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Exact N-body solutions for the harmonic oscillator and lower bounds provided by the equivalent two-

body method are used as basis results for an application of spectral geometry. It is proved that the rela-

tive energy ( of a system of N identical particles interacting by the attractive pair potential Vof(r/a)
and obeying nonrelativistic quantum mechanics is given approximately by the expression
E=min„)0{K(N)/r +vf (r)], where E =(mba )/(N —l)fi and v =NmVoa /2' . A table of X num-

bers is provided for bosons and fermions (with arbitrary spin) in one and three dimensions. If the poten-
tial shape f (r) is a convex function of —1 /r and a concave function of r, then the approximations yield

both upper and lower energy bounds. Detailed results are given for the case of gravitating fermion sys-

tems.

PACS number(s): 03.65.Ge, 03.65.Sq

I. INTRODUCTION

The principal subject of this paper is the ground-state
energy of a quantum-mechanical system composed of X
identical particles bound together by attractive pair po-
tentials. Such systems always collapse in the large-N lim-
it, even if the particles are fermions. That is to say, the
binding energy per particle rises with N to infinity [1,2].
Some physical systems such as stars do, under suitable
circumstances, have this collapsing tendency and other
systems such as atoms never have very large values for N.
In an earlier paper [3] we studied gravitating boson sys-
tems. We now expand the discussion to allow a wider
class of interaction potentials and also to include the
much more dificult case of fermions. As in the earlier
work, the goal is to find energy bounds. Because the fer-
mion problem is more complicated, there are fewer op-
portunities to sharpen any energy bounds we may devise.
Hence some of the fine tuning, such as the sharpening of
the variational upper energy bounds for bosons [3], will
not be pursued here. Rather the emphasis of this article
will be on the simplicity and generality of the results.
For a given class of potential shapes, we try to find re-
cipes for upper and lower energy bounds, as functions of
X and all the other parameters of the problem. When
sharpening of results is known to be possible, this will be
noted; but the immediate goal is simplicity.

There are three main ingredients to our approach: (i)
the "equivalent two-body problem"; (ii) "spectral
geometry, " which was created principally as a technique
for expressing the results of (i); and (iii) exact solutions
for harmonic oscillators. The equivalent two-body
method (to be discussed in Sec. IV) depends on the sym-
metrization postulate for systems composed of identical
particles: the permutation symmetry of the N-body state
induces a relationship between the N-body energy and the
spectrum of a specially constructed two-body system in
which there is an overall factor of X —1 and a
strengthened coupling, enhanced by the factor N/2; this

(1.2)

it is evident that the potential shape can be written simul-
taneously in the forms

g ( i ) f ( r ) g ( 2 )( r ~
)

1

r
(1.3)

where the transformation functions g'" and g' ' are re-
spectively convex and concave in their arguments. For
power-law (or logarithmic) bases, the energies are given
[4,6] by the semiclassical formula

relationship leads to energy lower bounds. The most
unique aspects of this paper are to do with the applica-
tion of (i) to fermion system and the use of (ii) to exploit
(iii) for fermion systems. We restate and simplify some of
the earlier results for bosons since they can be expressed,
along with the fermion results, in the same framework
provided by spectral geometry.

Since spectral geometry is a central theme of this work
we describe immediately the main tool we shall need, the
"potential-envelope method. " In suitable units of Hamil-
tonian for a single particle moving in IR in an attractive
central potential with shape f (r) is given by

H = b, +vf (r),—

where v is a positive coupling parameter. For each po-
tential shape f (r) there will be a corresponding family
IF„i(v)] of energy trajectories that describe how the
Schrodinger eigenvalues of H depend on the coupling pa-
rameter. Here l is the usual orbital angular momentum
quantum number and n = 1,2, 3, . . . labels the discrete ei-
genvalues in each angular momentum subspace. Thus in
our notation the "principal quantum number" of the ele-
mentary gravitational problem is given by (n + I)

For the "Coulomb-harmonic" class of potentials,
which includes, for example, the following "mixture" of
powers and logarithms
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F„&(u)= min ~

2 +uf (r)X
r)0 p

(1.4)

