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Harmonic oscillator with the radiation reaction interaction
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Classical and quantum (semiclassical) theory of the radiation reaction interaction is applied to
the harmonic oscillator. Spontaneous emission is analyzed and it is shown that both approaches
give the same result. The energy shift of bound states is described.
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I. INTRODUCTION

Two effects in the interaction of radiation with matter
have been beyond the reach of theoretical description for
a long time. One is the spontaneous decay and the other
is the &equency shift of radiation which is emitted by a
charge when interacting with an electromagnetic (EM)
field (often referred to as the Lamb shift, and not to be
confused with Compton's frequency shift). The first is
a very important effect because without its proper theo-
retical description the dynamics equations which include
both the EM field and charges would not obey the energy
conservation law. In contrast, the Lamb effect does not
have such a dramatic importance —it is a minor effect-
and yet its description requires a major theoretical effort.
Both effects are the result of the radiation reaction inter-
action (RRI), the interaction by which the charge's EM
field affects its own dynamics. One of the earliest efforts
to formulate the RRI is nearly a century old [1,2]. When
quantum theory was established the pursuit took a dif-
ferent line, but even there the effort within semiclassical
radiation theory (charge is treated by quantum theory
while the EM field is treated classically) was abandoned
for various (albeit very debatable) reasons [3,4]. Today, it
is believed, the theory which describes the RRI properly,
and hence the spontaneous decay and the Lamb shift, is
quantum electrodynamics (QED). The success of QED
is indisputable, but it is based primarily on the excellent
agreement between the theoretical and the experimental
value for, say, Lamb's shift rather than its theoretical
foundation [5—7].

In this work we will investigate the RRI in the for-
mulation of the semiclassical radiation theory. As it was
pointed out earlier, serious objections were raised against
this approach, but in defense of it the last word was not
said, and in order to do this the limits of semiclassical
theory should be thoroughly investigated. This work has
the aim of investigating these limits with the emphasis
on showing how spontaneous emission and the &equency
shift can be described, and then applied to the harmonic
oscillator problem.

The efforts to formulate the semiclassical theory of the
RRI are not recent. One of the earliest is due to Fermi
[8], but it was far from being a systematic study and a
a serious investigation of the problem. Semiclassical ar-
guments were also used in one of the Grst studies of the

Lamb shift [9], but again the use of the theory was far
&om being systematic and mathematically sound. More
systematic semiclassical study of the RRI was made at
a much later date [10], but several crucial aspects of the
theory failed to be noted. In particular, the roles of the
Coulomb and the magnetic terms were not investigated.
Recently, the theory of the RRI was developed start-
ing &om a general principle, the uncertainty principle
[11—13]. This approach prevents any ad hoc assumptions,
a typical feature of the previous semiclassical analysis of
the RRI. One of these assumptions is the neglect of the
Coulomb interaction for which it can be shown to be
nonphysical [ll—13]. Furthermore, by starting from this
general principle it is possible to formulate the classical
theory of the RRI, and in this way bridge the gap between
classical and quantum theory which exists if within the
former one keeps the deterministic view.

The basic idea in the formulation of the RRI is to note
that the position and the momentum of a charge are
given by the probability distributions P(r, t) and Q(p, t),
respectively. If the uncertainty principle is introduced,
then P and q are related, and as a consequence all the
observables have average values. This also applies to the
EM field produced by a charge, and so the average value
of, say, the scalar potential is (retardation is neglected)

which is exactly the potential if P(r, t) is treated as a
charge density. Therefore P(r, t) plays the role of the
charge density, and similarly one can show that the prob-
ability current plays the role of the charge current. The
EM field is then derived &om the scalar and the vector
potentials, which obey the equations

(2)

0 A
AA — = 4vra J(r, t), —

where we use the scaled coordinates: r and t designate
the products Kr and clct, respectively, where r. = mc/5
is Compton's wave number. The fine structure constant
is defined as n = e2/(ch). In this scaling 4 and A repre-
sent the true scalar and vector potentials multiplied by
e/(m ).cIn quantum theory P(r, t) = ]g(r, t)~ and
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J =Im *9 —A J = P(r, t)Vb(r, t) = P v(t)+ r 7' V'h+. .

while in classical theory one defines the phase space den-
sity p(r, p, t) from which

p(i, t) = f d p (ppp, t),

1(i, t) .= f d'p —p(p, p, t) .
m

(4)

. (9$ I
i = —— (It' —iA @ + 4g + Vg

Bt 2

The basic idea in the formulation of the RRI is to
use this EM field in the equations of motion for charge:
Schrodinger's equation in quantum theory and Newton's
equation in classical theory. Schrodinger s equation mod-
ifies into

where U(t) represents translation velocity of the proba-
bility distribution as the whole. It follows that

J(o, t) Jp(t)
p(o, t) p, (t)

, , P(r-', t —R)e=~
„,, J(r', t —R)

(so)

which determines A;„,& in terms of the probability distri-
bution and the current.

