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Calculation of energy levels, El transition amplitudes and parity violation
in francium
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Many-body perturbation theory in the screened Coulomb interaction was used to calculate en-
ergy levels, El transition amplitudes, and the parity-nonconserving (PNC) El amplitude of the
78-8s transition in francium. The method takes into account the core-polarization efFect, the
second-order correlations, and the three dominating sequences of higher-order correlation diagrams:
screening of the electron-electron interaction, particle-hole interaction, and the iterations of the
self-energy operator. The result for the PNC amplitude for Fr is El(7s-8s) = (1.59+ l%%uo)

x10 ieazz( —Qiv /N), where Q~ is the weak charge of the nucleus, N = 136 is the number of
neutrons e = ~e~ is the elementary charge, and azz is the Bohr radius. Our prediction for the posi-
tion of the 8s energy level of Fr, which has not been measured yet, is 13 110 cm below the limit
of the continuous spectrum. The accuracy of the calculation was controlled by comparison with
available experimental data and analogous calculations for cesium. It is estimated to be 0.1'Fo for
the energy levels and 1'Po for the transition amplitudes.

PACS number(s): 32.80.Ys, 32.70.Cs, 31.25.Eb

I. INTRODUCTION

Until now &ancium has remained one of the least stud-
ied atoms. There was a lot of progress &om 1978 to 1990
when many energy levels, hyperfine structure intervals,
and isotope shifts were zneasured [1—6]. During the same
period of time we performed ab initio many-body calcula-
tions of the energy levels and hyper6ne structure intervals
of francium [7,8]. Energy levels were in fact predicted by
us because nothing was measured at that time except the
wavelength of the 7s-7p3y~ transition. Hyper6ne struc-
ture intervals were in turn used to extract magnetic mo-
ment values of a number of &ancium nucleus isotopes.
Recently an interest in &ancium has been revived due to
a proposed experiment to measure parity nonconserva-
tion (PNC) in this atom [9]. So far, the most accurate
measurements of PNC efFects in atoms (on the level of
1—2%) were carried out for the four atoms: cesium [10],
lead [ll], thallium [12], and bismuth [13]. Nevertheless,
until now cesium had remained the only atom for which
the accuracy of both experiments and theory [14,15] is
about 1'%%up. (Comparisons of our calculations and experi-
ments for other atoms are presented in Sec. III.) Fran-
cium is a heavier analog of cesium and, due to the similar
electron structure, a similar accuracy of the PNC calcu-
lations may be expected for it. On the other hand, for
the francium atom the PNC eKect must be considerably
larger than for cesium due to the larger value of nuclear

charge Z. These facts make the proposal of PNC mea-
surements in &ancium very promising.

In our works [14,16—18] an accurate znethod of atomic
calculations has been developed. As shown for cesium,
the method gives an accuracy of about 0.1'%%up for the calcu-
lations of the energy levels [17] and about 1% for the hy-
per6ne structure intervals and El transition amplitudes,
including the PNC efFect [14,18]. In the present paper we
apply the approach developed in [14,16—18] to the calcu-
lation of energy levels, El transition amplitudes, and the
PNC amplitude in &ancium.

II. METHOD OF CALCULATION

The znethod of calculation was described in [14,16—18].
Here we repeat the most important aspects of it for future
reference. We use the relativistic Hartree-Fock (RHF)
method in the V approximation to obtain a complete
set of one-electron orbitals. The core states are then
&ozen and the states outside the core are found by solving
the single-particle equation (Brueckner approximation)

(Hp+ Z)g = E Q,
where Ho is the relativistic Hartree-Fock-Dirac Hamilto-
nlan

Z p
ap = cn p+ (P —1)mc2 — (")' + V"-z,
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V = Vg;, + V„,h is the sum of the direct and the
nonlocal exchange Hartree-Fock potentials created by the
N —1 electrons of the atomic core, and Z is the nonlo-
cal correlation potential (self-energy operator) which de-
scribes the correlation interaction of the external electron
with the core.
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For accurate calculations of the PNC effect in heavy
atoms 6nite nuclear size must be taken into account. We
use the standard formula for the charge distribution in
the nucleus FIG. 2. Hole-particle interaction in the polarization oper-

ator.

exp[(r —re)/D] + 1 ' (3)

where C is the normalization constant, r~ ——1.10A
fm, and D = 0.57 fm [19]. The nuclear part of the
Coulomb potential at small distances is calculated by in-
tegrating (3). (f p(r)r2dr = 1.)