In Sec. II we define the N-body problem and discuss
briefly the question of relative coordinates. It turns out
that the quality of our general fermion lower bound (de-
rived in Sec. IV) depends on the choice of such coordi-
nates and we are led to find an optimal set; that is to say,
a set that yields the best lower bound. In Sec. III we in-
troduce the exact N-body solutions for harmonic oscilla-
tors, which we shall employ to construct some general
N-fernuon energy bounds (both upper and lower) using
envelope theory. In Sec. V we apply the general lower
bound theory of Sec. IV to the case of gravitating fermion
systems: the result of this study provides the Coulomb
basis for the complementary lower bound formulas gen-
erated by envelope theory. In Secs. VI and VII we use
spectral geometry to "spread" the Coulomb and harmon-
ic oscillator results to "nearby" potentials, in the sense of
smooth transformations. In Sec. VIII we study the
Coulomb-harmonic class and express all the energy
bounds for this class of potentials in an N-body version of
(1.4).

II. THE N-BODY PROBLEM
IN THE CENTER-OF-MASS FRAME

The Hamiltonian, with the center-of-mass removed, for
a system of N identical particles each of mass m interact-
ing via central pair potentials may be written

N 1 N

2m ' 2mNi=1 i=1

N r; —r,.+ g Vof (2.1)

For the Coulomb-harmonic class of potential shapes f (r)
we have X =(n +I) for a lower bound and
K =(2n +l —

—,
' ) for an upper bound; the only restriction

for these bounds to be valid is that f (r) be a convex func-
tion of —1/r and a concave function of r It. is perhaps
remarkable that we shall be able to express many of the
results of this paper for the N-body problem in the same
simple form (1.4): all we shall have to do is provide the
appropriate expressions for K in each case. For f (r) in
the form of a pure power (1.4} is exact and we have

f (r)=sgn(q)r~ —+F(u)=sgn(q)cu ~' +'i'
' 1+2/q

(1.5)
2 2+q.

and R = [r;] are column vectors of the new and old coor-
dinates, respectively, and B is a real constant N XN ma-
trix. For convenience we require all the rows of B to be
unit vectors and we let the elements of the first row all be
equal to I/~N so that pi is proportional to the center-
of-mass coordinate; we also require that the remaining
N —1 rows of B be orthogonal to the first row so that
they define a set of N —1 relative coordinates. One more
row is also fixed so that we have at least one pair distance
at our disposal, namely,

r&
—r2

p2 (2.3)

For boson systems, we have found that Jacobi relative
coordinates, for which B is orthogonal, are the most
efBcacious; but for systems of fermions, we shall need a
wider choice. In general, corresponding to the transfor-
mation p=BR of the coordinates, it follows that the
column vector P of the associated momenta transforms to
the new momenta II= [m; ] by the relation II = (B ) 'P.
We now define the parameter A, ~ 1, which is almost a
coefticient of orthogonality of B, by the relation

N
A, =g[(B ) '] (2.4)

The point of this is that if 4 is any translation-invariant
wave function for the N-body system composed of identi-
cal bosons or fermions, then we can write [5] the follow-
ing mean energy relation between the N-body and the
two-body systems:

(%,&%}=(4,H%), (2.5)

where the "reduced" two-particle Hamiltonian H is given
by

H=(N —1) n2+ —Vof.1

2m', 2

~2lpgl
(2.6)

Further simplifications can be achieved if work with
dimensionless quantities. We suppose that the
translation-invariant N-body energy is 6 and we define
the dimensionless energy and coupling parameters E and
v by the expressions

mga2 NmVoaE= U =
(N —1)A 2A'

(2.7)

It is then natural to define a dimensionless version of the
reduced two-body Hamiltonian H and the relative coordi-
nate p2 by the relations

where Vo and a are respectively the depth and the range
paraineters of the potential with shape f. By algebraic
rearrangement (2.1) may be rewritten in the more symme-
trical form

mna 18=
z

= — b, +uf(r), —
(N —1 )A'

r=&2p2/a =r, —r, , (2.8)

(p; —I, )'+ Vof2mN ' J a
(2.2)

We now define new coordinates by p =BR, where p = [p; ]

We note that the Hamiltonian H depends on N through
the coupling parameter v and possibly through A, . By the
Rayleigh-Ritz (min-max) principle [7—9], we have the fol-
lowing characterization of the 1V-body ground-state ener-
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gy parameter E in terms of H:

E = min ' =F'+'(u),(%,H%)
(4, (p)