The scalar and the vector potentials are

while the classical equation is

r = —V'V+E+ vxH, (6)

where R = ~r —r'~. If the retardation effect is small,
then both P and J can be expanded in the series of B,
in which case the scalar potential is approximately

where E = —V'Ct —BA/Bt and H = V' x A. In further
discussion we will discuss Schrodinger's equation, since
the same arguments apply to the classical equation of
motion.

This straightforward formulation of the RRI produces
a nonphysical equation of motion for the charge. The
source of the nonphysical term is the assumption that
P(r, t) represents the charge density, which is really not
true. The probability density can only interact with it-
self if the retardation effect is taken into account, and
hence the instantaneous Coulomb term has to be omit-
ted from the equation of motion. This, however, i.s not
suIIIicient because the instantaneous Coulomb field in one
coordinate system may produce additional instantaneous
magnetic field in another. For example, two charges in
the coordinate system where they are both at rest inter-
act through the static Coulomb interaction, but in the
frame where they move they also interact through the
magnetic force. Obviously, this magnetic force is not
an essentially new interaction, but the result of moving
&om one coordinate system into the other. If the in-
stantaneous Coulomb interaction is to be neglected, then
the same should be applied to the magnetic term which
arises by moving &om one coordinate system into the
other. Changing the coordinate system means that the
wave function acquires the phase 27(t) r, where v(t) is
the translation velocity (note the scaled variables). This
means that the current acquires an additional term of
the form 27(t) P(r, t), and the vector potential (the part
which is instantaneous) acquires the term

, , v(t)P(r', t)
~r —r

Therefore, if the instantaneous scalar potential is omit-
ted, then the vector potential should also be modified by
the term (7). From the quantum de6nition of the cur-
rent, and writing the wave function as @ = ~P exp(ih),
then

s, P r', t o.4 = n d'r' ' + — d'r'RP(r', t)B
d r'R P(r', t)—,6 dt

where the first term is recognized as the instantaneous
scalar potential. In further discussion this term is omit-
ted (the next term of the order P is exactly equal to
zero .

Similarly we expand the vector potential and the first
few terms are

~/

A = o. dr' ' —o. dr'Jr"', t + . . 12
R

The neglect of the instantaneous Coulomb term in (ll)
has as the consequence, according to the previous dis-
cussion, modification of the vector potential with A;„,q.
Therefore, the vector potential which describes the RRI
1S

d3r'

—o. d r'J r', t

and Schrodinger's equation (5) is

ztU
2 Cl'M ~ ~

V —zAp m+ Vm+
2 2

~ ~

gj 1J3" (14)

where we made replacement

@ = m(r, t) exp io.r" d r'J —i— dr'r"'.J—
3
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Ap is the first term in the expansion (13).
In this way we formulated the dynamics equation in

quantum (semiclassical) theory, which includes the RRI.
The classical dynamics equation is obtained from (6) and
will be discussed in a separate section. The RRI the-
ory will be applied to the harmonic oscillator problem:
charge is bound by the harmonic force and it is inter-
acting with the plane EM wave. This is also known as
the "forced harmonic oscillator with damping" problem,
which has been treated on a number of occasions. The
relationship of those studies to ours will be reviewed at
the end of the paper. tt(z, t) = f ttz'G(z —z', t) zz(z'), (23)

where C~ and C2 are constants which need to be deter-
mined from the initial conditions. In our studies it will
be assumed that at t = 0 the initial @ corresponds to one
of the eigenfunctions of the harmonic oscillator, say the
ground state. In this case the value of the parameters
p, , b, and c in (19) is zero at t = 0, which implies that
Ci ——C2 ——0 in (22).

