —of the order of the correlation
energy. There must be much cancellation among the
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several components of h. Thinking intuitively about the
Fermi-Amaldi model [7], one suspects that

vc[p]= lim (Avc[p ])=5G„,[p]/5p, (44)

w, =0 or at least &p""~w," ) =0 (37)

and

[pFA] ( 1 /N) J'[pFA] (38)

which would imply

b, = f dA&p (r)~(BIBA, )[wo —Avc]) (small) . (39)

Further work is necessary to assess the Fermi-Amaldi
properties. It would be particularly valuable to have a
method for determining mo. But note that the whole 6
would be zero in any case if the homogeneity property
postulated after Eq. (17) were to hold true.

Various formulas alternative to Eqs. (34)—(36) are
readily derived. Useful in this connection are the identi-
ties

& p"
~ w,"") + f d A, & p (r )

~
(Bw, /aA, ) )

= —f dA, & w ~(Bp (r)/M, ) )

and

pu iim ]iuur]r]]) —f di. &p ]r)](a/ai. )]iuu]&
(45)I [p]:=p(r)vc (r)/p(0)vc(0)

(41)
is graphed versus the quantity

= f dA, & [/(vc]i(Bp (r)/BA, )) = f dA, C(A, ),

where A,vc is the potential defined by Eq. (13) and G„,[p]
is the universal functional defined by Eq. (17). In view of
the origin of u& as a potential arising from the constraint
of Eq. (10), it may be called the constraint potential No. te
that it is capital C and not lower case c. The constraint
potential is trivially computed from U„; graphs of it for
the atoms have already been given [3,4].

As argued and demonstrated in Sec. III above, G„,[p]
is approximately homogeneous, of degree 1, in the densi-
ty. In this section we undertake learning more about G
through a detailed study of the functions vc[p(r}] for
atoms. Note that while vc is the functional derivative of
G, there are many functionals for which it is the function-
al derivative.

A glance at the published [3,4] plots of vc(r) and r p(r)
reveals that these quantities show complementary shell
structures: a minimum in one tends to correspond to a
maximum in the other. This prompts the hope that the
quantity p(r}vc(r) would be simply related to p(r)
Indeed this is so. Except for He, the relationship is al-
most linear. This is demonstrated in Fig. 1, where, for
the atoms He to Ar, the quantity

where C(/(, ) is the constraint as a function of A, as defined
in Eq. (10). Thus Eq. (36) may be rewritten

b, =f dk&(Bp (r)/M, )~[Ave —wo])+ f d/]iC(A, ),

—
pu iim ](iru)u])+E„, ]p]+(]/]]r]&]p ] .

(42)

The foregoing analysis only formally solves the prob-
lem of finding E [po] froin po, because the quantity b, of
Eq. (36) or Eq. (42) is not exactly calculable without an
accurate knowledge of the quantities wo and E„,[p" ].
Other paths of integration of Eq. (21) might do the job.
For example, there is the path defined by coordinate scal-
ing of po(r) or the path leading to the bare-nuclear (hy-
drogenlike) reference state for which the electron-
electron repulsion by definition is identically zero. There
also is the possibility of using Hellmann-Feynman
theorems [6] as an alternative to or in addition to Eq. (21)
[9].

R [p]—:p(r)/p(0) . (46)

0.8—

0.6

0.4—

Each of these varies monotonically from 0 to 1 as r varies
from ~ to 0. According to the first Hohenberg-Kohn
theorem, I must be a universal functional of R: I [R].
From Fig. 1, it is clear that in fact I is close to a univer-
sal function of R: I (R). For R near unity (near the nu-
cleus) I is quite accurately linear in R; for R near zero
(far from the nucleus} I deviates from linearity, ap-
parently having I"(0)=0. A simple analytical formula

IV. FURTHER EXAMINATION
OF THE EXCHANGE CORRELATION

v„,[p]= —( I /N)vz[p]+ vc [p],
where vc[p] is given by

(43)

The central conclusion of the previous papers in this
series has been that one can now compute accurate
exchange-correlation potentials from accurate electron
densities. Furthermore, the calculational scheme is built
on a natural and exact partitioning

0
0 Or2 0.4 0.6 0.8

FIG. 1. Plot of I (R) versus R for the atoms He to Ar. See
Eqs. (45) and (46) of the text for definitions of I and R. The ir-
regular behavior of several of the curves near 8 =1 (near the
nucleus) probably is due to numerical errors. The curve for He
is the curve that shows the largest departure from the others.
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so that Uc(r) would be determined up to a constant. To
reasonable accuracy, the data show that uc(0) is propor-
tional to Z, where Z is the atomic number and the pro-
portionality constant is universal. Further, as is well
known, p(0) is approximately proportional to Z . Ac-
cordingly, a reasonable approximation is

Uc(r) = AZ [p(0)]'~ [I (r)/R (r)], (49)

where 2 is a constant. Table II presents the results of a
simple test of this formula, with 3 =0.075: Calculate
(po(r)~vc(r) ) and compare with the accurate values pre-
viously calculated

V. RECAPITULATION AND DISCUSSION

In this research, taking advantage of the fact that there
now exists a procedure for obtaining an accurate v„ from
an accurate ground-state density [1—4], we have learned a
great deal about v„. The calculations we have carried
out are calculations on atoms only, and our results are
not perfectly accurate. To a certain extent, therefore, our
conclusions are tentative. However, extensions to mole-
cules and to higher accuracy should be straightforward,
and we believe that the conclusions we draw now will not
be substantially a6'ected.

