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Radiation pressure and coherent states of two-level atoms
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Two sets of coherent states of a two-level atom are constructed by the displacement-operator
technique from the choices of the ground and excited states as the extremal state. Particular forms
of both of these sets of coherent states are minimum-uncertainty states. Radiation-induced forces
are determined for a two-level atom prepared in such coherent states. In general, these forces are
a8'ected by the presence of a second atom. Por a minimum-uncertainty state, the force on a two-
level atom is independent of the state of the field. The significance of the calculations is discussed
in relation to the pure atomic state occurring in the midst of the "collapse region" of the atomic
inversion in the Jaynes-Cummings model. The existence of such a pure state may provide a possible
means of experimentally generating two-level atomic minimum-uncertainty states.

PACS number(s): 42.50.Vk

The use of the mechanical effects of radiation, par-
ticularly those induced by near-resonance laser light, has
become a powerful technique for controlling the gross mo-
tions of neutral atoxns and ions [1]. However, the possibil-
ity of preparing the atom in a coherent state has not been
discussed previously in the context of radiation-induced
forces, perhaps because it has not been easy to see how
such states might be made in the laboratory. This is the
subject of the present Brief Report, in which the radia-
tion pressure experienced by a two-level atom prepared in
a coherent state is determined and a suggestion is made
as to how such a state might be experimentally realized.

In the study of the basic physics of the interaction
of radiation with matter, the two-level atom, which was
originally introduced by Einstein in an early paper on
radiation kinetics [2], remains an important theoretical
model [3]. This is particularly so in the case where the
radiation field is specialized to a single mode and the
dynamics are described in the rotating-wave approxima-
tion by the Jaynes-Cummings Hamiltonian [4]. As well
as being exactly solvable, the haynes-Cummings model
has been achieved experimentally with the use of Ry-
dberg atoms in high-Q microwave cavities [5]. One of
the profound aspects of this model is the collapse of the
atomic inversion after a short time interval, followed by
further revivals and collapses [6]. This is achieved only
when the radiation field is prepared in a coherent state,
indicating the limitations of a semiclassical model of ra-
diation interactions. In an interesting development of the
theory —and one which may have significance in the pos-
sible experimental generation of two-level atomic coher-
ent states —it would seem that the two-level atom returns
to a pure state in the midst of the inversion-collapse re-
gion [7]. It is indicated below that this pure state is also
a minimum-uncertainty state of the two-level atom.

Coherent states of a single mode of a harmonic os-
cillator may be defined in three equivalent ways: as
minimum-uncertainty states, as the eigenstates of the
mode's annihilation operator, or as the states formed by
the action of the Glauber displacement operator on the
mode's ground or vacuum state [8]. In the case of a two-
level system, however, this &eedom of choice is curtailed.

, E) = D(~)IE)

where the extremal state lE) is identified to be either lg)
or le). The displacement operator is given explicitly by
the matrix

D(a) = cos o.'
—exp( —iP) sin lal

exp(iP) sin lnl
cos 0!

in the representation (gl = (0, 1), (el = (1,0), allowing
the two sets of coherent states

l~ g)= D(~)lg) = cosl~llg)+exp(iy)»nl~lle) (4a)

la, e) = D(n) le) = —exp( —i@)sin lnllg) + cos lnl le) (4b)

to be easily constructed &om Eq. (2). From the uni-
tary nature of the displacement operator (1), it is evident
that these coherent states, which are of course normalized
(E, nlu, E) = 1, are coxnplete P&, ln, E)(E,nl = 1
and orthogonal (E, nln, E') = 6'@~ in the space of E.
It may also be verified that the states are overcompletejd nln, E)(E, cxl = 7r and nonorthogonal (E, nlu', E) P
0 in the space of n. The set (4a) of coherent states formed
from the selection of the ground state lg) as the extremal
lE) has previously appeared in the literature [9].