Equation (21) is the same as for the unperturbed har-
monic oscillator, and the time evolution of the solution
is given by

II. QUANTUM THEORY where xp is the initial wave function at t = 0. The
Green's function G(z, t) is given by

1 (d
iQ = ——4@+ r Q+ ezfp(t)@,

2 2
(16)

where we use the scaled coordinates and time, defined
in Sec. I, and u stands for ur/(c~). The function fp(t)
determines the time dependence of the electric field. The
solution of (16) can be written as the product

4 = 4*(* t) 4(v t) @.(. t) (17)

and the functions which depend only on the coordinates
x and y satisfy the unperturbed equation for harmonic
oscillator, while g, satisfies

The interaction of a harmonic oscillator with a time
varying, linearly polarized, electric field will be analyzed.
The quantum equation, without the radiation reaction
interaction included, is in this case

G(z —z', t) = —i8(t) ) P„(z)P„(z')e *' ", (24)

where (tt„are the eigenfunctions of the harmonic oscilla-
tor, and the corresponding eigenvalues are E . The step
function O(t) is zero for t ( 0 and equal to 1 otherwise.
The same solution applies for the other coordinates, the
only difference being that the coordinate z in (23) is time
dependent. In this way we obtained the solution of the
time dependent equation (16), in the form of the prod-
uct (17), where each component has the time evolution
in the form (23).

When the RRI is included in the dynamics of the forced
harmonic oscillator, Eq. (16) modifies, according to (14),
into

1 0ig, = —— Q, + —z g, yezfp(t)g, .
2 l9Z~ 2

where

20!A„t ——— d rJ,
3

The solution of (18) can be parametrized as

y, = y[z —c(t) t] "~'l+'~'l

where the parameters satisfy the equations

where we included only that part of the RRI which de-
scribes the spontaneous emission. As will be shown,
the other terms contribute to the energy shift of states.
Equation (25) is nonlinear, but for a harmonic oscillator
it has an analytic solution. It is obtained by noting that
when the solution of the unperturbed oscillator (RRI is

neglected) is used for calculating A„t,we obtain

(20)

and P satisfies

b(t) = —is fp(t) —i (u zc(t), c(t) = i b(t), —

a(t) =
2

b'(t) + ~'c'(t)

1 8
iP = —— P + —z'P,

20z 2
(21)

r A„,= qze fp(t) —(u dt' cos [(u(t —t')] fp(t')

(27)
where the new coordinate is z = z —c(t). The most
general solution of Eqs. (20) is where q = 2n j3. In this derivation we used the relation-

ship
t

b = C,e " + C,e" —i e dt' cos [ur(t —t')] fp(t'),
0

(22)

d'r J(r-, t) = d r Im [vt)'V'vt)] = Im [b] z

1
c = —(Cie —Cz e )

—Z E' dt' cos [~(t —t' ) ] fp (t' ) . (28)

t
dt' sin [u(t —t')] fp(t'),

0

The interaction term (27) is very similar in structure
to the external force in (16), and the two together in
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(25) form the interaction term which can be written as
ez fi(t). The iteration is repeated, but now the starting
function is fi, and it is continued until the iterations
converge. This will happen when the equation

is satisfied. The function f(t) is the solution of the iter-
ation procedure, and replaces the original function fo(t)
in (22) for the solution of the RRI.

The function f (t) satisfies an integro-differential equa-
tion, which is solved by differentiating (29) twice, and
then forming a linear combination of the resulting equa-
tion with the original one to get

—q f +f + ~'f = fo + ~'fo . (30)

The most general solution of the last equation can be
written in the form

3
(d'Y~+ ~

q(v —v +i) (v —v +2)

x dh'e-~-' f, (t') e'-',
0

(31)

where the indices n + 1 and n + 2 of p mean that the
index other than n is taken, e.g. , if n = 2, then n+ 1 = 3
and n + 2 = 1. The parameters a are constants which

I

f(t) = fo(t) + q f(t) —(u dt' cos [(u(t —t')] f(t')
0

(29)

need to be determined, while p satisfies the equation

q+3 + 2 + ~2 0 (32)

The roots of this equation are complicated, and their
precise value will not be given. However, two of them are
complex, with their real part negative, while the third is
real and positive. Their expansion in the power series in
q is

