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Approximate analytic expression for the eigenenergies of the anharmonic oscillator
V(~) = A.~'+ H~'
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Ax + Bx is introduced, starting from particular analytic solutions which are valid when certain
relations between the parameters A. and B are held.

PACS number(s): 03.65.Ge, 02.60.—x, 02.70.—c

I. INTRODUCTION

A problem that has been challenging physicists and
mathematicians for years is the search for analytic so-
lutions for anharmonic oscillators. As it is well known,
the general solution for this problem has not yet been
found; however, particular analytic solutions have been
discovered when the potential parameters obey certain
relations. It is important to note that these particular
analytic solutions do not cover the entire spectrum of the
problem even in the case of simpler examples. Potentials
with these characteristics are then called partially alge-
brized or quasi-exactly-solvable [1—21].

Since the complete spectra of anharmonic oscillators
are not analytically known it is usual to implement nu-
merical methods to find the energy eigenvalues. This is
quite satisfactory for a particular potential with all its
parameters 6xed to certain numerical values. The price
paid in this approach is that one cannot in general write
a closed expression for the relevant functions related to
the solutions of the problem as the eigenenergies or wave
functions even for a more restricted class of potentials.

Clearly there is a gap between these two approaches
and in this paper we want to make some eKort in the di-
rection of connecting them. To do this we will start with
the partial analytic solutions known for the double-well
potential V(x) = Axe + Hx~ (A & O, R ( 0) including
their energy spectrum but only in a recurrence relation
form and then obtain its numerical counterpart. From
these numerical data we establish relations between the
energy E and the parameters A and B.

Apart &om its intrinsic interest, the double-well poten-
tial also plays an important role in the quantum study of

the tunneling time problem [22], in spectra of molecules
such as ammonia and hydrogen-bonded solids [23], and
in field theory [24]. In fact, the double-well potential
that will be focused on in this work might be used as a
potential model for quark con6nement in quantum chro-
modynamics [25]. On the other hand, by performing
suitable point-canonical transformations, it is possible
to show that there is a mapping from the potential of
Rydberg atoms in uniform magnetic 6elds into that of
some double-well potentials [26]. Both these problems
are generally studied in terms of standard perturbative
approaches. It should be very pro6table to obtain some
analytical information, even though approximately, like
that proposed here.

This paper is organized as follows. In Sec. II we re-
view the algebraic approach for the potential V(x)
Ax + Bx and determine the energy relations for the
6rst analytic eigenfunctions. In Sec. III we take these
energy relations, which are valid when A and B satisfy
a constraint relation, and interpolate them numerically.
Then we obtain an expression for the energy as a function
of A, B and n, the principal quantum number, for n & 3.
In Sec. IV we show that these results can be extended to
higher excited states and in Sec. V we present our 6nal
considerations.

II. ALGEBRAIC APPROACH

In this section we review the analytic properties of the
Schrodinger equation

——0"+ VO' = E4'
2

for the sextic anharmonic potential [7,21]

V(z) = Axs + Rx', A & 0, (2)
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obtaining explicitly the expressions for the energy corre-
sponding to the ground and lowest excited states. As is
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well known, the Schrodinger equation for this potential
can be solved by writting the wave function as

@(x) @(x)
—42A e /4

Ã

@even(x) — ) ajx
Oy2i ~ ~ ~

(4)

or

N
4' gg(x) = ) a,.x'.

1y3i ~ ~ ~

The exact solutions are only possible when certain rela-
tions among the coeffients a~'s are satis6ed, which can
be written as recurrence relations

where the remaining function 4'(x) must be a polynomial
of definite parity:

N=3,
N=4,

N=5,
N=6,
N=7,
N=8,

N=9,

N=11,

0 = E —6m2A,

0 = E E2 —16 2A

0=E E —32 2A

O = E' —6OE'v'2A+ 36OA,

0 = E —100E v'2A+ 1512A,

0 = E
~

E —180E V 2A+ 58882),

0 = E E —240E 2A+ 16128A

0 = E —350E v 2A + 41432E A
—162000 ~2As1 ~,

0 = E —490E v 2A + 91160E A
—831600 &2A ~ .

(11)

(12)

(13)

(i4)
(i5)

(16)

(17)

(18)

(19)

E a~ + (N + 2 —j )+2A a~

(j + 2) (j + 1)
(6)

where E is the energy eigenvalue. Note that for j' ) N
all a~1 = 0. This equation can be used to obtain the
energy equation

aiv E —2v'2A aN g
——0. (7)

These restrictions imply that the potential parameters A
and B must be related by

B = —u'2A (N + ~~),

in order to ensure exact solvability. One should observe
that the parameter B is always negative. Therefore, we
would not expect any kind of harmonic oscillator limit, in
the case of arbitrary parameters, when A goes to zero. In
order to take into account the case where B is positive, we
suppose that some sort of analytical continuation should
be done. Indeed, a particular case of the above mentioned
potential has been studied, regarding problems related to
analytical continuations of their parameters by Bender
and Turbirner [27]. Moreover some discontinuities in the
eigenenergy spectra of some polynomial potentials have
been reported by Panday and Varma [28]. Thus it is
quite clear that any limit and extrapolations should be
done very carefully. In fact, the potential V(x) = Axe +
Bx belongs to a general family of quasi-exactly-solvable
potentials [7,21] for which partial analytic solutions are
known when its parameters satisfy constraint conditions.
Choosing a certain value for N, we fix also the number of
exact levels that can be found in this approach: 1 + N/2
levels when N is even and (1+N)/2 levels when N is
Qdd.

