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Bell s-inequality experiment employing four harmonic oscillators
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We show that Bell s-inequality experiments can be carried out using four harmonic oscillators,
pairs of which interact with each other at suitable instants of time to allow for the exchange of energy.
Between interactions, the oscillators are shifted in phase relative to each other in a controllable
manner. Energy becomes distributed among the four harmonic oscillators in a manner that is
incompatible with a local realism picture in which information is exchanged only when the oscillators
interact with each other. Entanglement is dynamically generated from an initial product state.
PACS number(s): 03.65.Bz

In the usual Bell-inequality experiments [1—4] a pair
of particles is initially prepared in an entangled state.
Each particle is then delivered to a detector in which
one of several observables is measured, the choice of ob-
servable being left to the experimenter. The statistics
of the measurements reported by the detectors exhibit
correlations that are stronger than allowed by local real-
ism. A number of such experiments have been proposed
[5—8] and even performed [9—15] in which the particles
are photons. Since photons are excitations of modes
of the electromagnetic Geld, which are harmonic oscil-
lators, it is not surprising that Bell s-inequality experi-
ments can be performed using harmonic oscillators. In
fact, the gedanken experiment, employing four distin-
guishable harmonic oscillators, described here is a direct
analog of an optical Bell-inequality experiment we have
described previously [16]. It is worthwhile, however, to
consider Bell s-inequality experiments in a manner that
emphasizes harmonic oscillator wave functions because,
as is clear &om our development here, Bell' s-inequality
experiments can actually be carried out with harmonic
oscillators. We note here that the initial state of the
system is an unentangled direct product state. Entan-
glement arises dynamically as the oscillators are allowed
to exchange energy with each other. This illustrates that
the mechanism for producing entanglement may be an
explicit part of the actual apparatus rather than be im-
plicit in the preparation of the initial state. The analysis
provided in the text is carried out entirely in the language
of interacting harmonic oscillators. In the Appendix the
connection between the present formalism and the second
quantized formalism we employed in the analysis of the
optical experiment [16] is given. Although the focus here
is on a Bell' s-inequality experiment, the tools presented
can be applied to other Einstein-Podolsky-Rosen [17] ex-
periments that have optical realizations to demonstrate
that these experiments can be performed using harmonic
oscillators. In particular, the techniques can be readily
applied to an optical version of the Greenberger-Horne-

Zeilinger experiment [18—20] recently proposed by us [21]
and Reid and Munro [22] and an optical version [23] of
a local realism violating experiment proposed by Hardy
[24] in order to demonstrate that these experiments can
be carried out with, respectively, six or four harmonic
oscillators.

The four harmonic oscillators used in the present
gedanken experiment can each be materially difFerent.
For example, oscillator 01 could be a mass attached to
a spring, oscillator 02 could be a torsion oscillator, os-
cillator 03 could be an electrical oscillator consisting of
an inductor and a capacitor, and oscillator 04 could be
of some other construction. Two of the oscillators, say
oscillator 01 and oscillator 03, are prepared in their Grst
excited state. Oscillators 02 and 04 would then be pre-
pared in their ground state. These oscillators are trans-
ported in the manner shown schematically in Fig. 1 in
which it is shown that at certain times, pairs of oscil-
lators are brought into contact with each other through
couplings that allow the interchange of energy. First, os-
cillators 01 and 02 are brought into contact with each
other and oscillators 03 and 04 are brought into contact
with each other. After the oscillators have been sepa-
rated again, each oscillator is subjected to a controllable
phase shift. Finally, oscillators 01 and 04 are brought
into contact and oscillators 02 and 03 are brought into
contact. After the oscillators are separated for the final
time, one measures the energy of each oscillator to deter-
mine the energy eigenstate that the oscillator is in. The
probability distribution of the occupation of these en-
ergy eigenstates, conditioned on the settings of the phase
shifters, is not consistent with a local realism picture in
which the oscillators interchange information only while
they are in contact with each other.