(d
vi —i~ —q ———q'~' + q'~' + o(q'),

2 8
2

p2 = —z (t) —q
—+ —q cd + q (t) + Q(q ), (33)
2 8

ps ———+ q(u' —2q (u + O(q') .
q

The real part of p3 is positive and hence the solution for
f(t) diverges when t —+ oo. There are two remedies to
this problem: either one dismisses the term n = 3 in the
sum for f or imposes requirement on the parameter as
so that the solution is finite. It turns out, as it will be
shown shortly, that the second option is the only choice,
i.e., dismissing the term n = 3 produces a nonphysical re-
sult. From this requirement a3 is not arbitrary, and only
the other two need to be determined. The function (31)
is the most general solution of Eq. (30), but that does not
mean that it satisfies the original equation (29). If this
requirement is imposed, then we get a condition which
the constants aq and a2 should satisfy. After a somewhat
lengthy algebra one gets two equations for these two con-
stants, and when they are solved, the final solution for
f(t) is

t

f(t) = 2Re ' I — dt'e e" f (t') ee")
q (~i —~.) (~i —~s)

'
0

2 + ~2 OO

+ dt'e~'~' ' l fo(t') —= Ii + I2,
q (~i —~.) (~2 —~s)

where

I() — dt'e ~" fp(t') .
0

(35)

I2 fp(t) + q fo(t),
and together they indeed reproduce the first iteration
step in solving Eq. (25). The most dominant contribution

Therefore, we obtained the solution for f(t), which sat-
isfies (29) and is finite in the limit t -+ oo. The solution
has no arbitrary parameters. It would now be of inter-
est to expand the solution in the powers series in q, and
check whether the original iteration procedure is recov-
ered (the iteration procedure is in fact a power series in
q). After somewhat lengthy algebra the two terms in (34)
have expansion

t
Ii —qu) dt' fo(t' ) cos [(u(t —t' )]

0

in the series comes from the term I2 which could have
been dismissed as nonphysical. As we see, it was essential
not to dismiss it and instead require that the solution for
f(t) is finite for infinite time.

XII. CLASSICAL THEORY

Classical theory, which includes the RRI, cannot be
formulated without an amendment. It involves abandon-
ing the deterministic basis of classical theory and intro-
ducing in it the principle of uncertainty. This means
that instead of the usual question —given the initial po-
sition and velocity of a particle what is its position at
some later time? —one should formulate classical theory
to answer the question —given initial probability densities
of finding a particle at a certain position and with cer-
tain velocity, what are these probability densities at some
later time? The uncertainty principle requires that the
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~ ~

r = —~2r" + E + v x H —ez f()(t), (37)

where E and H depend on the probability density and
the probability current. Therefore, this equation has
no meaning for a "pointlike" particle, but for a parti-
cle which is represented by the probability density in the
phase space. Specifically, if the energy shift is neglected,
then the only component of the RRI potential is scalar,

4 = r. A„g, (38)

where we used definition (25). It follows that H is zero

and E is
vE= —V4= —A, g

20,'

3 dt2 (39)

where now the current is

probability densities are related, which prevents making
both of them arbitrarily narrow, thus reducing classical
theory to the usual deterministic basis. The relationship
between the two densities is not self-evident, but quan-
tum theory offers one possibility, which is adopted in our
analysis.

Once one works with the probability densities in clas-
sical theory, the equation of motion which includes the
RRI is formulated along the lines of the quantum dy-
namics equation. Thus Newton's equation for the same
system as in (16) is (in the scaled variables)

Qp, or explicitly

(
1

pp r, v)
—MT —V /4P (43)

z = —(t) z —e fp(t) (44)

which has the solution

Zp
z = zp cos(~t) + —sin(~t)

dt' sin w t —t'
p

t' (45)

where zp and zp are initial values for the coordinate and
the velocity, respectively. The electric field (42), which
has only the z component, can now be calculated. First,
we need the third time derivative of z, which is given by

The classical equation of inotion (37) is very compli-
cated, because at each instant of time the force on the
particle is given by the contribution from all the other
trajectories which are sampled into the phase space den-
sity p. Nevertheless, the equation can be solved ana-
lytically for the harmonic oscillator, following the same
procedure as in the case of the quantum solution. In
the Brst step we neglect the RRI and solve the resulting
equation. Since the RRI and the external Beld affect only
the z coordinate, we only have to consider the equation

J = d vvpr, v", t (4O) dt3
—u z —e fp(t) (46)

where p is the phase space probability density. It has the
property

and when this is replaced in (42) the electric field is

P(v", t) = /it'v p(vvtj, Q(v , t) = f d'op(vv tj,
(41)

20!6

3 fo + oi' J d—t' coo [oi(t —t')] fo(t )v .
'

(47)

where P is the probability density in the coordinate space
and Q is an analogous quantity in the velocity space. The
uncertainty principle requires that P and Q are related,
and so p must reBect this relationship.

