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Why quantum dynamics can be formulated as a Markov process
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We invert the well-developed strategy of studying dynamics in terms of probability densities and
investigate the problem of the most likely microscopic propagation scenario, which is consistent with
the given a priori (possibly phenomenological) input-output statistics data for the process taking
place in a finite-time interval. A solution of this so-called Schrodinger problem is known to provide an
adequate probabilistic framework for the measure preserving dynamics which is Markovian. We pay
particular attention to the subclass of nonstationary solutions, determined by unitary-wave-packet
evolution (Schrodinger wave mechaxucs). The existence of the pertinent Markovian diffusion is known
on general grounds, but no explicit demonstration (through detailed computational arguments) until
now was available even in the simplest cases. We give a definitive probabilistic description of the free
quantum dynamics as a stochastic process solving Schrodinger's interpolation problem. The Markov
diffusion arises as a particular case singled out by a suitable Feynman-Kac semigroup.

PACS number(s): 03.65.—w

I. THE SCHRODINGER BOUNDARY DATA
PROBLEM

It is clear that a stochastic process is any conceivable
evolution which we can analyze in terms of probabihty.
In many branches of physics ranging &om essentially de-
terministic to intrinsically random classical and quantum
problems, probability xneasures do naturally arise. The
quantum issue should receive particular attention in con-
nection with the Born statistical postulate, which implies
that quantum theory deals with densities of probability
measures. However, quite generally the stochastic anal-
ysis is disregarded as against the pragmatic viewpoint
of deducing as many experimentally verifiable or, rather,
falsifiable data as possible, even at the price of manip-
ulating the ill-defined or not defined at all ("safe" by-
passing of rather fundamental difficulties) probabilistic
quantities. We leave aside the epistemological problem of
whether the (quantum) measurexnent theory belongs to
quantum xnechanics proper or not, but cannot leave with-
out comment the surprising title phrase [1], hastily ele-
vated to the status of a generally valid statement, "why
quantum mechanics cannot be formulated as a Markov
process. " It leads the unsuspicious reader much too far,
if compared with the real value of arguments and spe-
cialized assumptions about the probabilistic structure of
the particular (quantum) measurement model, with no
mention about the fundamental probabilistic input com-
ing from the Born statistical postulate (sometimes called
an interpretation, albeit pervading not only the concep-
tual but, what is of profound importance, the mathe-
matical structure of the theory), and the quantum dy-
namics proper. Gillespie's discussion [1] pertains to a
simple two-level system responding to a tixne-dependent
perturbation in full accord with the Schrodinger picture
evolution principles. It is well known [2—4] that a Marko-
vian modeling of quantum two-level system dynamics
(Schrodinger-Pauli) is possible: a mathematically rigor-
ous representation of quantum evolution in terms of the

dichotoxnic (jump) Markov process is here a supplement
to the more general framework [5]. However, Gillespie's
original goal was not merely to investigate whether any
Markov process can mimic quantum two-level system dy-
namics. He carries out his analysis under an additional
very restrictive assumption [1]: "that quantum system
could be mathematically modeled by a conceptually re-
alistic stochastic system that randomly jumps back and
forth, but that is at any instant definitely in one state or
another. " Under this "definitely in one state or another"
restriction, the Markov representation of the quantum
motion was found untenable. And this (epistemologi-
cal input) assumption must be relinquished to allow for
Markov representation.

Clearly, the status of the Markov property in quan-
tum physics has been a traditional subject of controversy
since the advent of quanta. It is therefore important to
have clearly specified what (when and why) can or cannot
be formulated as a Markov process in the &amework of
quantum mechanics. While emphasizing the issue of the
traditional Schrodinger picture evolution, we advocate an
approach to the problem initiated by Schrodinger himself

[6], whose relevance to quantum physics seems to have
been perceived in the 1980s [7]. As long as no extra epis-
temological assumptions are superimposed on the tradi-
tional &amework of quantum xnechanics, the Schrodinger
picture dynamics no doubt allows for a Markovian repre-
sentation [5, 7, 8], including the case of two-level systems
[2-4]

The main idea behind what we call the Schrodinger
probLem [6, 9] is an attempt to get an insight (in fact
through modeling) into a physical process, unknown
in detail, with a finite time of duration, in terms of
(random) motions consistent with the prescribed input-
output statistics data, i.e., the boundary distributions
for repeatable single particle (saxnple) procedures. Less
specifically, we can simply look for a stochastic evolu-
tion which interpolates between the boundary probabil-
ity measures, in particular, for the (invariant) measure
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m(x, y) = 8.(x, O) k(x, O, y, T) 8(y, T). (2)