We now describe the interaction that is used to couple
a pair of harmonic oscillators. For simplicity, it will be
assumed that the oscillators all have the same resonant
frequency. We will use units in which h is 1. In addition,
the scale used to measure the displacement of a given
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Since the interactions between oscillators in each case
last for a finite duration, it will be convenient to work
in an interaction picture. The interaction Hamiltonian
Hl(r, s) between a pair of oscillators Or and Os, where
r and 8 are labels that take on the values 1—4, is taken
to be of the form

H, (r, s) = ~(x„x.+ p„p.), (2)

where x„and p„are the position and the momentum
operators for the oscillator or and x, and p, are the
position and the momentum operators for oscillator 08.
In the position representation, the momentum operators
p„are given by

0Pr= 2
19xg

oscillator will be chosen so that the energy eigenstates of
each oscillator have the standard form

( )
—1/4 —m /2

@2(x)=2 '/
vr '/ (2x —1)e

Before continuing with the analysis, a discussion is in
order regarding the possibility of physically realizing an
interaction Hamiltonian of the form shown in Eq. (2). A
coupling of the form Kx„x, is quite familiar in a mechan-
ical context. In particular, if one connects a spring be-
tween two mechanical oscillators, the energy of the spring
is given by k(x„—x, )2/2, where k is the spring constant.
This energy thus gives rise to the coupling term —kx„z,
in the Hamiltonian. A coupling term of the form top„p,
involving the momenta of the two oscillators is unusual
in a mechanical context. It is, however, quite familiar
in an electrical context where charge plays the role of
position and current plays the role of velocity. In an
electrical context the coupling ep„p, can be recognized
as a mutual inductance. To be more explicit, consider
the two electrical harmonic oscillators depicted in Fig. 2.
The oscillator El consists of the capacitor Ci and the in-
ductor I i and the oscillator E2 consists of the capacitor
C2 and the inductor L2. The oscillators have been cou-
pled together through a common current path into which
a mutual capacitor CM has been inserted. In addition,
the inductors are coupled to each other through fringing
magnetic fields, giving rise to a mutual inductance M.
The Hamiltonian for the system can be written in the
form

1i4

I„ /'dQ, '1 '
2 ( dt) 2 (Cg CM)

2

MaQi dQ2 QiQ2
dt dt CM

(4)

(6)

~04

where Qq and Q2 are the charges associated with oscilla-
tors El and E2, respectively. Provided the values of the
mutual inductance M and the mutual capacitance CM
are chosen properly, the last line Eq. (6) is an interaction

L2

123

C) C2

E1 E2

FIG. 1. Schematic of how oscillators are transported to
and &om interaction regions in order to perform a Bell' s-
inequality experiment. The oscillators are labeled 01, 02,
03, and 04 and their paths of transport are indicated. The
regions where pairs of oscillators interact to exchange energy
are denoted I~q, I34 I23 and I&4. The phase shifters, which
advance or retard the phase of the oscillators, are denoted Pq,

Ij53 and P4. The detectors, which determine which energy
eigenstate a given oscillator is in, are denoted by Dl, D2, D3,
and D4.

FIG. 2. Two coupled electrical harmonic oscillators. Os-
cillator E1 consists of the inductor Lq and capacitor C'q. Sim-
ilarly, oscillator H2 consists of the inductor L2 and capacitor
C2. Two means of interaction between the two oscillators are
provided. One coupling interaction is provided by the mutual
inductance M between L1 and L2, which results from the
fringing magnetic fields of one inductor penetrating the other
inductor. The other coupling is provided by the capacitor
C~, which has been inserted into a current path that both
oscillators share in common. This capacitor gives rise to a
mutual capacitance.
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of the form Eq. (2). More generally, since linear transduc-
ers exist that convert displacement or velocity into charge
or current and vice versa, electromechanical couplers can
be devised that will give rise to effective interactions of
the form Eq. (2) between mechanical oscillators as well.
As shown in the Appendix, the interaction, Eq. (2), per-
forms the same function that a beam splitter performs in
an optical experiment.