There are no specific experimental data for the proton
and neutron distributions in the Fr nucleus, but usually
these distributions for the most stable isotopes are very
close (see, e.g. , Refs. [19—22]). Therefore we assume that
the distributions of the neutron and proton densities co-
incide and the Hamiltonian of the parity-violating (PV)
weak interaction between the electrons and the nucleus
has the form

l
IIpv = — Gp(&)Qwws

2 2

with nuclear density given by Eq. (3). In this Haxnilto-
nian G is the Ferxni constant, Qxx is the weak charge of
the nucleus, and p5 is the Dirac matrix. The next ques-
tion concerns the sensitivity of the PNC efFect to the
nuclear radius re. We have proved that it takes a 3%
variation of r~ in (3) to change the PNC result for Fr
by 1%%uo. Since an average nuclear radius is known with
an accuracy better that 3% (see, e.g. , Refs. [19—22]), we
believe that this uncertainty in the PNC is also negligi-
ble. Probably the main question concerns the shape of
the Fr nucleus. It is a deformed or at least a soft nucleus.
On the other hand, the distribution (3) corresponds to a
spherical nucleus. To imitate the effect of a quadrupole
deformation we change the parameter D in the distribu-
tion (3). Matching the values of (r2) one can prove that
the 20%%uo quadrupole deformation corresponds to the vari-
ation of D &om 0.57 fm to 0.64 fm. At this variation of
D the PNC effect is changed by 0.9%. However, for the
Fr nucleus a 20%%uo quadrupole deformation is certainly an
overestimation. Therefore, we can conclude that the un-
certainty in the calculated PNC effect due to the nuclear
part of the problem is smaller than 1%. We have to note
that due to the large nuclear charge this uncertainty for
Pr is much greater than that for Cs and is actually rather
close to 1%. Thus it would be very important to do a
more detailed analysis of the nuclear part of the problem,
similar to that carried out in Refs. [23—25] for Cs and Pb.

The calculation of Z is the most complicated part of
the method. In the lowest nonvanishing order of the per-
turbation theory in the residual Coulomb interaction the
self-energy operator Z is described by the two diagrams
shown in Fig. 1. In the case of alkaline atoms the di-
rect diagram [Fig. 1(a)) is approximately 10 times larger
than the exchange one [Fig. 1(b)] and we use differ-
ent techniques to calculate them. The direct diagram is
calculated using the Green's functions and the Feynman
diagram technique. This enables us to take into account
the two dominating classes of higher-order correlations
in the calculation of Z: (i) the hole-particle interaction
in the polarization operator (Fig. 2) and (ii) the screen-
ing of the Coulomb interaction (Fig. 3). It was shown
in [26,17,14,18] that these higher-order correlations are
very important for accurate calculations.

The use of the Green's functions also provides bet-
ter numerical accuracy than a direct summation over
the intermediate states. This can be seen by comparing
the values of the second-order correlation corrections for
the energy levels of cesium obtained by different authors
(see Table I). In our earlier work [27], the calculations
were done via the direct summation over the interme-
diate states. The basis set used was restricted due to
the limited computer power available at that time. The
numerical accuracy in the calculation of the second-order
correlation corrections was about 10%. In our later works

( [17] and the present work), when the Green's functions
and the Feynman diagram technique were used to cal-
culate the direct diagram, the agreement between our
results and those of Johnson et al. [28] and I iaw [29] is
at a level of 1% of the correlation correction value, which
corresponds to the accuracy of about 0.1% for the level
energies. The slight difference between our results in the
third and fourth columns of Table I may be attributed
to a difference in the values of some numerical parame-
ters (such as coordinate grid, etc.). This illustrates the
stability of our results with respect to variation of the
paraxneters. The contribution of higher-order correla-
tion is not small and makes up about 10%%uo of the cor-
relation correction. Therefore, it is essential to calculate
the second-order diagrams with high numerical accuracy
when higher-order diagrams are also included.

There is no need to calculate the exchange diagram
with very high numerical accuracy and we calculate it by
means of direct summation over the intermediate states.
The higher-order correlations are taken into account in

FIG. 1. Second-order diagrams for E in the Feynman dia-
gram technique. FIG. 3. Screening of the electron-electron interaction.
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TABLE 1. Second-order correlation corrections to the energy levels of cesium (cm ).