The most important conclusion would appear to be
that it may be well to eschew the traditional resolution of
exchange correlation into exchange plus correlation, in
favor of a resolution into an Amaldi term plus a con-
straint term:

u„, [p]= —(1/N)U~+ vc . (50)

Here N is a parameter (not a functional) that is the num-
ber of electrons, vJ is the classical electrostatic potential
due to the whole electron distribution, and vc is the po-
tential arising from the constraint of Eq. (10). The con-
straint potential enters in order to assure that the Kohn-
Sham equations are the proper Kohn-Sham equations for
the problem at hand; that is, that they are the proper
variational equations for providing the correct T, for the
ground state in question —all as have been described in
some detail in the present text.

While v„, is equal to 5E„,[p]/5p, knowledge of Uc in

Eq. (50), which our method gives us, is not sufficient to
accurately determine E„, and the total energy. However,
Eq. (50) implies

that fits the data admirably is

I (R ) = [xR —1+exp( —xR) ]/[~ —1+exp( —~)], (47)

where ~ is a parameter. Best values of ~ vary from atom
to atom, but a single (universal) x. value does nearly as
well: ~=7.5. Figure 1 shows just how good this repre-
sentation is.

For a given p(r) and a given universal (or other) I (R),
such as Eq. (47), how would one calculate vc(r) from
these formulas? For each r, one could determine R (r)
from Eq. (46) and I (r) from Eq. (47} (or other formula).
From Eq. (45) would follow

(48)

E„,[p) = —(1/N}J+G„,[p], (51)

where 5G„,[p]/5p=uc. We have demonstrated that an
excellent approximation results if one assumes that
G„,[p] is homogeneous, of degree 1, in p. There then re-
sults

and

E„,[p]= —(1/N)J+ (p uc ) (52)

E= g e; —(1—1/N)J, (53)

where the c; are the Kohn-Sham orbital energies, calcul-
able from the density as we have shown [3,4]. Errors in
these formulas are on the order of the correlation energy,
so that the procedure thus defined is close to a complete
procedure for determining the total energy from the den-
sity. A procedure for determining the exact energy from
the true ground-state density po so far has escaped us
(and also we have failed to solve the problem of determin-
ing the energy variationally starting only from N and the
ground-state external potential).

The Amaldi terms in these formulas provide the
correct normalization of the exchange-correlation hole
and the correct long-range behavior of the exchange-
correlation potential. [It is notable that plots of the two
components in Eq. (49) [3,4] clearly show that the first is
long range and the second is short range. ] Errors in Eqs.
(51)—(53) do not escalate as N increases; rather, they ap-
pear to decrease. The implication of all of this is that the
separation of —(1/N)UJ out of v„„as in Eq. (50), may be
a very natural separation indeed. One might be able to
understand this better by taking a fresh look at the
density-matrix formulation of the whole exchange-
correlation problem. Examination of accurate actual
vc[p] curves for neutral atoms reveals that to a good ap-
proximation there is a universal formula for vc[p], Eq.
(47), which states that puc is an almost linear local func-
tional of p.

Among the many problems slated for further work, we
mention the following: (a) a careful, very accurate study
of regions near nuclei (which are vital for high accuracy
with this method); (b) a study of the potential Uc at long
range (low density limit); (c) positive ions; (d} spin-
polarized theory and open shell systems; (e) correspond-
ing studies using Hartree-Fock densities as input (one
may be able to find a simple formula for the correlation
energy); (fl refinement of the extrapolation procedures; (g)
a study of whole "fixed A,

" chemistries (first do a lot of
calculations on many systems and many properties taking
A, =100, say; then repeat for A, =200, etc.); (h) accurate
virtual Kohn-Sham orbitals and orbital energies, and
their use in the theory of excited electronic states; (i) the
Z =N = ao limit; (j) finding a theoretical derivation of the
value of the empirical constants v and A in Eqs. (47) and
(49); and (k) a study of size —extensivity questions.

We conclude with a note of optimism, coming from ad-
dressing a point that at first might seem to be a weak
point of the present paper. The Levy constrained search
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procedure for determining T, that we have employed
makes no use whatever of the specific form of the two-
body potential u&2 (in fact, llr, 2 for our cases of in-
terest). How then, could we ever hope to generate the
correct total energy, without inserting, somewhere, the
explicit form for this potential (which we have not done)?
To guess how to do it is an acceptable procedure, but
only if we guess correctly. But there is a more satisfacto-
ry answer. The quantities po(r) and vo(r) in fact uniquely
determine the Hohenberg-Kohn functional F [pe] that
goes with them. It will be different for different u, 2, but
u&2 is not needed to determine it. Proof of this interest-
ing result follows from the fact that the Kohn-Sham
effective potential given by the Levy procedure is unique.
So we are justified in pursuing the goal of finding

E [po, vo] starting from the Levy search for T, [po]. That
is what this paper has been about.
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