The function of the interaction HI(r, s) is to allow har-
monic oscillators Or and 08 to exchange energy. Thus,
although we have specialized to the interaction given in
Eq. (2), other interactions could be used. Effects pro-
duced by turning the interaction on or off will be ne-
glected. Such effects can be made negligibly small in a
variety of ways, such as by turning the interaction on
and off adiabatically or by making the coupling strength
e small and correspondingly increasing the interaction
time.

%e now consider the evolution of wave functions under
the influence of the interaction Hamiltonian HI(r, s). Let
@(x„,x, ) be a wave function in the interaction picture.
Under the inHuence of the interaction Hamiltonian, the
wave function evolves according to

where we have suppressed the r and 8 indices. As shown
in the Appendix, this difFerential equation can be ex-
pressed as the integral equation

@ „t(T,T, ) = J dT'„dT', G(T, T, ; T„',x', )d; (T'„x',j,

where @;„is the wave function before interaction and vP „q
is the wave function after interaction. The kernel is given
by

G(x„,x„.x„', x', ) = exp(i[cot(d(;t)(x„x, + x„'x', )
csc(rt)

2'
—csc(Kt) (x„x'. + x.x„')]),

where t is the interaction time. For the Bell s-inequality
experiment, the duration of the interaction between os-
cillators will be chosen such that

Kt = vr/4 .

For this choice of interaction time, the interaction per-
forms the following transformations listed here for later
reference:

'40(x )40(x.) 1f 0'- = 00(x-)Wo(x. )—', [&o(*.)@ (* ) —@ (*.)@ (* )] f &'- = @o(*.)0 (* )
' ~I—&o( -)& (* ) + @ (* )& (*.)l f @-= @ (*-)@ (* )

, —~Wo(x. )@2(x ) + @2(x-)&0(x )] if @- = &1(x-)@1(x ).

We note that, except for the ground state go(x )go(x ),
the other product states @;„areconverted into entangled
states by the interaction.

The phase of an oscillator can be advanced or retarded
through a change of its spring constant or its mass. Here
we will employ both effects to shift the oscillator's phase.
The interaction Hamiltonian for a phase shifter is taken
to be

K(x, x') = exp[i cot(At) (x2 + x'2)/2
2mi sin(At)

—i csc(At)xx'] .

For the analysis of the Bell' s-inequality experiment we
will need to know the following results for how wave func-
tions are transformed under Eqs. (14) and (15):

Hr1 = —(p'+ x') .
2

(12)
e *~~'&0(x) 1f @'-(x) = @0(x)

(*) '-(*) = (*)

Again, in the interaction picture, the wave function g(x)
is governed by the equation

where the phase angle P is given by

=At.

As shown in the Appendix, this differential equation can
be expressed as the integral equation

, (x) = f dx'IC(x, x')@; (T'), (14)

where g;„ is the wave function before the interaction and
g „t is the wave function after the interaction. The kernel
is given by

We now have all the tools necessary to determine the
probability distribution describing how the quanta of en-
ergy are distributed among the four oscillators at the
end of the Bell s-inequality experiment. The initial wave
function 4 is the state for which oscillators 01 and 03
have been prepared in their 6rst excited state while os-
cillators 02 and 04 have been prepared in their ground
state. The initial state vector is thus

@a(xl) x21) x3) x4) $1(xl)40 (x2)@1(x3)@0(x4) (IS)
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Oscillators 01 and 02 are brought near each other and
allowed to interact and oscillators 03 and 04 are brought
near each other and allowed to interact. Each pair in-
volves one oscillator in its first excited state and one os-
cillator in its ground state. One sees from Eq. (11) that
the interactions, Eq. (2), will result in a superposition in
which one or the other oscillator of a pair is excited. Let
4b denote the state vector after this first set of interac-
tions. Prom Eq. (11) it follows that this state vector has
the form

@c,Bell(&1& &2& &3 & 2'4)

~i/,

2
e '