In the above the time interval border is Gxed, and the
space variables are allowed to vary. Our notation is in
conformity with that in the earlier publications [7, 10],
where real functions 8, (x, t), 8(y, s) and the strictly pos-
itive integral kernel k(s, y, x, t) (take a familiar heat ker-
nel as an example) are considered at the boundaries of
the time interval [0, T] with no restrictions on the space
variables x, y. The main issue at this point is that the
two unknown functions 8, (x, 0), 0(y, T) are to come out
as solutions of the same sign of the integral identities
(1). Provided, we have at our disposal a bounded strictly
positive integral kernel k(z, s, y, t), 0 ( s ( t ( T,
then 8.(x, t) = f k(O, y, x, t)8. (y, O)dy and 8(x, s)
f k(s, x, y, T)8(y, T)dy. The sought for interpolation has
a probability distribution p(x, t) = (0,8) (x, t), t F [0, T],
to which a subsequent stochastic analysis should apply.

To have a definite Markov solution in hand, we must
decide what is the appropriate choice for the dynami-
cal semigroup kernel in the above. Apparently it is the
crucial step in the construction of any explicit random
propagation consistent with the boundary measure data.

preserving dynamics [8, 10].
Given a dynamical law of motion (for a particle as ex-

ample), in many cases one can associate with it (compute
or approximate the observed frequency data) a proba-
bility distribution. The inverse operation of deducing
the detailed (possibly individual, microscopic) dynamics,
which either implies or is consistent with the given proba-
bility distribution (and eventually with its own time evo-
lution) at first glance might look hopeless and not to
allow for a unique solution, if any at all.

For clarity of discussion, we shall confine our attention
to processes whose random variable X'(t), t & 0, takes
values on the real line B . In the above input-output
statistics context, let us invoke a probabilistic problem,
originally due to Schrodinger: given two strictly posi-
tive (on an open interval) boundary probability distribu-
tions p0(x), pz (x) for a process with the time of duration
T & 0, can we uniquely identify the stochastic process
interpolating between them? The answer is known to
be aKrmative, if we assume the interpolating process to
be Markovian. In fact, we get then a unique Markov
process, which is specified by the probability measure
m(A, B) = f& dx f& dy m(z, y) with marginal densities

dy m(x, y) = po (x), f

dern(x,

y) = p~(y),

where the functional form of the joint probability density,
which is specialized. to yield the Markov process as a so-
lution [9], (this formula was derived for the first time by
Schrodinger [6] in his own analysis of conditional Brow-
nian motion), reads

k y, s, x, t 8, y, s dyO x, t

=8.(x, t)8(x, t) = p(x, t);

hence a consistent propagation pattern is reproduced.
This transition density is required to come out of the
forward Kolmogorov equation (e.g. , the Fokker-Planck
equation) as its fundamental solution [p + b(z —y) as
t f s]. For convenience we simplify the whole problem
by fixing a diffusion constant D ) 0 (this choice narrows
the allowed framework slightly):

Dip = DE p —V' (bp), (4)

where p(x, t) = fp(y, s, x, t) p(y, s) dy with p0(x)
p(x, O) and the forward drift b(x, t) = 2D e (x, t). In
addition we demand that the backward (adjoint) diffu-
sion equation is solved weakly by the same transition
density (with respect to another pair of variables)

B,p = —DLyp —bVyp, (5)

where p = p(y, s, x, t), s ( t, b = b(y, s). It implies
that we deal here with a unique diBusion process, whose
transition density is a common fundamental solution for
both the backward and forward Kolmogorov equations.

To understand the role of the integral kernel k(y, s, x, t)
in (1)—(5) let us assuxne that 8(x, t) is given in the form
(drifts are gradient fields as a consequence) 8(x, t)
+exp@(z, t) ~ b(x, t) = 2DV'4'(z, t), x E (ri, r2), and
insert (3) into the Fokker-Planck equation (4). Then the
kernel must be a fundamental solution [k(y, s, x, t)
b(z —y) as t $ s] of the generalized difFusion equation for
8.(x, t):

perspective. We wish to discuss digusive solutions only,
and take for granted that the traditional Fokker-Planck
equation sets the rules of the game for the interpolating
probability density. Then we look for the corresponding
fundamental transport mechanism (law of random dis-
placements) and choose [7, 8] the transition probability
density for the Markov difFusion process in the form