(2.9)

consider the case of N spinless fermions in one dimension,
that is to say, we find the lowest energy corresponding to
a spatially antisymmetric state. In view of the identity

where 4 is a translation-invariant function of the N —1

relative coordinates (and spin variables, if any), which is
either symmetric or anti-symmetric under the permuta-
tion of the S individual-particle indices. The N-body en-
ergy 8 is recovered from E by inverting (2.7). Thus we
have explicitly

N i=1
(x; —xi) +NJ

N
=N gx;

we see that the dimensionless Hamiltonian including the
center-of-mass motion is given by

T

F(&) NrnVoa

m@2
(2.10)

N
Ho= g [

—b,;+Nx; ] . (3.3)

III. EXACT SOLUTIONS
FOR HARMONIC OSCII.LATORS

There is a long history of interest in exact N-body solu-
tions for the harmonic oscillator. We shall need essen-
tially four exact solutions: those for bosons and ferrnions
in one and three dimensions. In three dimensions, the
question of the spin of the fermions adds another minor
variation. The earliest reference that we could find is to a
nuclear model by Houston [10] in 1935. The most useful
reference for our purposes is a paper by Post [11],who in
1953 found three of the solutions we need. Some of these
results were rediscovered later, for example, by
Almstrom [12] in 1969. Applications to nuclear and
quark physics may be found in the book by Moshinsky
[13],in a paper by Horgan [14],and in a review article by
Mitra [1S]. Lim [16] solved the three-body problem with
exchange forces present; more general solutions of this
type were found by Schwesinger [17]. Harmonic "atoms"
were considered by Calles and Moshinsky [18] and by
Hall [19] and "harmonic matter" was discussed by Hall
[20]. Very general solutions allowing for (almost) arbi-
trary masses and couplings were given by Tikochinsky
[21] and by Hall and Schwesinger [22]. Variations on this
theme (and some rediscoveries) are still to be found in re-
cent papers, for example, in those by Fan [23] and
Michelot [24].

We now turn to the exact solutions required in this pa-
per, each of which will be expressed by giving the ap-
propriate trajectory function. Instead of introducing a
distinguishing notation for the various trajectory func-
tions, we shall call them all F' '(u) and separate the cases
by textual comment. For spinless bosons in R we have
by the argument (for example) of Post [11]

E —F(N)( u ) g)u I /2 (3.1)

For fermions, the imposition of the necessary permuta-
tion antisyrnmetry is not very comfortable in the center-
of-mass frame. Hence, for fermions, following Post [11],
we use individual-particle coordinates and then correct
for the center-of-mass kinetic energy afterwards. We first

However, for the remainder of this paper we shall work
with the simple dimensionless form E=F' '(u): the
problem is to find F' '. In each situation we shall have to
specify the dimension of the space (usually 3), the type of
particle, and its spin.

The energy of the lowest spatially antisymmetric state of
this system is given by summing the first X energies of
the corresponding single-particle subsystem, that is to
say,

N —1

Eo= g (2i+1)&N =N v N
i=0

(3.4)

But this includes also the energy of the center of mass
~N, which we must subtract from Eu. Hence, in terms
of the notation (2.7) in which the energy is divided by
N —1 and the coupling is multiplied by N/2, we have the
following exact energy for the translation-invariant prob-
lem:

E =(N+1)u'i (3.5)

of k over the three dimensions; this must then be multi-
plied by d to allow for spin. Meanwhile the energy corre-
sponding to each instance of the k quanta is 2k+3. In
order to obtain a simple energy formula we choose X so
that exactly v shells are filled, v=1,2, . . . . This is to
say, we consider only values of N given by

v —1 d
N = g —(k+1)(k+2)= —v(v+1)(v+2) . (3.6)

j'c=o 2 6

The corresponding energy (including the center-of-mass
kinetic energy of 3v N ) is therefore

v —1

Eo= g —(k+1)(k+2)(2k+3)v N
/=0 2

=—v(v+1) (v+2)vN .d
4

(3.7)

Finally, subtracting off the center-of-mass energy and ex-
pressing the result in our standard notation, we have for

Now we shall consider the ferrnion problem in three di-
mensions and also allow for spin. We simply extend the
argument given above for the problem in one dimension.
We suppose that the spin factors span a space of dimen-
sion d. Thus, for spin- —,

' fermions, d =2. Essentially it all
comes down to counting linearly independent polynomi-
als in IR . If we have, say, k quanta, then we have a de-
generacy "shell" with size equal to the number of parti-
tions

k+2!
,

' =
—,'(k + 1)(k +2)