~ Xq p X2 y X3 p X4

—O'A(») 41(»)A(») &1(&4)] (23)

and the part of the wave function that will give rise to
background events that do not contribute to local realism
violations is given by

(b&1 &&2& &3& &4) @b, Bell(&1 &&2& &3& +4)
+@b&back (&1& +2 & +3 +&4) & (1s)

bccak(+1 +&2& +3& +4)

where the part of the wave function that will give rise to
Bell s-inequality violations is given by

1
@b,Bell(&1& 22& +3& +4) [Ol(+1)@G(+2)41(+3)40(+4)

40(+1)41(&2)40(&3)41(+4)]
(20)

itO (+1)4'1 (&2)41 (&3)@0(+4)] ~

The phases are given by

4. =4 +0.+43+4,

(24)

and the part of the wave function that will give rise to
background events is given by

1
~ = 2[41 —42+43 —44], (26)

Z

@b,back(&1 & &2& &3 & &4) — [01(+1)4'0(&2)00(&3)01(&4)

+40 (&1)@1(&2)4 1 (&3)4'0(+4)]

(21)

@c(&1&+2& +3& +4) @c&Bell(&1&&2& 2'3 &4)&

+@c,back(&1& &2& &3& +4)& (22)

Let 4, denote the state vector after the harmonic os-
cillators have been phase shifted and let &t&, where r g
(1,2, 3, 4), denote the phase by which the rth oscillator
has been shifted. From Eq. (16) it follows that the state
vector @ is given by

1
Od = —[4 —42 —4 +44] . (27)

@d(&1&&2& 23& &4) —@d, Blle(&1& &2& &3& &4)

+@d,back(+1& +2& +3& +4)

After being phase shifted the oscillators interact one last
time via an interaction of the form Eq. (2). In this case
oscillators 01 and 04 interact and oscillators 02 and 03
interact. Let 4g denote the wave function after the inter-
action. Using Eq. (11) one finds that the wave function
has the form

where the part of the wave function that will give rise to
Bell s-inequality violations is given by

where the part of the wave function responsible for Bell' s
inequalities is given by

~i/,
@d,Bell(&1& &2& +3& +4)

2
cos(0) [01(&1)A (&2)4'1 (&3)4'0(+4) 00 (+1)41 (+2)00 (+3)01(+4)]

2
»n(0) [@1(*1)41(~2)40(~3)40(~4) + 4 0(~1)4 0(~2)01(~3) Pl(&4)] (2S)

and the part of the wave function that; gives rise to background events is given by

@d,back(&l& &2& &3& &4) = ~'(4"—e~)

2 2
[40(+1) PO(+2) 40 (T3)42 (~4) + W2 (~1)A (+2)40 (+3)4'0 (&4)]

&i(y, +e&)

2 2
[4 0(+1)@0(&2)42(&3)40(&4)+ 00(&1)42(2 2)&&t'0 (&3)00(&4)]

The probability distribution describing how the energy
is distributed among the four oscillators is now simply
determined by squaring the probability amplitudes for
particular configurations of energy eigenstates given by
Eqs. (29) and (30). Since the initial state vector consists

of one in which two quanta of energy are present, the
final state also contains two quanta of energy. We can
denote the outcome of a single run of the Bell' s-inequality
experiment by a pair of integers (r, 3) specifying which
harmonic oscillators were found in their excited state at



51 BELL'S-INEQUALITY EXPERIMENT EMPLOYING FOUR. . . 3441

the end of the run. In particular, 13 denotes the event
where oscillator 01 and oscillator 03 are in their excited
state. Similarly, 24 denotes the event for which oscillator
02 and 04 are found to be in their excited state. We
introduce the set A de6ned by

X = (13,24).
Similarly, let B denote the set of events for which os-
cillator Ol and oscillator 02 are found to be excited or
oscillator 03 and oscillator 04 are found to be excited

B =(12,34) . (32)

Finally, let D denote the events where a single oscillator
is doubly excited. For example, by 11 we denote the event
where oscillator 01 is found to be in its second excited
state, i.e. , it has two quanta of vibration. Hence D is
given by

D = (11,22, 33, 44) . (33)

Let P(o.) denote the probability that the event n will
occur where n E A U BU D. The probabilities are then
given by

—cos (0)

~( ) )
sin {0)

f. 2

8
0

ifo. cA
ifo. eB
ifo. eD
otherwise.