In general, for E = g or e, the coherent states (4) allow
the variances

(E, nl(b, X) ln, E)= (1/4) —cos lnl sin lcxl cos y, (5a)

(E ~l(&&)'l~ E)= (1/4) —cos' l~l »n' l~l »n' y (5b)

Coherent states of a two-level system are constructed in
terms of a complex number cx = lnl exp(iP) by the action
of the displacement operator

15 (n) = exp (n~t —n*m)

on a reference or extremal state. In Eq. (1), nt = le)(gl
and & = lg) (el are the raising and lowering dyadics of the
two-level system, which is composed of a ground state lg)
and an excited state le). Thus a coherent state of a two-
level atom is defined as
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of the quadrature operators

to be determined, along with the relationship

I(E ~l[» Yll~ E&I' = -cos'(2I~I).

(6a)

(6b)

(7)

ten in terms of a unit polarization vector e and the usual
Boson operators a, a~, is quantized throughout a cavity
volume V. It is supposed that the interatomic separa-
tion is sufFiciently great that dipole-dipole effects may be
ignored and that the Coulomb fields of each atom are
localized about their respective centers of mass R~. The
system's total Hamiltonian

The right-hand sides of Eqs. (5) and (7) are E indepen-
dent but 0; dependent. These are important properties
of the quadratures' variances and commutator for two-
dimensional coherent states; they are not all present in
the equivalent quantities evaluated on coherent states of
higher state-space dimensions [10]. Mindful of the uncer-
tainty relationship

((&I)')((&Y)') ) 41(Ã Y]) (8)

one can see that (4) form intelligent states, that is, states
for which the inequality (8) is saturated, for all values of
P if in~ = 0 or ~. (The angular range is restricted to
values between 0 and 2m. ) On the other hand, intelli-
gent states may also be formed for all values of ~n~ if
P = O, m/2, a,3vr/2 and, further, if ~n~ = n/4, 37r/4, then
these states become minimum-uncertainty states and the
right-hand side of (8) forms a local minimum. These con-
ditions for intelligent and minimum-uncertainty states
have been previously reported for the set (4a) formed
from the choice of E = g [9]. The states ~n, E) give the
same physics: ignoring the phase angle P, the states ~n, e)
and ~o. , g) are equivalent when ~n~ is replaced by ~ni —~/2,
consistent with the fact that these states lie at opposite
points on the Bloch sphere (P = 0).

All pure states can be called coherent states [11]
and, apart from a global phase factor, an arbi-
trary state for a two-level system may be written as
cos(P) ~g)+exp(io) sin(P) ~e). In particular, the minimum-
uncertainty states of a two-level system are the same pure
states, to within a phase factor, to which a two-level sys-
tem, when driven by a single coherent mode, evolves at
a time within the region of collapse of the inversion [7].
This may provide a possible means of generating such
minimum-uncertainty states.

Coherent states play a unique role in quantum dynam-
ics since they form nonvanishing expectation values with
the appropriate particle creation and annihilation oper-
ators. In the present case of two-level atomic coherent
states, the expectation values of vr and sr~ constructed
out of the states ~n, E), E = e or g, are proportional
to sin(2~n~). The effect of this is to allow the dynamical
variations within one atom to influence another nearby
atom through changes in the interaction photon field.

In the case of radiation pressure, this interatomic in-
fluence produces a nontrivial contribution to the force on
any one atom. To illustrate this, two two-level atoms,
each distinguished by an index p = 1, 2, with a com-
mon energy separation of hO between their respective
ground ~g~) and excited ~e~) states, are considered to in-
teract with a single-mode k of a quantized radiation field
A(r) = gh/2ws'oVeaexp(ik. r) + H.c. This field, writ-

"2
H= ) " + Knir~ir„) + Matrix+ fI;„,,2m

P=&» P
(9a)

Hint— ) iku ~ p„~t a exp(ik R„)+ H c.
@=1»