State
6s
6pi(~
6p3/z

Dzuba et al.
[27]

-3514
-1413
-1279

Dzuba et al.
[17]

-3886
-1533
-1374

Present
work
-3873
-1510
-1352

Johnson et al.
[28]

-3896
-1517
-1356

Llaw
[29]

-3867
-1508
-1352

a semiempirical way by introducing the screening factors
fg in each Coulomb line (k is the multipolarity of the
Coulomb interaction). The values of fg are estimated
&om accurate calculations of the higher-order corrections
to the direct diagram. We used the same set of values for
both cesium and francium atoms: fo ——0.67, fq ——0.62,
fz ——0.82, fs ——0.87, f4 ——0.95, fs ——1, etc. Note
that due to a small contribution of the exchange diagram,
the final results are not sensitive to the method of its
evaluation. The diagrams for the self-energy operator
with screening of the Coulomb interaction and. the hole-
particle interaction taken into account are presented in
Fig. 4.

When Z has been calculated, the states of the external
electron are found by solving Eq. (1) iteratively, starting
&om the Hartree-Fock orbitals. The iterations in Eq. (1)
correspond to the summation of another infinite series of
higher-order diagrams —the iterations of the self-energy
operator (Fig. 5).

The one-electron wave functions in the Brueckner ap-
proximation and the energy levels are found by the proce-
dure described above. In order to calculate the E1 transi-
tion amplitudes and the PNC effect the core polarization
by the external fields should be taken into account. This
is done by means of the time-dependent Hartree-Fock
(TDHF) method (see [16] for details). Calculations of
El amplitudes were carried out in "length" form, which
was proved to be more stable for optical transitions when
photon &equency is relatively small. The one-electron
wave function in the electric field of u &equency has the
form

k = CA:+X&e ' +Y&e'

where @I, are the Hartree-Fock or Brueckner electron
wave functions, and XI„YI, are the corrections due to
the external electric field and the core polarization ef-
fect. The amplitudes of allowed E1 transitions are given
by

El(k ~ n) = (Y„l@s)+ (@„]XI,).
Whether this expression takes into account the corre-
lation corrections depends on what sort of one-electron
wave functions are substituted into it—the Hartree-Fock
or the Brueckner ones. Note, however, that by pro-
ceeding this way one can take into account only the
dominating, Brueckner-type correlation diagrams, while
non-Brueckner corrections (the structural radiation, the
renormalization of the wave function, etc.) require sep-
arate consideration (see [16] for a detailed discussion).
The contribution of non-Brueckner diagrams was very
small for cesium [14,18] and we do not calculate them for
&ancium.

To calculate the PNC El amplitude the core polariza-
tion by an external electric field and by the weak interac-
tion between the atomic nucleus and the electrons should
be taken into account simultaneously. The corresponding
expression has the form

EpNc(k ~ n) = (bY„[4'e) + (h4'„[XA,.)
+(Y„lb%„)+ (0 „lbx&), (7)

where b stands for the corrections due to the weak inter-
actio~.

Here again one should substitute Brueckner orbitals
into (7) to take into account dominating correlation cor-
rections. However, we carried out calculations in a dif-
ferent way to include also dominating terms proportional
to clZ/Os. All such terms were calculated for cesium [14]
and it was shown there that the dominating contribu-
tions arise &om the fact that the correlation potential Z
is diferent even for the states of equal symmetry due to
their energies being difFerent. The energy dependence of
Z is weak for the external electron and can be calculated
in the leading, first order in Z only. The corresponding
expression for the correlation correction to the PNC am-
plitude of the 7s-8s transition in francium has the form
(see Fig. 6)

A«»El pNc(8s 7s) = sq -+ s2 + s3 + 84

—(+"l&. (s = s")I~X') + &~~"l~. (e = ".)IX')
+(~Ys~l~ (s = ev ) l@7s) + (Ys~l~p(s = ev ) 1~@7~). (8)

FIG. 4. Self-energy operator. FIG. 5. Iterations of the self-energy operator.
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FIG. 6. Brueckner-type correlation corrections to the PNC
El amplitude .The cross (x) denotes the weak interaction
and the dash-dotted line (— —.) denotes the electromagnetic
6eld.