This probability distribution is identical to one obtained
by us earlier for an optical Bell s-inequality experiment
[16]. By performing an ensemble of experiments in which
suitable choices of phases Pq, P2, Ps, and P4 are made,
one can show that the correlations in the distribution of
energies among the four oscillators violate local realism.
In particular, let the phase shifters Pq and P4 be con-
trolled by experimenter 1 and let the phase shifters P2
and Ps be controlled by experimenter 2. As depicted in
Fig. 1, harmonic oscillator 01 is only allowed to interact
with harmonic oscillator 04 after the phase shifts and
harmonic oscillator 02 is only allowed to interact with
harmonic oscillator 03 after the phase shifts. Therefore,
one argues, from a local realism point of view, that the
phase settings experimenter 1 chooses should not influ-
ence what detectors D2 and D3 report. Similarly, the
phase settings experimenter 2 chooses should not influ-
ence what detector 1 reports. By performing a suitable
topological distortion of the configuration depicted in
Fig. 1, it is apparent that phase shifters Pq and P4 and
the interaction region I~4 can be moved very far from the
phase shifters P2 and Ps and the interaction region 123.
By moving these two sets of components suKciently far
from each other, experimenter 1 can delay his choice of
phase settings so that when the choice is made there is in-
sufFicient time to causally communicate this information
to detectors D2 and D3 and, similarly, experimenter 2 can
delay his choice of phase settings so that when the choice
is made there is insufBcient time to causally communicate
this information to detectors Dl and D4. The probabil-
ity distribution Eq. (34), however, has correlations that
are sufBciently strong that the system acts, from a local

realism point of view, as if the settings chosen by the
experimenters are being communicated to the detectors
acausally. The derivation of Bell's inequalities violated
by the probability distribution Eq. (34) have been pre-
sented by us elsewhere [16]and will not be repeated here,
particularly since these derivations follow standard argu-
ments given by Clauser and Horne [25] and by Wigner
[26] and Belinfante [27]. It suffices to say that the quan-
tity eq ——(Pq —P4)/2 controlled by experimenter 1 and
the quantity 02 ———(P2 —Ps)/2 controlled by experi-
menter 2 act like the polarization analyzer angles in the
usual optical Bell' s-inequality experiments [5, 9—12].

With the derivation of Eq. (34) we have thus shown
that Bell' s-inequality experiments can be performed us-
ing four harmonic oscillators that are initially prepared
in the product state @](z])@p(x2)gy(xs)@o(x4), where
ge and gq are the ground state and the first excited
state of an harmonic oscillator. In the optical equiva-
lent, this state vector, written in second quantized no-
tation, is a~as~o), where a~ and as are the creation
operators for modes 1 and 3. In terms of photon
wave packets this state vector has the symmetrized form
~[fq(rq, t) fs(r2, t) + fq{r 2t) fs(rq, t)], where rq and rq
are the position coordinates of the two photons and fq
and fs are the envelope functions for the wave packets in
which the photons reside. This last state is entangled.

For the oscillators we manifestly produce entangled
states dynamically through Hamiltonian evolution by
"turning on" interactions between pairs of oscillators.
The oscillators could be difFerent and are distinguishable,
so one need not symmetrize the initial wave function. If
one views the harmonic oscillators simply as boxes that
carry quanta of vibration, say phonons or photons, these
quanta are indistinguishable (even if one is a phonon and
the other is a photon) and the initial wave function writ-
ten in terms of these "particles" must be symmetrized.