3502 RICHARD L. HALL

X fermions in lR with spin degeneracy d

—v(v+1) (v+2) —32

4
U

1/2 (3.8)

E =C(N)u'/ (3.9)

and to establish the following inequalities for the function
C (N) determined implicitly by (3.6) and (3.8):

' 1/3 . 1/3
3 6N

C
3N 6N N —2

2 d 2(N —1) d N

where N is given by (3.6). If we consider "spinless fer-
mions" ( d = 1), then we must exclude the case
v=1=-X =1. However, for spin- —,

' fermions, we have

v=1, d =2==N=2==-E =3u'

which is the correct ground-state energy for the two-body
problem in a singlet spin state. It is convenient for our
later applications to rewrite (3.8) in the form

mula. In a later paper Hall [5] applied similar reasoning
to generate a lower bound for the more complicated
translation-invariant case. Nonorthogonal relative coor-
dinates (A, ) 1) are required because it turns out [5] that
and optimal lower bound of this type is obtained when
the individual-particle exchange (23) converts p2 into p3,
thus

I'1 l3
P3 (4.2)

and all the remaining rows of the transformation matrix
B are orthogonal to the first row. For such a matrix we
f1nd A, =~4. The energy formula is derived [5] by first
Fourier analyzing the N-body wave function partially in
terms of the eigenfunctions of the two-body problem with
Hamiltonian (4.4) and then showing that the necessary
fermion permutation symmetry implies that the squares
of the weights in this expansion are bounded above by
(N —1) '. The lower-bound energy formula obtained in
this way is given by

' 1/3
3 6X
2 d

+2 (3.10)

N —1 4E)E~= g e, (Av),
1=1

(4.3)

The simpler upper bound on the extreme right-hand side
of (3.10) is valid whenever N & v+2, that is to say, for all
v & 1 if d & 2. In all cases, the left-hand side of (3.10) pro-
vides the asymptotic form of C (N) for large N.

IV. EQUIVALENT TUG-BGDY
LOWER ENERGY BOUNDS

The history of the equivalent two-body method for bo-
son systems has been described in recent articles [25,3].
The main result is a general energy lower bound. For bo-
son systems we use Jacobi orthogonal coordinates (A, = 1);
with this choice, the lower bound in our notation may be
written as

E =S'N'(u) & e(u),
where e(u) is the lowest eigenvalue of the one-particle
Harniltonian H= 6+uf (r). As we m—entioned in Sec.
III, for the harmonic oscillator f(r)=r in I, this
bound yields the exact energy DU ' . The same reasoning
that leads to (4.1) establishes a similar lower bound for
fermion systems: the bound is the energy of the lowest
antisymmetric state of the two-fermion problem for
which H is the reduced Hamiltonian. However, as N in-
creases, the quality of this bound becomes very poor be-
cause the two-particle problem keeps so "little" of the
full antisymmetry: the bound has the wrong X depen-
dence.

In order to deal with this weakness, another bound had
to be devised. Bopp [26] found an approximation for the
N-fermion energy as a sum of energies of a certain two-
fermion problem, but he failed to obtain an energy bound.
Coleman [27], in a study of density-matrix methods in
quantum chemistry, showed how more of the necessary
permutation symmetry for atomlike fermion systems
could be rigorously incorporated into a lower bound for-

H = 6+vx ~—e, (u)=(2i —1)u' (4.4)

where, in order to be consistent with (4.3), we count un-
conventionally (for the harmonic oscillator) from i=1.
Hence the exact value [from (3.5)] and the lower bound
(4.3) in this case are given by

N —1

(N+1)v'/ =E) y (2i —1)v'
2A, (N —1)

1) 1/2
2

(4.5)

Thus, for large N, the lower bound yields about 86% of
the exact energy. It would be interesting to try to do
better than this. Obviously the lower bound does not in-
corporate sufficient antisymmetry. We note that it is easy
to falsify the simple conjecture that one should only
count the fermion two-body states.

We now consider the harmonic oscillator again, but for
X fermions in lR . %'e suppose that the spin space for a
two-particle system has dimension 5: for example, in the
case of spin- —,

' fermions, we would have 5=4. By reason-
ing similar to that used in Sec. III, we choose to fill v
shells and, for convenience in the present application of
(4.3), we choose to consider those values of N satisfying

where e;(u) is the ith eigenvalue of the two-fermion sys-
tem whose reduced Hamiltonian is given by
H = —b, +vf (r). In this sum over energies we must
count all the states of the two-body system from the bot-
tom of the spectrum, including spin. A similar energy es-
timate, which is weaker for large X, may be found in the
work of Carr and Post [28].