8(x, t)
p(y, s, x, t) = k(y, s, x, t) 0 y)s

with s & t The. strange-looking form of p(y, s, z, t) is not
simply an arbitrary guess, but has a deep motivation in
the connection we wish to exploit between the transition
probability density p of the Markov diffusion and the
Feynman-Kac kernel k(y, s, x, t) defining the local mean
dynamics of the stochastic process [10]. Notice that for
a given probability density p(y, s) = (08,)(y, s) there
holds

II. MARKOV DIFFUSION RESPECTING THE
NATURAL BOUNDARIES

Our present aim is to make a refinement of the original
Nelson findings [5] &oxn a novel (Schrodinger problem)

Bi 8, = DE 8, — Q(z, t) 8„1
2D

1 (b'
A(z, t) = 2D B,C + —

~

+ V'b
2 (2D

(6)
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dy8, (y, s)k(y, s, x, t)

dyO, y, s exp

xdp[s, y ~
t, x],

Oi X(u), u idu

(S)

which integrates exp[ —(1/2D) I O(X(u), u)du] weight-
ing factors with respect to the conditional Wiener mea-
sure, i.e., along all sample paths of the Wiener process
connecting y with x in time t —s. More elaborate discus-
sion is necessary, if at least one of the boundary points
is not at infinity [10].

Let us notice that the time independence of 0 is
granted if 4 is either independent of time or depends
on time at most linearly. Then, the standard expres-
sion exp[ —H(t —s)](y, x) for the kernel k clearly reveals
the involved semigroup properties, with H = —DA +
(1/2D) O(x) being the essentially self-adjoint operator on
its (Hilbert space) domain.

In the previous paper [10] we narrowed the scope of
our discussion and analyzed in detail the case of diffu-
sions whose drift fields are time independent, Bqb(x, t)
= 0 for all x, and the process is conGned between the
natural boundaries, not necessarily at inGnity. For our
present purpose the assumption that boundaries are nat-
ural means that the process cannot reach them in a fi-
nite time. Under these circumstances the standard rules
of the Ito calculus retain their validity and the diffusion
process X (t) "admits the stochastic differential" with re-
spect to the standard Wiener process W(t):

dX(t) = b(X(t), t) dt + v'2DdW(t),

X (O) = x, , t g [O, T],

for all times. The weak [in view of assigning the density
po(x) to the random variable X(0)] solution of (9) is thus
well deGned.

An interesting aspect of the (forrnal) infinitesimal in-
crement formula (9) is that it allows for a derivation
of the Fokker-Planck equation. Then, having given
p(y, s, x, t) for any smooth function of the random vari-

and to guarantee (2) it must display the semigroup com-
position properties.

Notice that the backward diffusion equation takes the
form of the adjoint to (6), now with respect to 0(y, s):

8, 0 = D&„—0+ O(y, s) 0.
1

2D

The diffusion process is then known to be confined be-
tween the so-called natural boundaries (they are "natu-
rally, " with no external agencies involved, respected by
the process), which inathematically correspond to the
Dirichlet boundary conditions (vanishing density). If the
process takes place in between natural boundaries at in-
finity, the standard restrictions on the auxiliary potential
0 and hence on the drift potential 4'(x, t), yield the fa-
miliar Feynman-Kac representation of the fundamental
solution k(y, s, x, t):

able, the forward time derivative in the conditional mean
can be introduced (we bypass in this way the inherent
non-differentiability of sample paths of the process)

(D+X)(t) = (D+b)(X(t), t)
= (Bib+ bV'b+ D&b) (X (t), t)
= v'Q(x(t), t)

induced by the (auxiliary) potential O(x, t) [(6)]. Since
we have given p(x, t) for all t C [0, T], the notion
of the backward transition density p, (y, s, x, t) can be
introduced through the identity p(x, t)p, (y, s, x, t)
p(y, s, x, t)p(y, s). It allows one to define the backward
derivative of the process in the conditional mean,

1
lim~pgp x — p, y, t —Lt, x, t ydy

=(D X)(t) = b. (X(t), t)
= [b —2DV'lnp](X (t), t), (12)

(D f) (X(t), t) = (8, + b.V —DA) f(X(t), t)

Apparently there holds [11,12]