APPENDIX

(bq 'l & cos 0 i sin 81 (&y&-
gb2y~ ~ i sin8 cos—8 ) ga2p

(Al)

Here a derivation of the kernels Eq. (9) and Eq. (15) is
provided. The derivation of Eq. (9) proceeds by first ob-
taining a related kernel for a beam splitter. This kernel
is then used to guess the solution of Eq. (7). This process
establishes the equivalence between a beam splitter mode
transformation and the mode transformation induced by
the interaction Hamiltonian Eq. (2). The derivation of
Eq. (15) proceeds the same way, except that we can cite
other literature [28] for much of the derivation. By es-
tablishing that the mode transformations performed by
the interaction Hamiltonians HI and H~ are equivalent
to those performed by optical beam splitters and phase
shifters, we have shown that the Bell' s-inequality experi-
ment employing distinguishable mechanical harxnonic os-
cillators is equivalent to an optical experiment recently
proposed by us [16].

Consider a beam splitter performing the mode trans-
formation
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where aq and a2 are the annihilation operators for the
input modes and b~ and b2 are the annihilation opera-
tors for the output modes. These annihilation operators
satisfy the usual boson commutation relations. We now
introduce the following position and momentum opera-
tors for the input modes

1
(ai + a, ),

2

(ai —ai)
2

(a2+ a, ),t
2

P2 = — (a2 —a, ) .
2

(A2) (zi, z2~P2]z„z2) + cot(8)xi(zi, z2 ~xi, z2)

—csc(8)zi(zi, z2]zi, x2) = 0 . (A18)

Using the relationship(A4)

(A19)(zi, z2~P2~zi, z2) = 1 (zi, z2~zi, z2) )
([9%2

]zi, x2) denote the position eigenstate having the eigen-
values x~ and x2 for the unbarred position operators Xq
and X2, respectively and let ]xi, x2) denote the position
eigenstate having the eigenvalues xq and x2 for the barred
position operators X~ and X2, respectively. Then, apply-
ing the position eigenstate (xi, x2~ to the left-hand side of
Eq. (A14) and ~zi, x2) to the right-hand side, one obtains

We also introduce a similar set of position and momen-
tum operators for the output modes of the beam splitter

Xi = (bi + bit),
2

Pi ——— (bi —bi),
2

X2 = (b2 + bt2),
2

P2 ——— (b2 —b2) .
2

(A6)

(A7)

(As)

(A9)

Xi ——cos(8)Xi + sin(8) P2,
Pi = COS(8)P1 —Slil(8)X2,
X2 ——sin(8)P1 + cos(8)X2,
P2 ———sin(8)X1 + cos(8) P2 .

(A10)
(A11)
(A12)
(A13)

After a bit of algebra these equations can be rearranged
into the convenient form

These position and momentum operators correspond to
the actual position and momentum operators for mechan-
ical oscillators. For the optical system these position and
momentum operators are the operators for the two am-
plitude components that are in quadrature for an elec-
tromagnetic Geld mode. These observables of the elec-
tromagnetic Geld can be measured using homodyne de-
tection techniques [29—32]. In this section we will use the
convention that barred coordinates or operators are those
associated with the beam splitter output ports, while un-
barred coordinates and operators are those associated
with the input ports of the beam splitter. The mode
transformation Eq. (Al) leads to the following transfor-
mation among the position and momentum operators at
the input and the output of the beam splitter

Eq. (A18) yields

|9
t + cot(8)xi —csc(8)xi (xi, z2izi, x2) = 0 .

19x2

(A20)

Using similar techniques, one obtains &om Eqs. (A15)—
(A17) the following additional difFerential equations that
the kernel (xi, x2~zi, x2) must satisfy:

0 + cot(8)x2 —csc(8)x2 (xi, z2~zi, x2) = 0,
Oxy

(A21)

0 + cot(8)z2 csc(8)z2 (xi 1 z21zi) z2) = 0 )
Oxy

(A22)

0
2 + cot(8)zl csc(8)zl (zl&lz21zly z2)

Ox2

(A23)

Integrating these equations, one finds that the kernel has
the form

&1) &2 &1) &2

(8~ i(cot(e)[sqas+Kgs:s] —csc(8)[s:qss+s:ss:$]1 (A24)

where c(8) is an integration constant that remains to be
determined. The normalization of the position eigen-
states fixes the constant c(8), up to a phase, through
the relation

P2 + cot(8)X1 —csc(8)X1 ——0,
Pi + cot(8)X2 —csc(8)X2 = 0,
Pi —cot(8)X2 + csc(8)X2 ——0,
P2 —cot(8)Xi + csc(8)X'i ——0 .