The RRI term (39) m the classical equation of mo-
tion can be transformed by using an important property
of the phase space density. This property says that the
total amount of phase space probability in a volume el-
ement d rd v stays constant in time, in which case the
interaction term (39) becomes

d'r J"
3 dt2

20! d
3 dt2

d rpd vpv(t) pp(rp, vp), (42)

where pp is the initial phase space probability density,
and v is the velocity of a particle at time t if its initial
coordinate was rp and its velocity vp. Initial pp is deter-
mined from the initial conditions, and in the example of
Sec. II this is the ground state of the harmonic oscillator.
In this case pp is given simply as the product of Pp and

p(r, v, t)d v = p()(rp, v—())d v(), (48)

where D = d r/dsrp is the Jacobian, then the z depen-
dence of the probability density is

1
P(z, t) = dzp ~ pp(zp, zp)

8$p

(49)

The structure of the electric field is the same as that of
the external field, and together they form an effective
external field with the tiine dependent factor fi(t). We
proceed as in Sec. II until the iterations converge. The
equation which is obtained for the iterated function f(t)
is the same as (29), and so its solution is (34). There-
fore, both classical and quantum theory predict the same
function f(t) which describes the combined effect of the
external force on the harmonic oscillator and the RRI.
The question is now whether classical theory gives the
same answer for the time evolution of the probability
distribution and the current.

The probability distribution P is defined in (41), and
when one uses the property of the phase space density
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1J (z, t) = dzp &, z Pp(zp, zp),
dzp

(5o)

where z is calculated &om the solution (45). By following
the steps as in calculating P(z, t) we obtain the same
result as the quantum in (28). Froin the current and
the probability densities we can calculate the "classical"
wave function by noting that

From the solution for z we find dz jdzp ——cos(ipt), and
also the relationship of zo to z and zo. %'hen all these are
replaced in the expression for P(z, t), the integration over
the variable zo produces the same result as the squared
module of (19). Therefore we have shown that classical
theory gives the same answer for the dynamics of the
probability distribution as quantum theory.

Similarly, one can calculate the current, . Its z compo-
nent is

21 QJ +

i/ = ——4@+ —rg + —@7'Ap + iA0 . 7'@
2 2 2

+ f d'r' BP + e z f, (t) cP,

where we neglected Ao. If the spontaneous emission is
included, then as an approximation we can replace fp(t)
by f(t), given by (34). At t = 0 it is assumed that 1)'d

is one of the eigenstates (ground state) of the harmonic
oscillator, which means that the RRI is exactly zero.

There are two extreme cases which can be analyzed,
and the first is the weak coupling limit. In this limit f (t)
is small so that @ is only slightly different from the initial
stationary state. We can write in this case

—e i+~piy (r ) + @(1) —q(0) + @(1)

where now g(1) satisfies the equation

where

vt)(z, t) = /P(z, t) e' (51)
(dj(l) ~q(l) + ~ 2q(l) + q(0)~ A(1)

2 2 2

+iA" . Vy(') + —y(') d'r'aP (')
0 2 ) (55)

b(z, t) = dz'
)

(52) 2
where we neglected the terms of the order (@(1)),and
higher. In the last equation we use definitions

and the result is the same as (19), except for a nonessen-
tial z independent phase.

We have shown that classical theory gives exactly the
same result as quantum theory for the eKect of the RRI
on the motion of a charge. One could consider it a sur-
prising result, on the other hand, that the harmonic os-
cillator is a rather special case for which it was shown
that this equality exists even when the empirical damping
term is included [14]. However, in our case the equations
are nonlinear and it is not self-evident that this equality
should exist.

p(1) —y(0) @(1)+ @(0)y(1)

dsri j (1)

R '

y2. (o) "' (56)

Ja~) I (o) / (~) + (~) / (o)

Although the equation is now linear in the unknown
1))(1), it is still an integro-differential equation, and can
be solved by expanding the solution in the complete set
of eigenfunctions for harmonic oscillator