(Qb)

in the rotating-wave approximation is expressed in terms
of the individual atomic lowering and raising dyadics
vr„= ~g„)(e~~ and frt = ~e„)(g~~, as well as the atomic

gross momenta P~ = —ih{0/BR„). The ladder opera-
tors of the Hamiltonian form the equal-time commutators

a, a~ =1
(10a)

(10b)

and various constants are grouped. under two parameters

A

f~ = e (gp e'17p ep ) )
2cphV

written in terms of off-diagonal elements —e(g„~17„~e„)
of the atomic dipole moments. The modifications to the
Thomas-Reiche-Kuhn sum rule necessary for determin-
ing the matrix-element component of (11) have appeared
recently in the literature [12].

The expectation value of the radiation-induced force

(Fq(t)) = ((Ru2pqkfr, (t)a(t) exp[ik. Rg(t)] + H.c.j)
(12)

a(t) = a(0) exp[ —i~t]

) p„exp[—i(u)t + i k . R„(0))]
p, =1»

t
x dt' 8„'(t') exp[i((u —k V „}t'],

0
(13a)

vr„(t) = fr„(0) exp[ —icut]

+ p„ fr„(0),frt (0)] exp[ —i(Ot —k R„(0))]
t

x dt' a(t') exp[i(A + k . V„)t'],
0

(13b)

on atom 1 at time t follows from Ehrenfest's theorem in
the form (Fq) = —(cjH/BRq). The time dependence is
shown explicitly in (12) as a reminder that in the Heisen-
berg representation, quantum-mechanical operators must
be reexpressed in terms of their values at time t = 0 if
an expectation value involving initial states is to be de-
termined. In the present situation, this is achieved by
means of the temporal variations
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together with the equivalent equations for the Hermitian
conjugates ut(t) frt (t), consistent with Eqs. (10) and the

Heisenberg formalism 0 = (i/h)[H, O]. The temporal
variations of the centers of mass have been accounted for
in (13) by writing

R„(t) = R„(0)+ V„t, (i4)

In„, g) = cos[a„[[g„)+ exp(iP ) sin [n„I[e„), (15a)
In„, e) = —exp( —iP ) sin In„[[g„)+ cos Io.„[[e„), (15b)

where n~ = In~[ exp(iP&), while the radiation field is
prepared in the number state In). The total system is
therefore prepared in one of four possible tensor-product
states:

(16)

with E„assuming the labels g„and e„. If the initial
conditions are chosen such that

pi —p2 ——k Ri (0) —k R2 (0),
Vl ——V2 ——V,

(17a)
(17b)

say, and it is assumed then the radiation polarization
vector e is real, then the expectation values of the forces
on atom 1 at time t take the simple forms

(4~,~, IFi [i'~,5, )

=2Lukp,' ~ — i+2' +z,

yl y2 sin At—%uk sin 2[ni
I

sin 2[n2[
2

(i8)

correct to second order in the parameters (11), where

L=~ —0 —k V (i9)

is the detuning, corrected for the Doppler effect, and

where V„ is the velocity of the p atom, sufficient to pro-
vide a 6nal determination of the expectation values of
the force correct to the second order in p„.

Suppose that the atoms are prepared in coherent states

Cs, —sin In, [, C„=cos (20)

The first term of Eq. (18) is the radiation-induced force
experienced by an isolated atom and the factors (20) de-
pend only on the coherent state in which atom 1 is pre-
pared. It should be noted that the second term of Eq.
(18), which arises only if atom 2 is present, is indepen-
dent of the particular settings of El,E2 and would vanish
if one or both atoms were prepared in an eigenstate. The
effect of the initial conditions (17) is to reduce to the
particular form of Eq. (19), the argument of the sine
function appearing in the second term of the force (18).
Perhaps the simplest way to satisfy the conditions (17)
is to prepare the atoms in the same coherent states, with
their velocities perpendicular to k.