(D+X)(t) = (D X)(t) = Bgv+. vV'v+. V'Q = V'0,

(»)
where

v(x, t) = (b+ b. )(x, t),—
1
2

u(x, t) = (b —b, )(x, t) =—DV'lnp(x, t)
1

and

1/2
Q(x, t) = 2D2 (15)

has the familiar, albeit unexpected because of the context
(not quantum as yet, all this is valid for the conventional
Brownian motion and Smoluchowski diffusions [13, 14]),
form of the de Broglie —Bohm "quantum potential. " Let
us notice that by means of (13)—(15) we can transform
the Fokker-Planck equation into the continuity equation,
so that the diffusion process X'(t) induces the manifestly
hydrodynamical local conservation laws (moment equa-
tions in the kinetic theory lore)

&tp = +(pv)
8~v + vV'v = V(O —Q),

po(*) = p(x o) vo(x) = v(x o)

1
lime ego p(x t y t+ At)f(y t+ At)dy —f(x t)Lt

= (D+f)(X(t) t)
= (0, + bV'+ DZ) f(X(t), t), (1

with (D+X)(t) = 'b(x, t), X(t) = x, so that the second
forward derivative associates with our diffusion a local
Geld of accelerations
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which form a closed (in fact, Cauchy) nonlinearly coupled
system of difFerential equations. It is important to know
that these local laws do not specify a difFusion uniquely;
they characterize the whole family of formally distinct
(but equivalent in terms of local averages) diffusion pro-
cesses.

In view of the natural boundaries [where the density
p(x, t) vanishes], the diffusion respects a specific ("Eu-
clidean looking" ) version of the Ehrenfest theorem [10]:

d2 d
E[V'Q] = O ~ „,E[X(t)] = —E[v(X(t), t)]

= E[(Biv + vV'v) (X(t, t)]
= E[V'O(X(t), t)]. (17)

Remark &. Notice [12, 10] that the auxiliary potential
of the form 0 = 2Q —V, where V is any Rellich class
representative while Q is defined by (13), gives rise to
Nelson's [5,8] diffusion for which E[V'Q] = 0 m E[V'0] =
—E[V'V] and the "standard looking" form of the second
Newton law in the mean arises, with V playing the role
of the external force potential. The dimensional factor—is incorporated in the definition of V. Let us add that
the formula (17) at first glance might not resemble the
original textbook form [15] of the Ehrenfest formula, and
the meaning of "Euclidean looking" might seem obscure.
It is enough to set 0 = 2Q —V in (16) to pass to the local
conservation laws of Nelson's difFusions, with their appar-
ent hydrodynamical implementation [16]. Then a com-
parison with formulas (8)—(12) of Ref. [16] shows that an
exact quantum mechanical Ehrenfest theorem is in hand,
with the right-hand side of (17) equal —7'V as opposed
to the "Euclidean" (set t -+ it in the second derivative
with respect to time) V'V; see, e.g. , also Sec. III B of
Ref. [7].

( 1 x'l
+ —

/
+= —A+.2)

xexp
X —g (e 'y —x)2

2

(e 8) (x) = J k(y, 0, z, t)8(y) dy, where the integra-
2 2

bility property J k(y, o, x, t)exp[ " ]dy = 1 is simply a
statement pertaining to the transition density p(y, 0, z, t)
of the homogeneous difFusion process, which preserves the
Gaussian distribution p(x) = (80,)(x) = ~exp( —x2),
where 0, =0=/.

Now we are ready to address the issue of the non-
stationary difFusion consistent with the unitarily imple-
'mented (quantum mechanical) dynamics of the local-
ized (wave packet type) probability distribution. Let
us consider the free evolution problem i'@ = DR@,—
where clearly g(z, t) = [p ~2exp(iS)](z, t) = jdx'G(x-
z', t)@(z', 0) and the Green function G(x —x', t)
(4vriDt) i~2exp[ —(z —x') 2/4iDt] is a straightforward
"imaginary time" version (we refer to the folklore linked
to the problem of analytic continuation in time) of the
familiar heat kernel. For an initial choice of g(z, o) =
(27m ) ~ exp( z /2—n ) the evolved wave packet at
time t ) 0 reads

X/4

v/r(z, t) = — (n + 2iDt)

The case of A =
2 is a canonical example of the

Feynman-Kac integration. Indeed, the integral kernel
[exp( —Ht)](y, z) = k(y, 0, x, t) for H = —i Q+ (i x2 —i)
is known to be given by the formula

k(y, o, x, t) =7r ~ (1 —e ')