The expressions for the energy eigenvalues for the first
values of N, corresponding to the potential (2), may be
expressed as

III. ANALYTIC-NUMERICAL APPROACH

In order to 6nd an analytic expression which gives ap-
proximate values for the eigenenergies for arbitrary pa-
rameters [not only for those satisfying (8)] we use a nu-
merical method of adjustment and interpolation starting
with the analytical eigenenergies for parameters which
satisfy (8). These two variables are then fitted through
a polynomial of arbitrary degree which best fit resulted
in one of third degree:

E = a+bB+eB +dB
Noting that the coefficients a, b, c, and d must depend
on the parameter A and the principal quantum number
n, we write

E =a (A)+b (A) B+c„(A)B +d (A.) B . (20)

The next step is to find out these dependences explic-
itly. The best fit in this case is obtained by single power
functions for each coefficient which read

a„(A) = c5.„A 2

b„(A) = P„A

(21)

(22)

c„(A) = p„A (23)

This method may be applied for an arbitrary N, but in
practice this is difficult to handle. In this analysis, we
6rst confine ourselves to N & 11 with the advantage of
6nding algebraic equations for E which can be reduced
to the third power (for the energy squared) so that their
exact roots may be easily obtained. Finally, we obtain
the complete dependence of E on the parameters A, B,
and n. In Sec. IV we extend this discussion to N = 20
and 30, when only numerical solutions are possible.

N =Oor1,
N=2,

0 =E,
0 = E —2V'2A,

(9)
(io) d„(A) = b„A-'~'. (24)
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t'~ )'
+b„

A)

(25)
The behavior of the coefficients n, P, p, and b against n
results in the polynomials

E„=A ~ n„+P„
A ( A)

Keeping Eqs. (20) and (21)—(24) in mind, it is possible
to state that the energy can be written as a function of
parameters A and B and the quantum nuxnber n:

The best fitting for these points leads to the equation

—0.482986 + 7.44313 x 10 2n

—3.91992 x 10 n

+ 1.30664 x 10 n . (3

Analogously, for N = 30 we find (/2A = 10 is)
a polynomial equation of eigth power for the energy
squared, which leads to the eigenvalues also shown in
Table II. These data lead to the equation

a = 0.2310 + 2.995n —1.466n + 0.4490n (26) E„~~2~ io,e ———8.95776 x 10

P„= (—1.224+ 9.067n —4.919n + 0.9516n ) x 10

(27)

+ 9.16173 x 10 n
—3.18989 x 10 n

+ 7.08864 x 10 n . (32)
= (—11.00 —3.057n+ 9.876n —2.562n ) x 10

b„= (—1.778 —1.953n+ 4.176n —1.073n ) x 10

(28)
TABLE I. Comparison between the exact and approx-

imate results for the eigenenergies with A = 1. The
precision of the approximate solutions is measured by
b —= (@exact @ ppraox)/@exact ~

(29)

These results were obtained for range of values 0.01 &
A & 100 and —12.5 & &+—& —1.5 (and 0 & N & 11).
The expression (25) is in excellent agreement with the en-
ergy levels obtained analytically for n & 3. In these cases
the error was always less than 1%, except for n = 2, which
presents a maximum discrepancy that is still smaller than
4%. This can be seen &om the Table I, where we show
the energy eigenvalues, exact and approximate, for the
case A = 1.

-2.1213

-4.9497

-7.7782

-10.6066

-13.4350

-16.2635

@exact

0.0000

-1.6818

-4.7568

-8.9651

-14.0098

-19.7569

@approx

0.0037

-1.6722

-4.7557

-8.9482

-14.0272

-19.7516

5.7x 10

-2.3x 10

-1.9x 10

1.2x 10

2.6x 10

IV. EXTENSION TO HIGHER EXCITED STATES

So far we have only considered the energy for the
ground state and the first three excited states. This was
so because we have chosen the order N of the polyno-
mials (4) and (5) to be no higher than ll. In that case,
the solutions for the energy equation were obtained ex-
actly. With that choice we have varied the parameters
A and B through large ranges. As a matter of fact, the
choice N = 11 leads to six exact levels, but as we take
the safe limit of four values of the eigenenergies to be in-
terpolated, we have found the expression (24) for n & 3
only.