If the atoms are now prepared in minimum-uncertainty
states, such that Ini[ = In2[ = m/4, then Eq. (18) be-
comes independent of the number of photons in the mode,
Viz. )

(@zz lF~l@,E .E) = —~~[~l+ '
) (»)

I thank R. Loudon and S. J. D. Phoenix for encour-
agement and enlightening discussions.

For a two-level atom prepared in such a state, the prob-
ability of it radiating a photon is the same as the prob-
ability of it absorbing a photon; consequently, the state
of the field does not influence the radiation pressure. In
this situation, the second term in Eq. (21), which is due
solely to the presence of the second atom, is of the same
order of magnitude as the first term.

In principle, coherent states of a two-level atom, in the
form of minimum-uncertainty states, may be prepared
by flying such atoms through a micromaser cavity with
an appropriate time of flight or, more easily, by apply-
ing an appropriate microwave pulse [7]. If such an atom,
emerging &om the micromaser cavity, were to interact
with a second photon field, then the radiation-induced
force would be independent of the field's intensity. This
may provide a possible experimental verification of the
existence of a pure state in the midst of the collapse re-
gion of the haynes-Cummings model.

[1] For a review of laser cooling see J. Opt. Soc. Am. B 6 (11)
(1989), pp. 2018—2278. A more recent review, which also
covers wider aspects of manipulating atomic motions, is
given by C. S. Adams, M. Sigel, and J. Mlynek, Phys.
Rep. 240, 143 (1994).

[2] A. Einstein, Phys. Z. 18, 121 (1917) [English translation
by D. Ter Haar, The Old Quantum Theory (Pergamon,
London, 1967)].

[3] This is still the case in theoretical treatments of radiation
pressure, despite the rapidly growing interest in multi-
state atoms prompted by the realization that a two-level
description may be inappropriate in the case of optical
molasses. Zeeman degeneracy, resulting in a multitude
of atomic internal states, is one factor which leads to

cooling below the Doppler limit. See J. Dalibard and C.
Cohen-Tannoudji, in J. Opt. Soc. Am. B (Ref. [1]), and
also J. Javanainen, Opt. Commun. 86, 475 (1991);D. J.
Wineland, J. Dalibard, and C. Cohen-Tannoudji, J. Opt.
Soc. Am. B 9, 32 (1992); J. Javanainen and Sung Mi
Yoo, Phys. Rev. A 48, 3776 (1993).

[4] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89
(1963). The general significance of the rotating-wave ap-
proximation is discussed in C. Baxter, Ann. Phys. (N.Y.)
234, 404 (1994).

[5] C. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett.
58, 353 (1987).

[6] For reviews see H. I. Yoo and J. H. Eberly, Phys. Rep.
118, 239 (1985); S. M. Barnett, P. Filipowicz, J. Ja-



51 BRIEF REPORTS 3381

vanainen, P. L. Knight, and P. Meystre, in I"rontiers
in Quantum Optics, edited by E. R. Pike and S. Sarkar
(Hilger, Bristol, 1986).

[7] J. Gea-Banacloche, Phys. Rev. Lett. B5, 3385 (1990).
Geo-Banacloche used the square of the density matrix
as a measure of the purity of a state; however, as S. 3.
D. Phoenix and P. L. Knight, Phys. Rev. Lett. 66, 2833
(1991), point out, a more sensitive measure is provided
by the von Neumann entropy.

[8] For details, see a recent review by W.-M. Zhang, D. H.
Feng, and R. Gilmore, Rev. Mod. Phys. B2, 867 (1990).

[9] V. Buzek, A. D. Wilson-Gordon, P. L. Knight, and W.
K. Lai, Phys. Rev. A 45, 8079 (1992).

[10] C. Baxter (unpublished).
[11] A. M. Perelomov, Generalized Coherent States and their

App/ications (Springer, Berlin, 1986).
[12] C. Baxter, J. Phys. B 25, L589 (1992); Phys. Rev. A 50,

875 (1994).