In order to fix ideas, we now apply (4.3) to the harmon-
ic oscillator for which we have the exact solutions in Sec.
III at our disposal, to check the results. In the case of
spinless fermions (the lowest spatially antisymmetric
states) in one dimension, we have
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v—1

N —1= g —(k+1)(k+2)= —v(v+1)(v+2) .
k=0 2 6

(4.6)
We shall express this result in energy units when we ad-
joint an upper bound in Sec. VIII.

With these special values of N the lower bound (4.3) be-
comes a sum over v shells

v —1

E & Q 5(k+1)(k+2)(2k+3)u'i
k=0

If we perform this sum and then substitute for N —1

from (4.6) we find

E &E = (v+1)u'3~3
4

(4.&)

V. A LOWER ENERGY BOUND
FOR GRAVITATING FERMION SYSTEMS

The problem we consider now is the fermion counter-
part of the boson problem we studied in Ref. [3]. We
suppose that a system of N identical fermions interacts in
IR via an attractive Coulomb potential f (r) = —1/r The.
problem is to find a lower bound to the ground-state ener-
gy. The two-body Hamiltonian has the eigenvalues

1 V A, uH= ——5———+—
4(n +l)

(5.1)

For a given value of k =n + l, the number of degenerate
two-body states is given by the well-known expression
5k, where 5 is the dimension of the spin space of a tivo
particle system. Thus, for convenience, we consider v
closed two-particle shells and set

v

N —1= g 5k +—v(v+1)(2v+1) . (5.2)

Meanwhile, the lower-bound energy formula (4.3) in this
case becomes

Thus, in the case of spin- —,
' fermions for which d=2 and

5=4, the equivalent two-body bound (4.8) and the result
(3.10) for the exact energy E imply, in the large-N limit,
E /E~3'~~2 ~; consequently the lower bound yields
about 69% of the exact energy in this case. It is an in-
teresting unsolved problem to devise a general lower
bound formula which, for the harmonic osci11ator in the
large-N limit, would yield a better fermion 1ower energy
estimate than this.

VI. UPPER AND LOWER ENERGY BOUNDS
FOR f (r)=g(r )

E =C(N)u'" . (6.2)

Hence by (1.4) and (1.5) we know that the N-body energy
bounds are provided by the general expression

K C(N)E= min . 2+uf(r) ., E=
r)0 r 2

2

(6.3)

Thus one expression covers the case of bosons or fer-
mions various dimensions: all one has to do is to make
sure about convexity and use the correct C(N}. If, for
convenience, the approximations (3.10) are used for
C(N), then, since the right-hand side of (6.3} is monotone
increasing in IC, the lower estimate for C(N) corresponds
to the case of g convex and an energy lower bound and
vice versa when g is concave.

VII. LOWER ENERGY BOUNDS
FOR f ( r) =g ( —r ') AND g CONVEX

We now suppose that the potential shape may be ex-
pressed as a smooth convex transformation g of the
Coulomb potential. Thus

f (r) =g ( r'), g convex —. (7.1)

We restrict our considerations to convex transformations
since, for the Coulomb potential, we only have N-body
lower energy bounds at our disposal. Apart from these re-
strictions, the situation is mutatis mutandis the same as
for the harmonic transformations. Our Coulomb lower
bounds from Sec. V all have the form

We now return to the N-body problem and suppose
that the potential shape may be expressed as a smooth
transformation g of the harmonic oscillator. Thus

f(r)=g(r') .

We shall obtain lower bounds when g is convex and
upper bounds when g is concave. All the exact N-body
solutions mentioned in Sec. III have the form

1 "
5k& (Av) M.vv

4(N —1)
(5.3)

E & —C(N)U (7.2)

and the more general lower bound corresponding to the
potential f (r) is therefore provided by

If we substitute A, = ~3 and the expression (5.2) for N —1,
then we obtain E& min +vf(r) ., K=E 1

r&0 r
(7.3)

2v

(v+ 1)(2v+ 1)
(5.4)

E &E = —C(N)u =— 5
3(N —1)

2 (5.5)

From (5.2) and (5.4) we can derive the following slightly
weaker lower energy bound, which will be very useful in
practice:

' 2/3

VIII. THE COULOMB-HARMONIC CLASS

The general formulas we provide for the energy bounds
are so simple that it is unnecessary to work out many spe-
cial cases in detail. In this section we collect together the
results that apply to the Coulomb-harmonic class of po-
tentials defined by (1.3) in which g'" is convex and g' ' is
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TABLE I. N-body K numbers for Coulomb and harmonic-
oscillator envelopes. If the potential shape f(r) is a convex
function of —1/r and a concave function of r, then by using
the appropriate Jt. numbers in expression (8.1) or (8.8), we ob-
tain, respectively, lower and upper energy bounds for the N-

body problem.

the outer pair are from the paper of Levy-Leblond [29].
Thus, after 25 years, the upper and lower bounds that we
offer for gravitating fermions, although better, still differ
by a factor of 3. For gravitating spin- —,

' fermions d =2,
5=4, the corresponding numerical factors become

Bosons Fermions
-0.3029& 3 &8 & -O.OS34. (8.7)

h(r) R

70 2 4(N+1) 9
4

3N
4d

' 1/3

1 3(N —1)
4 5

2/3

Bounds of similar quality may easily be obtained for
any member of the entire Coulomb-harmonic class of po-
tentials. For potentials other than pure powers, such as
(1.2), the dependence of the N-body energy bounds on U

may be expressed parametrically, in terms of r )0. The
appropriate formulas follow immediately from (8.1), by
differentiation. Thus

1 2f (r) 2'
r r f'(r) r f'(r) (8.8)

concave. Thus, where necessary, we must choose upper-
bound E numbers for the harmonic oscillator and lower-
bound K numbers for the Coulomb potential. From Secs.
VI and VII and (1.5) we collect the appropriate IC num-
bers and display them in Table I. In an application, one
would first verify that (1.3) is satisfied by the potential
shape f (r); then, with the appropriate X numbers from
Table I, one would find the corresponding energy bounds
using the universal expression

E= min 2+Uf(r) . .
K

r)0 r
(8.1)

For the special case of pure powers

f (r)=sgn(q)r~, —1(q (2, q%0,
we obtain from (8.1) the convenient formula

' q/(2+q)
2EE=sgn(q) 1+—2

q

2/(2+ q)

Iql

(8.2)

2
1/3 2

BN 1+
$2 3N

(8.4)

where y= V0a is the gravitational coupling parameter,
the numerical factors A and B are given by

2/3 ' 2/3
1 5 1 d=A &8=—
4 3 9 6

and d and 5 are the dimensions, respectively, of the one-
and two-particle spin spaces. Hence, for spinless fer-
mions (d =5= 1), we obtain the values given by the inner
pair of the following inequalities:

——' & —0. 1202 ( A (B & —0.0336(—0.001 06; (8.6)

Thus, returning from (2.10) all the details of the final en-
ergy result, we have, in particular, for the gravitating fer-
mion system

2

AN (N —1)'
2

It is interesting that, for a given potential shape f (r), all
these X-body energy trajectories for various systems of
bosons or fermions are magnifications of a single curve,
with magnification K.

IX. CONCLUSION

The main purpose of this paper is to derive the simple
recipe (8.8) for bounds on the energy of the many-body
problem. We have considered this possibility earlier, for
the case of bosons; but for fermions it is different. By
eschewing the opportunities for refinement that are avail-
able in the case of bosons, our results for the two classes
of many-body problem can be expressed in terms of a sin-
gle formula.

Our lower bound is based on the Coulomb potential for
two reasons: first, many potentials of interest are convex
functions of —1/r and convexity is required by the en-
velope method in order to yield a lower energy bound;
second, the Coulomb potential is convenient because the
sum over the two-body energies needed by the equivalent
two-body method may be expressed in closed form.
Clearly other choices of lower-bound basis are possible:
thus Table I is extensible.

As physics embraces more fully the nonlinear alterna-
tive, the importance of precious known exact solutions, in
any situation, has become more emphasized. Even
though quantum mechanics is a linear theory, the many-
body problem remains seemingly intractable in general.
In this article we have used geometric technique to
"spread" the gravitational lower bound and the oscillator
solubility, approximately, to interesting classes of poten-
tials obtained from —1/r and r by smooth transforma-
tions. Whenever these transformations have definite con-
vexity, the approximations become energy bounds.
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