III. QUANTUM DYNAMICS AS A MARKOV
DIFFUSION PROCESS

A. The microscopic transport mechanism (transition
probability density) of the process

Let us now pass to the explicit quantum mechan-
ical considerations with the goal of representing the
Schrodinger wave mechanics as an integral part of the
theory of Markov diffusion processes. That is, we shall
analyze some consequences of the statistical postulate,
primordial for quantum theory, albeit &equently under-
estimated, due to Max Born: the identification of the
squared modulus of the Schrodinger wave function with
the probability density ("of something if anything, " but
undoubtedly of a certain probability measure) is what
embeds quantum mechanics in the theory of stochastic
processes. Basically we are in the premises of Nelson's
stochastic mechanics [5], but now a nontrivial amelio-
ration of the original theory is possible thanks to the
Schrodinger problem analysis.

Before investigating the major issue of the nonsta-
tionary dynamics, let us indicate a specific example of
the invariant probability measure and the induced mea-
sure preserving stochastic dynamics. Let us consider the
Sturm-Liouville problem on L (Ri)

2(n2 + 2iDt) )
'

By defining p(z, t) = (gQ) (x, t) and

p(y, O, x, t) = (4~Dt)

x exp
(x —y + 2Dty/n2) 2

4Dt (21)

we realize that

p(y, o, z, t)(urn )
'~ exp( —y /n )dy

A X Cl

[m(n +4D2t )]ii2 n +4D2t
= p(x, t)

and moreover

(22)

fp(y, 0, x, t) (~n ) ~ exp ——dy
2Dy

Ck

2D(n2 —2Dt) z
a4 + 4D2t2 p(x, t) = —b(z, t)p(x, t). (23)
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Here, evidently p(x, t) and v(x, t),

v(x, t) = b(x, t) —DV'p(x, t)/p(x, t), (24)

ing as a time-dependent scaling transformation

[L.,p](p, s) = p(c(s, t)p, s),
solve the local conservation laws (16) with V = 0 and
0 =2q.

However, it seems instructive to have a detailed com-
putational demonstration that the pertinent dynamics is
a well-defined solution of the Schrodinger problem, and
that we really deal with a process which is unique. To
simplify consideration we shall rescale the variables so
that effectively D = 1 appears everywhere. Then we con-
sider the evolution associated with the continuous map-
ping

X2
po(x) = (2~) x~'exp

2
' p(* t)

X2= [2~(1+t )]
' exp 2(1+ t')

W

(25)

1
p(p, t) = exp

27r

(1+ t2)p2

2
(26)

By assuming that the time evolution of the characteristic
function is realized via the multiplicative decomposition

p(p, t) = exp[—(t —a)p' ][I',tp(p, s)],

where the characteristic function of the standard Wiener
process appears as a factor, and the operation L,q is act-

The immediate observation is that, quite unfortunately,
even the knowledge of the interpolation p(x, t), 0 & t does
not specify the underlying process uniquely. There exist
inequivalent processes which imply the very same dynam-
ics of the probability density

Remark 2. To exemplify this comment, we shall give
another form of the law of random displacements, which
afFects the interpolation (25). Naively, let us choose

2

p(y, 0, x, t) = (2vrt2) x~2exp[ — 2i", ]. Notice that in
contrast to (21) the time label appears in the second
power in the denominator. By inspection one verifies
that p(x, t) = f p(y, 0, x, t) p(y, 0)dy carries out the map-
ping (25) exactly as the former transition density (21)
does.

In the above, we have defined the transition probability
density implementing the quantum propagation &om the
initial time instant 0 till any finite time t. The arguments
of [14] suggest that the process is singled out uniquely.
However, as yet we have no explicit expression for the
fundamental trasport xnechanism (this defect plagues all
of the diffusion problems in Nelson's stochastic mechan-
ics [11]) for arbitrary times, nor the mathematical ar-
gument (solution of the Schrodinger problem) allowing
us to distinguish one particular diffusion process among
many others consistent with (25) and/or (16).