IV. ENERGY SHIFT (57)

In the study so far we have only considered a single
term from among those which describe the effect of the
RRI on the dynamics of a charge. The meaning of the
others will be discussed in this section. Schrodinger's
equation, which includes these terms, and when the term
for the spontaneous emission is neglected, is

where the index n stands for three quantum numbers. In
general, the equations which C satisfy are quite compli-
cated, but in the weak coupling limit the dominant coef-
ficients are Cp (for the ground state) and the one which
goes with the eigenfunction z exp( —~r2/2). The last one
will be labeled with the index n = 1. The equations for
C simplify considerably, and for |~ it is

~C1 = Ei&1+ — d r4140')7 'o(1) + ~+1 d ro(1) 4'1+40
2

+—t: '~"
(e "C,) f d rg4'(r)do(d) f d r'Rdo(r')d, (F'), (58)
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where

d3 '

() = —
B '7 — '7

nz ~, gg(0) dsr'

2i Pp(0) R (59)

i+1 El+1 (Eo El ) +1 d r 4'04'1
2 3

2

In the derivation of the equation for C~ we neglected the
terms of the order exp( —i2Eot), and V'Po ——0. For the
harmonic oscillator a(q) ——0, and hence the equation for
Cy is

eigenstate l. A note of warning: the double integral (60)
has a negative value, despite the fact that the integrand
appears to be positive definite.

At the other extreme is the strong coupling limit, when
the RRI term is small compared to the external Geld.
The solution without the RRI is given by (19), and when
the RRI terms are calculated we find that As in (53) is
exactly zero. The reason for this is that, as the solution
(19) suggests, the ground state probability density moves
back and forth in the harmonic potential and, therefore,
according to the discussion in Introduction, it cannot in-
teract with itself. The remaining term, involving P, in
(53) is nonzero, and the approximate equation which de-
scribes the inBuence of the RRI is

x dr'B p (60)

where we used the approximation Cq ———iE~Ci. The
easiest way to calculate the double integral over the space
is to use as the intermediate step the Fourier transform
of Pogq, in which case one finds its analytic expression.
The equation for C~ is finally

(62)

where

3 2
P ) = — exp —cux +y +z —ct . 63

CI 2
iCg —— Eg + —(Ep —Ey)

6
(61)

The additional term with Eq is the energy shift of the
I

The integral over P( ) is a complicated function of r,
which has expansion in the even powers of r. When the
second time derivative is calculated the Grst few terms in
this expansion are

d „~P'(o)—~ ~

3
c2 —zc+ -w (x' + y' + 3z') c2 — u)z (x—

' + y' + z') c + O (r'),
5 5

(64)

where z was defined in (21). We notice that the RRI is
now both external Geld and time dependent. The domi-
nant contribution is an overall shift of the energy scale,
and the next contribution is a modification of the ex-
ternal Geld. The harmonic potential is modified in the
third order contribution, which is the source of the en-
ergy shifts of the bound states. The terms which follow
are of a similar nature, but their characteristic feature
is to couple the vibration modes in all three space direc-
tions, and therefore the spatial separability is lost.

V. EXAMPLE AND DISCUSSION

Analysis of one example will illustrate typical dynam-
ics when the effect of the spontaneous emission of radi-
ation is included in the interaction of a plane EM wave
with a harmonic oscillator. It is assumed that initially
the harmonic oscillator is in its ground state, and the
temporal dependence of the Geld is

g(t) = .
1

] +g—77(t —t „)] +gg(t —t )
(66)

1 1
i@ = b,@ + r'g + ez fo(t) @———

2 2

y~r A...@, (67)

where t is time of the onset of interaction and t is
the end of the pulse.

The effect of the spontaneous emission on the dynamics
of the harmonic oscillator is very weak, but it is negligible
if the EM Geld is very strong. Therefore in our study we
should try to keep the EM Geld weak but enhance the
efFect of the spontaneous emission. The only possible
way to achieve this is to study harmonic oscillators of
high frequency. This can be shown if we use additional
scaling, where the time variable is replaced by tm and
the coordinates by ~iur, in which case Eq. (25) becomes

fo(t) = g(t) cos(ut), (65)