where ElpNc( ) is given by (7) with the one-electron wave
functions calculated in the potential given in brackets.
Formula (9) corresponds to (8) when the dependence of
Z on energy is neglected. Now the contribution of higher
orders in Z is given by

ss = [E&pNc (V ' + ~) —E&pNc (V ')]
1——[E&pNc(V + &~) —E&pNc(V ')] (&O)a

The contributions of higher orders in Z to the PNC
can be obtained &om Eq. (7). This expression contains
the terms of all orders in Z including the linear one when
Brueckner orbitals are used. The linear term should be
eliminated from (7) to use the more accurate formula (8)
instead. In order to do this, we introduce a numerical
factor (say, a) before the correlation potential and ex-
amine the ElpNg dependence on the factor in the range
0 & a & 1. When a && 1 the term linear in Z dominates
in (7) and its extrapolation to a = 1 yields the first order
in Z correlation correction to the PNC amplitude:

1—[E1pNc (V + aZ) —ElpNc (V )],a

III. RESULTS AND DISCUSSION

The energy levels of &ancium calculated in the RHF
and Brueckner approximations are presented in Table
II together with our earlier results [7] and experimen-
tal data. In [7] only second-order correlation corrections
to the energy levels were taken into account. However,
to improve the predictions of the energy level positions,
further corrections were introduced based on the extrap-
olation of the theoretical error in similar calculations for
cesium and on the known wavelength of the 78-7p3/2
transition. Note that it was the only experimental en-
ergy interval available at the time of publication of [7].

TABLE EI. Francium energy levels (cm ). The minus signs have been omitted. In the RHF
+Z2 calculation second-order correlations were included using Green functions and Feynman dia-
gram techniques. Our predictions for the positions of unmeasured energy levels are based on the
extrapolation of computational error from known levels.

Calculations

State
7S1/2
8S1/2
9S1/2

10S1/2
11S1/2
12S1/2

Dzuba et al. [7]
32841
13136
7182
4540

RHF
28727
12271
6854
4380
3043
2242

RHF+Z2
33406

Brueckner
orbitals
32762
13082
7160
4534
3123
2290

Prediction

13110
7171

Experiment
[i-6]

32849

4538
3130
2290

7p1/2
8P1/2
9p1/.

20568
9745
5754

18855
9240
5526

20690 20654
9742
5736

20612
9736

7p3/2
8p3
9p3/2

18913
9205
5505

17652
8810
5327

18988 18926
9188
5485

18925
9191

6d3/2
7d3/2
8d3/2
9d3/2

16596
8614
5280

13837
7730
4860
3326

16623
8663
5261
3537

5248
3532

6d5/2
7d5/2
8d5/2
9d5/2

16446
8524
5230

13935
7751
4865
3327

16423
8574
5218
3513

5203
3507

5f
6f

6952
4439

6866
4396

6979
4469
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TABLE III. Francium fine structure intervals (cin ).

Level
7p
8p
9p

Dzuba et al [7.]
1655

540
249

RHF
1203
430
199

RHF+Z2
1702

Brueckner
orbitals

1728
554
251

Experiment
1687

545

6d
7d
8d
9d

150
90
50

-97
-21

-5
1

200
89

24
45
25

In spite of the poor numerical accuracy of the correla-
tion correction calculations in [7] (see the discussion in
Sec. II) the predicted positions of the francium energy
levels proved to be very close to the values measured
later (see Table II). This is a consequence of the sim-
ilar electron structures of cesium and &ancium and is
by no means fortuitous. With the present technique we
calculate the correlation corrections with good numerical
accuracy. When the second-order correlations are taken
into account the agreement with the experimental data is
about 0.5—1.5%%uo (see the third column, Table II). On the
other hand, when the higher-order correlations are also
taken into account the discrepancy between the theoret-
ical and the experimental data is reduced to 0.1—0.3%.

A PNC experiment is expected to be carried out on the
7s-8s transition. However, the position of the 8s level is
still not measured. Thus it is very important to deter-
mine it as accurately as possible. Note that while in [7]
we predicted the positions of the 7s and 10s levels with
very good accuracy, we could not assume the same accu-
racy for the 8s and 9s levels. For the 10s state the accu-
racy was very high due to a small value of the correlation
correction. As for the 7s state, the known value of the

wavelength of the 7s-7p3/2 transition was used to re6ne
its energy. On the other hand, the calculations with the
higher-order correlations taken into account give good
accuracy systematically, for all levels. Therefore, further
corrections can be made for the 8s and 9s levels based on
the extrapolation of the theoretical error of our present
calculations for the 7s and 10s levels. The new values,
presented in the coluxnn 6 of Table II, agree with our
previous predictions within the accuracy of our earlier
calculations but hopefully are closer to the real positions
of the levels.