(A14)
(A15)
(A16)
(A17)

dzldz2(z~j) z2zl& z2) (zi z2 ~zl ) z2)

= (zi, z2~zi, z2) = b(zi —zi)b(z2 —z2) . (A25)

One Gnds that the norm of c is given by

These equations can now be used to generate differen-
tial equations that the transformation kernel must satisfy.
To show how this is done [33], consider Eq. (A14). Let

i (8)i = ~',"'~
(A26)

Having obtained the transformation kernel, in the po-
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(Tl +21@) = f &~i&~2(+1 +21+1 T2)(~i, T~I@)

to be a solution of the Schrodinger equation

(A27)

(A28)

where

sition representation, for the transformation performed
by the beam splitter Eq. (A24), we show that this kernel
also provides the solution to Eq. (7) if 8 is taken to be
time dependent. In order for (xi, x2~@), given by 1X = (a+ at),

2

P = — (a —at),

X = (b + bt),
2

P= — (b —bt) .

(A38)

(A40)

the phase shifter and b is the annihilation operator for the
mode leaving the phase shifter. Again, one can introduce
the position and momentum operators

HI —&(xix2 + P1J)2) (A29)

the kernel (xi, x2 ~xi, x2) must satisfy the difFerential
equation

The barred position and momentum operators are related
to the unbarred position and momentum operators via
the transformation

.(9(si, x2~xi, x2)
Bt

X = cos(P)X + sin(P) P,
P = —sin($)X + cos(P)X .

(A41)
(A42)

( 8 8 )
I
(*i x21» *2) (A3o)

&1 &2

Substituting Eq. (A24) into this equation, one finds that
8 must satisfy the differential equation

(A31)

Using techniques similar to those used previously [28],
one can show that the transition matrix (x~x) has the
form

(X~x) = N(P) exp[i cot(P) (x + x )/2 —i csc(P)X x],

(A43)

where the square of the norm of the normalization con-
stant N(P) is given by

and c(8) must satisfy the differential equation

1 00—= i(;cot(8) .

These equations can be satis6ed by the choice

(A32)

(A44)

We use this as our guess for the functional form of the
propagator for the Hamiltonian Hri where now P becoxnes
tixne dependent. In particular, if (x~@), where

(A33)
(*I@)= f ~*(*l*)(*I@), (A45)

csc(Kt)
2

(A34)
is the solution to the Schrodinger equation

With the choice of integration constants implied by
Eqs. (A33) and (A34), one has

lim(*i *214) = (xi, x2I@)

,.&(*I@) H ( )@)Bt

with Hri given by

(A46)

6 = e-'&a, (A36)

where a is the annihilation operator for the mode entering

that is, the solution Eq. (A24) satisfies the proper initial
conditions. Gathering the results Eqs. (A24), (A33), and
(A34), one sees that the kernel (xi, X2~xi, x2) is identical
to the kernel G(xi, x2, xi, x2) of Eq. (9). We have thus
shown that the mode transformation Eq. (Al) performed
by a beam splitter is identical to the mode transformation
performed by the interaction Hamiltonian Eq. (2).