Our process is definitely inhomogeneous in space-time,
so that certainly p(y, a, x, t), s & t is very different from
what the previously utilized formula (11) xnight suggest.
Let us consider a Fourier transform (a characteristic func-
tion) of the probability distribution p(x, t) as given by
(25):

we realize that

(1 —t)'+ 2s
c = c(s, t) = 1+8

- a/2

(29)

is an appropriate scale parameter: p(p, t) = exp[ —(t-
a)p2]p(cp, s). An immediate consequence is that

p(y, a, x, t) = [4vr(t —s)] '~ exp
(x —cy) 2

4(t —s)
(30)

is a proper candidate for a transition density of the ran-
dom propagation (25) in the time interval [s, t]. One
can easily calculate the drift b(x, t) = —~x+~',lx by fol-
lowing the standard stochastic recipe (10). Then, by
means of (12) we can directly evaluate b, (x, t) = x i +~', ,

which implies that v(x, t) =
2 (b + b, ) (x, t) = x+&, sat-

isfies Dip = —7'(vp). Moreover, by setting u(x, t)
(b —v)(x, t) = —x+i, we arrive at Bqu = —V'(uv), which
is [5] another form of the momentum balance equation in
this case.

So far so good; there is bad news for those who would
expect that everything goes smoothly as in the classi-
cal probabilistic considerations. Once we have a transi-
tion density for arbitrary times, the obvious step would
be to check the Chapman-Kolmogorov formula for the
case when the Markov property is expected to hold true.
There is a surprise (although not that great, since the
transition density must [14] depend on the probability
distribution p(y, s) at the initial propagation time instant
s). The almost obvious, seemingly indisputable formula

p(y, s, z, u)p(z, u, x, t) dz = p(y, s, x, t)

where 8 & u & t, does not hold true as a strong identity.
Nevertheless, a direct inspection demonstrates that

dy p(y, s)p(y a x t)

dzp z, u p z, u, x, t

dz dyp y, s p y) s) z, u p z, u, x, t (32)

is satisfied, as it should be. Another slightly surprising
observation is that, although the Fokker-Planck equa-
tion Oqp = Ap —'X7(bp) is satisfied, the transition density
itself does not obey the (strong) forward Kolmogorov
equation of the same functional form Oqp(y, s, x, t)
E p(y, s, x, t) —V' [b(x, t)p(y, s, x, t)], as expected if the
transition mechanism is the same for all densities (which
is a generic property of all classical diffusions).

Remark 8. One may ask at this point whether any
Kolmogorov type equation is obeyed by the transition
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density p(y, s, x, t) [(30)]. Let us introduce a conditional
expectation value for stochastic Bows emanating &om the
point y at the time instant s ( t:

1
bq(y, s) = lim x[p(y, s, x, t+ Et) —p(y, s, x, t)]dx

(9c(s, t): 4(y, s) =y
Ot

Then, the following Kolmogorov type equation holds
true:

B~p(y, a, x, t) = D p(y, s, x, t) —bg (y, s) V' p(y, s, x, t).
Notice that bq(y, t) = b(y, t) as defined before, by means
of (21). The process is not characterized by (4), (5) and
we need to know what the reason is.

1 2
X2

R(x, t) = ——ln2n (1 + t )—
4 4(1+ t2) '

t 1
S(x, t) =- ——arctan t

4 1+t2 2

implies

(
8(z, t) = [2vr(1+t2)] '~4exp

4 1+ t2)

Xexp ——arctant
)

I' x' 1+t )

g, (z, t) = [2~(1+t )] exp
4 1+t'

(33)

(34)

B. The uniqueness, or how the
Schrodinger problem sets it

As mentioned before, a general defect of Nelson's diffu-
sions is that usually one knows how, on general grounds,
to reconstruct them from any (locally single valued) so-
lution of the Schrodinger equation, except for any recipe
allowing one to deduce the transition probability density,
which is to be unique for a considered difFusion. Let us
emphasize that it is impossible to set a definitive proba-
bilistic &amework encompassing the unitary-wave-packet
evolution, without a microscopic transport rule (transi-
tion density) in hand.

Let us therefore analyze the issue &om the Schrodinger
problem perspective. By taking the Madelung decom-
position of a complex function Q(z, t) = exp(R + iS)
whereR(x, t), S(x, t) are real, we can introduce the new
real functions 8 = exp(R+ S),0, = exp(R —S) such that
(cf. a textbook form of the corresponding wave packet)

00 = —Lo+ —00,
1

2

00, =&0, ——00,
1
2

1
2
—O(z, t) =

2(1 + t')'
1/2

1 + g2 p1/2
= 2 i ——Q(z, t)

Hence A(z, t) = 2Q(z, t), as anticipated before in con-
nection with (17). Moreover, the function k(y, a, x, t) =
p(y, a, z, t) s~~""~I is a propagator associated with the
above equations:

x exp —arctant
2 )

where, strikingly, there hold [compare, e.g. , the formula

(x, ttt) =f k( s,ttx, t) ( 8s)ttd , tt

, , &1+t''r"
k(y, s, x, t) = [4m.(t —a)] (1+s2)