where the modulation g(t) represents a square pulse of
the form

where A is given by (26), but now in the scaled variables.
Prom the last equation it is clear that the effect of the
spontaneous emission indeed depends on the frequency
of the harmonic oscillator.
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The parameters, in the units of the latest scaling,
which we used in the example, are the following: t~
30, t = 6.5 x 10, and g = 0.3, while the strength of
coupling is e = 0.00012. Time dependence of the energy
of the harmonic oscillator for these parameters is shown
in Fig. 1, where the broken line represents the shape of
the pulse g(t). The energy starts to increase as if there is
no effect of the spontaneous emission (ground state en-
ergy is 3/2), but after a certain time it starts to level
oK, reaching a steady value. At this point there is a bal-
ance between the intake of energy from the EM wave and
the energy of the emitted radiation. The energy of this
plateau depends on the coupling strength of the Beld.
When the Beld is turned ofF, the energy of the oscillator
starts decreasing due to the spontaneous emission until
the ground state is reached (stationary state).

We have also calculated the spatial integral over the
current since this quantity is directly related to the in-
tensity of the radiated energy. Time dependence of this
quantity is shown in Fig. 2, where its oscillations are
only symbolically shown (they are so rapid that on the
time scale shown they would not be resolved), while the
thick lines show their envelope. The broken line shows
the pulse g(t). The amplitude of the integrated current
directly correlates with what we obtained for the energy
of the oscillator. It starts &om zero because the initial
state is stationary, and then it increases to reach a sta-
tionary value. At this point the maximum of the am-
plitude indicates that the intensity of radiation is at its
peak and that a lot of energy is emitted in the form of
EM radiation. After the pulse is over the amplitude of
the current decreases because energy is emitted at the
expense of the energy of the oscillator.

From the time evolution of the probability distribu-
tion (and the wave function) we can obtain the transition
probability into a particular stationary state of the har-
monic oscillator. This requires calculation of the "over-
lap" integral between the "exact" wave function and the
wave function for this state, and its square modulus is the
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required transition probability. Each stationary state of
the harmonic oscillator is characterized by three quan-
turn numbers; n„,l, and m (quantum numbers for the
radial motion, angular momentum, and the "magnetic"
term, respectively); however, because of the symmetry of
the problem the transitions which change the m quantum
numbers are not allowed. Therefore we only have to con-
sider two quantum numbers, n„and l, and Bx m = 0. A
typical distribution of the transition probabilities among
these states is shown in Fig. 3 as a two-dimensional to-
pographical plot. The three-dimensional inset shows how

10

FIG. 2. Time dependence of the spatially integrated cur-
rent J(t) for the harmonic oscillator in Fig. 1. Envelope of the
oscillations of J(t) is shown by a thick solid line, while they
are show symbolically by an oscillating line. The envelope of
the EM field is shown by a broken line.
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FIG. 1. Time dependence of energy of harmonic oscillator
which interacts with the EM field at resonance frequency. The
envelope of the EM field is shown by the broken line.

FIG. 3. Topological view of the transition probabilities into
the states (n, , t) of harmonic oscillator, at t = 4000. The
three-dimensional inset shows the same distribution from an-
other perspective.
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this distribution looks &om a different perspective. Cal-
culation of these transition probabilities was done at the
time when the energy of the harmonic oscillator is at its
maximum (t = 5 x 10 ). The maximum transition proba-
bility is into the n„=3 and l = 3 state, but this is a mis-
leading result which implies that the harmonic oscillator
has certain angular momentum. In fact, it is quite the
contrary: the probability distribution in the Cartesian
x and y coordinates is stationary, while it is oscillating
along the z axis. This result suggests a more general con-
clusion: individual states of a system, i.e., the stationary
states, should be treated with great caution when used
as the basis set in the expansion of the exact solution.
What matters is the entire wave function (or the proba-
bility distribution) while the basis functions are a useful
mathematical tool for obtaining it. To attach a much
deeper meaning to these functions may often lead to a
misleading conclusion. This result is well known but re-
peated here in order to emphasize the difference between
the overall probability distribution and its components.
Thus, for example, &om the transition probabilities into
various states one could conclude that the harmonic os-
cillator can emit radiation of the &equencies which are
multiples of the basic one. In our semiclassical treatment
we did not find any evidence of that, because the spec-
trum is determined &om the overall distribution and. not
&om its components.