In Table III we present the Gne structure intervals for
fa. ancium which were determined simply as the difference
between the energies of the j = l + 2 and j = l —

2
levels. This table illustrates that the accuracy of the
calculation is good for the 6ne structure intervals as well,
in spite of the fact that the corrections are large and the
RHF approximation fails to reproduce even the sign of
the intervals for the d levels.

The results of the calculations of the ordinary El-
transition amplitudes for francium are presented in Ta-
ble IV in the form of the values of the corresponding
radial integrals R. The radial integrals are formally de-

TABLE IV. Radial integrals for francium (in units of the Bohr radius). In column 5
non-Brueckner correlations are included (extrapolation from Cs). The last column gives our pre-
dictions (extrapolation of numerical error from Cs).

Transition
7S 7p1/2
7S-7p3/2
7s-8pg/2
7s-8p3/2
88-7pg/2
88-7p3/2
8s-8pg/2
8a-8p3/2

RHF
-6.311
-6.153
-0.5558
-0.9459
5.540
6.696
-13.23
-12.52

TDHF
-5.851
-5.742
-0.3508
-0.7478
5.577
6.701
-13.10
-12.42

Brueckner
orbitals
-5.261
-5 ~ 124
-0.3355
-0.7560
5.137
6.432
-12.46
-11.67

Brueckner
plus

non-Brueckner
-5.241
-5.104
-0.3568
-0.8004
5.101
6.395
-12.44
-11.65

Prediction
-5.271
-5.133
-0.3684

5.167
6.469
-12.25
-11.48

7pi/2-6d3/2
7py /2-7d3 /

7p3/2-6d3/2
7p3/2-6d5/2
7p3/2 7d3/2
7p3/2-7d5/2

7.977
-1.722
8.282
8.254
-2.670
-2.759

7.604
-1.855
7.947
7.928
-2.791
-2.850

6.232
-3.015
6.411
6.574
-4.213
-3.992
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fined as an amplitude divided by the angular matrix el-
ement (n]n]P) (n = r/r). The core polarization and the
Brueckner-type correlations are both important, as can
be seen &om the table. The relative values of di8'er-
ent contributions to the 8-p E1-transition amplitudes for
&ancium are very close to the corresponding values for
cesium [18). This allowed us to make further corrections.
The contributions of the non-Brueckner-type diagrams
and the remaining discrepancy between the theoretical
and experimental data were extrapolated &om similar
calculations for cesium [18] (fourth and fifth columns in
Table IV). The agreement between the theoretical and
the experimental values for the El amplitudes for cesium
was about 0.5%%uo. One should expect similar or even better
accuracy for the corrected values of the 8-p radial inte-
grals for &ancium (Table IV, column 6). The accuracy
of the calculation of the p-d radial integrals is probably
a little worse due to huge correlation corrections to the
d levels.

The values &om Table IV can be used to obtain life-

TABLE V. Correlation-correction contributions to the
EpNo amplitude of the 7s-8s transition in francium [in units
10 ' iea~( —Qiv/N)].

TDHF
1.609

S1 S2 S3 s4" s5' Sum
0.0927 0.3451 -0.1127 -0.3014 -0.04 1.59

The polarization of the closed shells by the weak interaction
and by the photon Beld is taken into account.

Formula (8).
'Formula (10).

where u is the &equency of the transition, n = 1/137.036,
and B is the radial integral. For example, for the 7p3/2

times of the &ancium excited states. The probability of
the El transition &om state i to state j (p ~ s transi-
tion) is given by (in atomic units)

TABLE VI. Comparison of our calculations of the PNC efFect in atoms with experiment.