1 (z —cy)2 y2 1 —s x2 1 —t
exp —(arctant —arctana) exp +—

2 4(t —a) 4 1+ a2 4 1+t2
(36)

and the functions e, (x, 0), O(y, T) constitute a solution
of the Schrodinger problem (1) and (2) set on the time
interval t E [0,T]. Although the form of the strictly pos-
itive kernel k(y, s, x, t) does not look that promising, it
is possible to check through a direct evaluation that the
defining properties of the fundamental solution of the
generalized diffusion equation, as listed in Ref. [8], are
respected (except for the semigroup composition prop-
erty):

(a) k(y, s, z, t) is continuous in all variables;
(b) the kernel is strictly positive and k(y, s, x, t) + 0

when
~

x
~

goes to oo;
(c) lim~, go jk(y, s, x, s+ Es)dz = 1;
(d) lim~, g() ~ j(z —y)k(y, s, x, s+ Ea) = 0; and

(e) lim~, go~ [1 —f k(y, s, x, a+ As)dz] = 20(y, s).
The property (e) is of particular importance here, since
it clearly reveals what dynamical semigroup was implic-

I = exp
(x —cy) 2 1 —g

exp x dx

y' (c'
a 4 (Ks az(&a)2)

- 1/2
1 1 —g

Ls 1+ t2

(37)

itly involved in the, seemingly incidental, definition of
the transition probability density (30). The proof of (e)
is a bit more complicated than that for cases (a)—(d).
Therefore we shall give a complete demonstration below.

Proof The dynamica. l semigroup induced property (e).
By substituting t = s+As while evaluating the integral

we get
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Consequently,

y'1 —sl
k(y, s, x, s + Es)dx = (a Es) ~ exp — arctant —arctans ——

&'+") 4 1+ sz)
y' (c' c'
4 (Ds az(Es)2)

(38)

We shall take advantage of the smallness of the time increment Ls and expand the above expression up to terms
linear in Ls. For this purpose let us notice that

1 —4 1 —s
a As=1- As 1— &s1+ t2 1+ s2

= 1 +(1+t' ) '~' sos
(1+szp 2(1+ sz)

1 As
exp —(arctant —arctans) 1 +

2 2(l + s2)
'

1 —s
; (azEs) '~2 = 1+ Ls,

2(l + s2)

For the third term in the exponent of (38) we have

a2(+s)2
(1-t ~'
&'+")

c' (a'ns —1'l c'
Ds ( a2Ds ) Ds 1+ t2

cz 1 —s (Es)'
1+ 1+

2s(1 —s) 2 (1 —s)
1+ )

( ) (1+ (40)

Because of c 1 — z,, Ls we getz(z —a)

c2 l 1]
Ds ( azDs) )

and, as a consequence,

1 —s
1+ s2

2&s
(1+")' (41)

1 —s cz / 1 l 2&s+ 11+ s2 +s E a2+s) (1+ s2)2

Finally, after collecting all terms, we arrive at the following result:

Zs &
f' 1 —sash ( sos ) ( y' as

k(y s x s+hs)d2:= 1+ 1+ 1+21+s2 ) ~
1+s2 2 ) ( 21+sz ) ~

2 1+s2 z)

~s )i' y' Zs & Zs y' Zs
1+s ) ( 2 (1+s ) ) 1+s2 2 (1+s )z

(42)

(43)

Apparently the dynamical-semigroup-implemented iden-
tity (e) follows:

1
lim 1 — k y, s, x, s+ Ls dx
As/0 +s

'III 1
2 (1 + s')'

1 1
, = —A(y, s) = Q(y, s), (44)

as expected &om the fundamental solution of the gener-
alized diffusion equation. but the semigroup composition
property does not hold true.