In order to study the behavior of higher excited states
we increase N for specific values of the parameters A and
H, satisfying relation (8). Choosing N = 20 and applying
Eq. (6) iteratively, similarly to what has been done for
Eqs. (10)—(19), we find that the energy-squared levels

y = E2 obeys the equation (for /2A = 10 )

~g (y —0.44y + 0.605299y —2.99171 x 10 y
+4.58305 x 10 y —1.25083 x 10 ~) = 0,

(30)

which leads to the energy eigenvalues shown in Table
II, with the corresponding principal quantum number n.

-3.5355

-6.3640

-9.1924

-12.0208

-14.8492

-17.6777

-4.9497

-7.7782

-10.6066

-13.4350

-16.2635

-6.3640

-9.1924

-12.0208

-14.8492

-17.6777

0.0000

-2.9130

-6.7272

-11.3917

-16.8011

-22.8680

1.6818

0.0000

-2.1164

-5.4771

-9.9345

2.9130

0.0000

-3.4134

-7.5588

-12.4725

-0.0016

-2.9076

-6.7324

-11.3914

-16.7985

-22.8690

1.6682

0.0548

-2.1984

-5.4223

-9.9482

2.9101

0.0111

-3.4302

-7.5477

-12.4754

-1.8x 10

8.2x 10

-3.0x 10

-1.5x 10

5.0x 10

-8.1x 10

3.9x 10 ~

-1.0x 10

1.4x 10

-9.8x 10

4.9x 10

-1.5x 10

2.3x 10
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Note that Eqs. (31) and (32) have the same form as Eq.
(25), since all of these expressions are given by polynomi-
als of third degree in n. One should also note that these
equations have a scaling symmetry, since if we choose, for
example, /2A = 1, we find that the energy eigenvalues
of Table II are only shifted by the factors 10 and 10
for N = 20 and 30, respectively. This scaling symmetry
is a consequence of the fact that the energy eigenvalues
are proportional to A~~4, as could be observed. in Eqs.
(10)—(19) or (25) as well. This exact dependence was
also observed by Bender and Turbirner [27] by applying
a variational method. Note that the reBection symme-
try between the negative and positive energy eigenval-

TABLE II. Eigenenergies for N = 20 and N = 30.

¹ 20

ues appearing in Table II are due in part to the method
employed here and also to the quasiexact symmetry of
potential (2).

Analyzing the behavior of the higher excited states dis-
cussed above for N = 20 and 30, we expect that their
properties will also be accompanied by situations with
arbitrary N. In practice, however, as N increases, the
power of the polynomial equation &om which we find the
energy eigenvalues also increases, leading to technical dif-
ficulties in calculating its roots. In fact, the levels are not
equally spaced and as the number of roots increases, one
can find that these differences may be of many orders
of magnitude, for which a numerical approach requires
rapidly increasing precision. It is important to remark
that the behavior of E, as always being a polynomial
of third degree in n, , appears to be a kind of "exact be-
havior" in the case studied, because it persists when the
number of analytically obtained excited states increases.

V. CONCLUSIONS
-4.783810x 10

-3.564750 x 10

-2.446070 x 10

-1.442440 x 10

-5.878460 x 10

0.000000

5.878460 x 10

1.442440 x 10

2.446070 x 10

3.564750 x 10

4.783810x 10

-8.84041 x 10

-7.32793x 10

-5.89470 x 10

-4.54646x10 4

-3.29087x 10

-2.13924x 10

-1.11289x10 4

-2.93390x 10

2.933904x 10

1.112891x 10

2.139249x 10

3.290873x 10

4.546464 x 10

5.894709x 10 4

7.327931x 10

8.840412 x 10

10

14

18

20

10

12

14

16

18

24

28

30

Some final considerations are now in order. First, we
observe that the above developed method, apart &om the
obvious advantage of producing an approximate energy
spectrum for arbitrary values (restricted to a given region
of validity) of the potentials parameters, permits at least
in principle an approximate analytical expression also for
the wave function. This can be achieved by truncating
the series appearing in the wave function, defined through
the expressions (2)—(4), in a term such that

(a 3)
Ev'2A 2) )

(33)
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where R(x) rounds x to the nearest integer. In the case
where the parameters A and B are such that j = N, we

get the exact solutions. In the remaining cases we have
an approximation for the wave function, which in turn
permits us to have some information about the probabil-
ities of a given process, not only about its eigenenergies.
There is another approach that gives an analytical ap-
proximation for the wave function introduced by Chha-
jlany and Malnev [18] and improved by Fernandez. [29]
It is based on an approach where exact solutions of a po-
tential of a higher order are obtained and then, taking
convenient limits, one can restrict the power of this po-
tential to the desired one of interest, for which no exact
solution could be found. It would be very interesting to
compare these two approaches.

We intend to extend the approach developed here in or-
der to include other polynomial potentials. Furthermore,
we are also improving the statistics with more points, for
obtaining the full analytical energy expression for greater
values of the principal quantum number n. These and
other questions are under study and we expect to report
on them in the near future.
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