We now show that the mode transformation performed
by an optical phase shifter is equivalent to the mode
transformation performed by the interaction Hamilto-
nian Hri given in Eq. (12). The mode transformation
performed by a phase shifter has the form

0 (92
H~ ———— + x

2 Bx
(A47)

then the propagator (x~x) must satisfy the difFerential
equation

+X (xix) ..(9(mix) 0 (92

Ot 2 Ox 2 (A48)

(A49)

and the normalization constant must satisfy the difFeren-
tial equation

Substituting Eq. (A43) into this differential equation, one
finds that P must satisfy
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1 ON(P) A

N(P) Ot 2
(A5O) N(&) =

/2ai sin(At)
(A53)

hm(zl&) = (z]@) (A51)

1s

and

(A52)

The solution to these difFerential equations that satisfies
the initial condition

Substituting Eqs. (A52) and (A53) into Eq. (A43), one
sees that the propagator (z]z) is equal to the kernel
K(z, z) given in Eq. (15). We have thus provided a
derivation of Eq. (15) and demonstrated that the Hamil-
tonian Hg, acting over the time interval t given in
Eq. (A52), performs the same function as an optical beam
splitter. We have thus established the equivalence be-
tween the mechanical or electromechanical oscillator Bell
inequality experiment presented here and the optical Bell
inequality experiment we described previously [16j.

[1] J. S. Bell, Physics (N.Y.) 1, 195 (1965).
[2] J. S. Bell, in Foundations of Quantum Mechanics, edited

by B. d'Espagnat (Academic, New York, 1972).
[3] W. De Baere, Adv. Electron. Electron Phys. 68, 245

(1986).
[4] J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881

(1978).
[5] J. Clauser, M. Horne, A. Shimony, and R. Holt, Phys.

Rev. Lett. 23, 880 (1969).
[6] S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev.

Lett. 66, 252 (1991).
[7] M. D. Reid and D. F. Walls, Phys. Rev. A 34, 1260

(1986).
[8] P. Grangier, M. J. Potasek, and B. Yurke, Phys. Rev. A

38, 3132 (1988).
[9] S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28,

938 (1972).
[10] E. S. Fry and R. C. Thompson, Phys. Rev. Lett. 37, 465

(1976).
[11] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett.

47, 460 (1981);49, 91 (1982).
[12] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett.

49, 1804 (1982).
[13] Z. Y. Ou and L. Mandel, Phys. Rev. Lett. Bl, 50 (1988).
[14] Y. H. Shih and C. O. Alley, Phys. Rev. Lett. 81, 2921

(1988).
[15] J. G. Rarity and P. R. Tapster, Phys. Rev. Lett. 84, 2495

(1990).

[16] B. Yurke and D. Stoler, Phys. Rev. A 46, 2229 (1992).
[17] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47,

777 (1935).
[18] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in

Bell Theorem, Quantum Theory and Conceptions of the
Universe, edited by M. Kafatos (Kluwer Academic, Dor-
drecht, 1989), pp. 69—72.

[19] D. M. Greenberger, M. A. Horne, A. Shimony, and
A. Zeilinger, Am. J. Phys. 58, 1131 (1990).

[20] N. D. Mermin, Am. J. Phys. 58, 731 (1990).
[21] B.Yurke and D. Stoler, Phys. Rev. Lett. 88, 1251 (1992).
[22] M. D. Reid and W. J. Munro, Phys. Rev. Lett. 69, 997

(1992).
[23] L. Hardy, Phys. Lett. A 187, 17 (1992).
[24] L. Hardy, Phys. Rev. Lett. 68, 2981 (1992).
[25] J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526

(1974).
[26] E. P. Wigner, Am. J. Phys. 38, 1005 (1970).
[27] F. J. Belinfante, A Survey of Hidden Variabl-es Theories

(Pergamon, Oxford, 1973).
[28] B. Yurke, W. Schleich, and D. F. Walls, Phys. Rev. A

42, 1703 (1990).
[29] H. P. Yuen and J. H. Shapiro, IREE Trans. Inf. Theory

IT-26, 78 (1980).
[30] B. L. Schumaker, Opt. Lett. 9, 189 (1984).
[31] B. Yurke, Phy. Rev. A 32, 300 (1985).
[32] B. Yurke and D. Stoler, Phy. Rev. A 38, 1955 (1987).
[33] D. Stoler, Opt. Lett. 6, 484 (1981).