Following the formula (17) we made a comment that
Nelson's diffusions are related to the Feynman-Kac po-
tential 0 = 2Q —V, which is to appear in the expression
(8). In our case the evolution is unaffected by external
force fields, i.e., we have the external potential vanishing,

V = 0. Hence the time- (through the density-) dependent
potential 0 = 2Q is what remains in the Feynman-Kac
expression (8) for the dynamical semigroup kernel, as-
sociated with the purely probabilistic image of the free
unitary-(quantum-) wave-packet evolution, if ruled by
(4), (5)

All probabilistic features characteristic for a solution of
the Schrodinger problem were thereby recovered, except
for the Markov property: our kernel (I) is not a semi-
group kernel, as it should be to quarantee the validity of
(4), (5)

Remark g. The very formulation. of the Schrodinger
problem might leave an impression that it is the simulta-
neous knowledge of the past (initial data) and of the fu-
ture (terminal data) of the process, nontrivially involved,
that yield the diffusion process itself. One should re-
alize that the boundary data intervene, if and only if
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it is our intention to reconstruct a posteriori the most
likely (but unique) microscopic propagation scenario con-
sistent with them. For the actual particle dynamics, the
uniqueness information is immaterial, and the local con-
servation laws (16) determine the stochastic process suf-
ficiently to imply a consistent propagation of the local
fields p(x, t), v(x, t) W.e can easily formulate a finite-time
partitioning recipe for the purely causal implementation
of the intrinsically random motion, which prop@gates for-
ward the given initial data pp, vp, as follows.

(i) Set t —s = Es to be small; start from the tran-
sition density for the time interval Ls with the initial
distribution p(x, 0) = po(x) and an arbitrary initial drift
bo(x) = b(x, 0) = DV'in[pc(x)] + vo(x), where vo(x) is
an initial local current-velocity field (one can in principle
set it equal to 0, but a better idea in the the quantum
case is to relate it to pp via the concept of the Brow-
nian recoil principle [14]). The terminal density (after
time Es) immediately arises since, by standard argu-
ments, we have explicitly defined the transition density
for any small time interval As = t —s ) 0 in terms of
p(x, s), v(x, s):

p(y, s)p(y, s, x, s+ Es) dy

p y, s 4mD&s

(x —y —b(y, s) Es)'
x exp[- dy.4' D&s

(ii) The terminal drift after the propagation time As
can be evaluated by exploiting the finite difference for-
xnula coming from (16),

b(x, s+ Ds) = v(x, s+ As) + DV'In[p(x, s+ Zs)],

v(x, s+ As)

= v(x, s) + [
—(vV'v)(x, s) + V'(Q —V)(x, s)]As.

It is to be compared with the analogous formula for the
Smoluchowski propagation starting with the very same
data [10, 13]: the difference is in the force term, where
—(Q —V) = V —Q takes the place of Q —V; compare,
e.g. , (17).

(iii) The new drift b(x, s+ Es) is now taken as the ini-
tial drift for the subsequent time Ls propagation. Know-
ing that the new (after time Es) density is p(x, s + Es),
we take it as an initial density for the subsequent propa-
gation interval as well.

(iv) All consecutive Es propagation steps are supposed
to repeat this feedback pattern up to the required ter-
minal time T = nLs. The only probabilistic input in
here is the knowledge of the small time transition prob-
ability density for each time interval and the validity of
the Chapman-Kolmogorov formula. Thus the chosen ini-
tial data are causally propagated into the a priori un-
known terminal ones p(x, T), v(x, T). Only after associ-
ating po(x) with p(x, T) can we attempt to single out a
unique Markov process responsible for the realized inter-
polation.

Remark 5. It is instructive to see how the previous
point (iv) works for the just considered case of the free
quantum dynamics, with R(x, t), S(x, t) given by (33),
and the functional forxn of the kernel k(y, s, x, t) disen-
tangled from the expression for p(y, s, x, t). In fact, we
shall produce the more general path integral formula for
the transition probability density, which is valid for non-
vanishing external potentials as well,

p(*, &) = fA u(v, ~)~b 8 * ')

dy p y, s exp —ln +S x, t —S y, s1 p(x, t)
p(y s)

' At/0

(*,. —*,-x)'
x [4vrD&t] ~ exp — exp —) (&Q —V) (xs &s )4DLt 2Dj=l

Here xp ——y, x +~ ——x, and the dimensional factor
—referring to the mass of the particle is incorporated in
the definition of V. One should realize that in the above
there appears an exact Radon-Nikodym derivative for-
mula [8,10] relating the probability measure of the (Kato)
perturbed Wiener noise with this for the Wiener noise
proper: the measures are mutually absolutely continu-
ous. Setting V = 0 we recover the &ee quantum dynam-
ics implemented formula for the unique diffusion process

I

interpolating between p(y, s) and p(x, t) In particu. lar,
one needs D = 1 to get a complete notational agree-
ment with our previous discussion. In contrast to (36),
the genuine (Feynman-Kac) sexnigroup kernel is here in-
volved, and the process is a Markov diffusion.
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