Atom
133C

Transition
6s-7s

Calculation
&1PNC

[10 'iea( —Qiv/N)]
0.88 + 0.03
0.90 + 0.02
0.91 + 0.01

108+ Im(E1)
M1

Experiment
@1pNe

[10 "iea(—Qu /N)]
0.89 +0.10 + 0.07

0.90 +0.02

Im(E1)
M1

205Tl 6P1/2 7P1/2 7.9(1 6 0.06)

27.0(1 + 0.03) —14.0 + 0.4

7.4 +1.4
11.4 +2.2~

—12.5 + 1.9"
—14.73 + 0.06 + 0.15'

208Pb 3 3P0- P1
(A = 1279 um)

—10.4 + 0.8~ —9.9 + 2.5"
—9.86 + 0.04 + 0.11'

209B 4 3
S3/2 D3/2

(A = 876 nm)
4 2S3/2- D5/2

(A = 648 um)

—10.4 + 1~

—7.5+5

—10.12 + 0.20

—20.2 + 2.7"
—9.3 + 1.4
—7.8 + 1.8~
—9.8+ 0.9~

References [30,31].
Reference [32].

'Reference [14].
Reference [33].
Reference [10].

fReferences [34,35].
sRecalculation from measurements of Im(E1/P) [34] using the new measured value of P [36].
"Reference [37].
'Reference [12].
'Reference [38].
"Reference [39].
'Reference [11].

Reference [13].
"Reference [40].
Reference [41].

~Reference [42].
~Reference [43].
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state one should take, for the 7p3y2-78 transition, R =
5.133a~ &om Table IV and u = 0.06344 a.u. &om Table
II, which leads to ~ = 2.082 x 10 sec.

Table V presents our results for the calculation of the
parity nonconserving El amplitude of the 78-88 transi-
tion in 3Fr. As in the case of the ordinary E1 am-
plitudes, the relative values of di6'erent contributions to
EpNc for &ancium are very close to the corresponding
values for cesium [14]. However, due to strong cancel-
lations between diferent contributions to the correlation
correction, the resulting value is quite diferent. The cor-
relation correction to the PNC transition amplitude in
Fr has opposite sign and its relative value is about two
times smaller than the corresponding value for cesium
(the absolute value is about ten times larger). So cor-
relation corrections reduce the value of PNC amplitude
in Fr by only 1.3'%%uo. This result is relatively stable with
respect to variation of the numerical parameters. Since
the relative values of the correlation corrections to energy
levels, E1 transition amplitudes, and the PNC eKect were
very similar for &ancium and cesium, we believe that the
accuracy of the calculation of the PNC transition ampli-
tude for francium is about the same as for cesium (see
[14]). Comparing the calculated energy levels with ex-
perimental data provides a good test of the numerical
accuracy too because the same self-energy operator is
used throughout all calculations [see formulas (1), (6),
and (8)]. Note however, that we did not carry out such a
careful analysis of the accuracy of PNC calculations for
&ancium as we did it for cesium. Once there is progress
in the measurements of &ancium the accuracy can be
estimated more precisely by the calculation of hyperfine
structure intervals, non-Brueckner-type correlation cor-
rections, etc.

Our final result for EpNC in Fr has the form

Fr: F 1(7s S-s)

= (1.59+ 1%) x 10 iea~( —Q1v/N), (12)

where Q~ is the weak charge of the 22sFr nucleus and
%=136 is the number of neutrons. To obtain EpNc for
another francium isotope one should multiply (12) by
the factor N;/136, where N; is the number of neutrons
in this isotope. We have tested that a change in either
the neutron or electric radius of the nucleus does not
contribute at the present level of accuracy.

In conclusion, we would like to draw the reader's at-
tention to the Table VI where we compare all our cal-
culations of PNC in atoms with existing experimental
data. The standard model of the electroweak interaction
with sin 8~ ——0.23 was used to recalculate the values
in the table. Note the good agreement between our the-
oretical predictions and experimental data for all atoms.
While for the heaviest atoms accuracy is restricted. due to
the complexity of their electron structure, the accuracy
for cesium is very high. All our results for cesium agree
with each other and with the result of Blundell, Johnson,
and Sapirstein [15]. Their result is the only result other
than our calculation which also claims an accuracy of 1'%%up.

Since our calculations of all PNC efFects in all atoms were
done before accurate measurements (and also before cal-
culation [15] for Cs) one can consider an agreement as a
very reliable test of our method of calculation. So, if we
had 1'%%uo accuracy for cesium, our accuracy for francium
should be as good due to similar electron structure and.
the very same approach to the PNC calculations.
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