The energy states of the harmonic oscillator are degen-
erate in the quantum numbers n„and l; the degeneracy
is 2n„+L. Therefore, the probability of finding a particle
with a certain energy is the sum of all the transition prob-
abilities into the states with this energy. This quantity
can be calculated directly from the "exact" wave function
in Cartesian coordinates, and the result is the Poisson's
distribution

QAP„=—e
nt (68)

in the variable n = 2n„+1.The test was done by sum-
ming the transition probabilities in Fig. 3 and compared
with Poisson s distribution. In Fig. 4 we show the re-
sult of the least square fit of the numerical probabilities
(circles) to Poisson's distribution (solid line). The fit is
nearly exact, which only confirms that our numerical pro-
cedure leading to the transition probabilities is reliable.

In the analysis of the example we did not take into ac-
count the energy shift of the states, discussed in the pre-
ceding section. This is an additional complication which
needs separate discussion. However, on the level of the
qualitative arguments, based on the coupling term (64),
we can predict that the simplicity of the dynamics will
be lost due to the mixing of all the three space directions.
One of the consequences, for example, will be that the
Poisson type distribution of the states of the harmonic
oscillator will not hold true. Also it is not a priori clear
that classical and quantum results will be exactly equal,
but there is no reason to expect that they will be far
apart. The prediction is based on the experience &om
the previous analysis of the quantum-classical correspon-
dence [15—18], however, only the detailed analysis should
confirm this.
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FIG. 4. The total transition probabilities (circles) into the
energy states of the harmonic oscillator fitted to the Poisson's
distribution (line), at t = 4000.

Strictly speaking, there are two kinds of radiative fre-
quency shifts: one coming &om the effect of the energy
shift of the bound states and the other coming from the
effect of the spontaneous emission. The first, as we men-
tioned, was not discussed in detail, but the second was
taken into account in the solution of Eq. (30). The ef-
fect of the latter is negligible because it is too small to
be noted in calculations, as can be deduced &om (33).
This frequency shift is exactly equal to the one which
is obtained in the treatment of the same problem by
the Abraham-Lorentz theory [19], the expected result
because the equation which one needs to solve in the
Abraham-Lorentz theory is the same as (32). The im-
portant thing to note, however, is that this frequency
shift is the same in both the classical and the semiclassi-
cal treatment which we developed here.

The efforts to formulate the quantum (semiclassical)
harmonic oscillator problem with the "damping" term
are very old. There are at least two distinct directions in
this pursuit: one which is based on treating the damp-
ing term empirically [14,20—23] in analogy with the fric-
tion term in classical theory, or through formulation of
the so-called "stochastic electrodynamics" [24,25]. In the
first line of formulation the basis is the Abraham-I orentz
theory of the RRI, and from the classical-dynamics equa-
tion the effort was concentrated in finding the analogous
quantum equation. One should mention though that the
effort had a much wider aim, formulating a general quan-
tum equation which includes dissipative processes, where
the RRI is one of them. However, here we refer only to
the part which bears direct relevance to the RRI. The
difference between our approach and the one which we re-
ferred to is great. First, in our approach we can describe
the additional (in fact the most important) frequency
shift, while in that treatment it is difFicult to imagine
how this shift can be included in the dynamics equations.
However, the most revealing difference between the two
formulations is in the attitude towards the properties of
the probability distribution in phase space. It was ar-
gued be Greenberger [20] that "friction" causes all the
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velocity part of the phase space density to be reduced to
zero, which is indeed the case for any particle which loses
energy. However, in our treatment of the RM, zero "&ic-
tion" is a result of the stationary probability distribution
and zero (or stationary) current, which does not ixnply
that the momentum part of the phase space distribution
is reduced to zero.

The "stochastic electrodynamics" is closer to our treat-
ment because the concept of the probability distributions
is introduced, and a number of the relationships which
we defined in the beginning are formulated. However,
there are a number of steps in this theory which set it
apart Rom our approach. For example, in that treat-
ment one deals with the ensemble of harmonic oscillators

rather than a single oscillator whose distribution of coor-
dinates and momenta obey the uncertainty principle. As
an ensemble the oscillators produce an EM field (random,
hence the name "stochastic electrodynamics" ) which in.-
teracts back with the oscillators. In all the treatment
there is no use of the retardation e6'ects, nor the treat-
ment of the Coulomb term. Furthermore, the basic dy-
namics equation is of the Abraham-Lorentz type, where
the connection between the EM field and the trajectories
is not very clearly defined. Based on the previous com-
parisons it is, therefore, believed that our formulation of
the RRI is the alternative which has advantages in many
respects. However, more detailed studies are necessary
to confirm this.
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