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Selective excitation of vibrational overtones in an anharmonic ladder
with frequency- and amplitude-modulated laser pulses
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We show numerically that the complex hyperbolic secant pulse provides robust selective inversion of
vibrational overtones. A density-matrix analysis is performed for a ten-level Morse-oscillator approxi-
mation of a diatomic molecule. We also show that in the limit of adiabatic excitation the complex-
hyperbolic-secant pulse yields an inversion spectrum that is narrower than its spectral bandwidth.

PACS number(s): 42.50.Hz

INTRODUCTION

The preparation of molecules in a selected highly excit-
ed vibrational state, or set of vibrational states is an im-
portant precursor to many chemical physics studies. Un-
fortunately, direct pumping of vibrational overtones from
the ground level with a single laser pulse is often a
difficult task because of the relatively small transition di-
pole moments involved. To obtain high transfer
efficiency extremely intense fields are usually needed,
which increases the likelihood of unwanted nonlinear
processes. Furthermore, there still remains the issue of
selectivity.

An alternate method for the efficient pumping of high-
lying vibrational states is to transfer population sequen-
tially up the anharmonic ladder by multiphoton absorp-
tion with broad bandwidth infrared laser pulses. Recent
theoretical work has shown how specially tailored ul-
trashort pulses are effective in promoting population
efficiently to high vibrational levels [1—4]. In one ap-
proach, pulses with an appropriate chirp (frequency
sweep) transfer population to high vibrational overtones
as the pulse frequency successively excites higher vibra-
tional transitions [1,2]. Another approach uses purely
amplitude-modulated pulses, and pulse sequences, .which
are tuned to a particular multiphoton transition [3,4].
For sufficiently strong laser fields, high overtones may be
efficiently populated by direct multiphoton absorption. A
problem that is associated with each of these approaches,
is that neither is inherently selective in the population of
high overtones. For example, while it is possible with a
single purely amplitude-modulated pulse to find a specific
resonance offset and Rabi frequency to selectively invert
a single vibrational level [4], the degree of selectivity is
not robust, but, instead, remains sensitive to the parame-
ters of the applied laser field. In general, robustness to
experimental parameters will be necessary for the suc-
cessful laboratory implementation of such laser control
schemes [S].

In this paper we show how the complex hyperbolic
secant [the slowly varying part of the complex electric

amplitude field takes the form e(t) =sech(at )'+"'] can be
used to selectively invert vibrational overtones in an
anharmonic oscillator by sequential multiphoton absorp-
tion. We show that the selective inversion found with the
complex hyperbolic secant pulse is robust with respect to
the applied Rabi frequency, and, that similar robustness
is not obtained with more simple linear frequency-swept
pulses, and unswept pulses. Finally, we point out that the
inversion spectrum of the complex hyperbolic secant
pulse may be far narrower than its full spectral band-
width, and we comment on the conditions under which
such sub-pulse-bandwidth resolution is obtained.

THEORETICAL MODEL

where a(t) is a real valued pulse envelope function, coo is
the carrier frequency of the pulse, and P(t) is the time-
dependent phase of the electric field. The instantaneous
frequency of the pulse is given by

co(t) =coo+de(t)ldt. (3)

The time evolution of the system is found by evaluating
the equation of motion for the density operator

dp(t)ldt =(lliiit)[II(t), p(t)], (4)

where II(t) =Ho+&;„,(t), Ho is the unperturbed Hamil-

In this section we describe the model used to simulate
population transfer dynamics in an infrared-active-
diatomic molecule. A Morse oscillator model [6] is used
to approximate the vibrational potential. The Morse
eigenenergies are given by

W(v) =co, (v+ —,
'

) —co,x, (v+ —,
'

) —D,
where cu, is the oscillator frequency, cu, x, is the anhar-
monicity constant, D is the dissociation energy, and v is
the vibrational quantum number.

The scalar component of the electric field along the
bond coordinate may be written as

E(t)=a(t)e""'+""',
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tonian, H;„,(t) describes the usual electric-dipole interac-
tion of the vibrational degree of freedom with the applied
laser field, and p(t) is the density operator. In the next
section we numerically evaluate the matrix elements of
Eq. (4) for the hyperbolic secant pulse envelope with
different functional forms for the instantaneous pulse fre-
quency.

RESULTS

The excitation properties of the complex hyperbolic
secant pulse in a two-level system are well known from
NMR and laser spectroscopy [7,8]. Figure 1(a) shows the
hyperbolic secant pulse amplitude and corresponding hy-
perbolic tangent frequency sweep for the complex wave
form E(t) =sech(at)' '. (In the following, r representsp
the pulse width at full width at half maximum (FWHM),
or r~ =2.6/a. ) Figure 1(b) shows the inversion spectrum

associated with this pulse for a two-level system when the
condition for adiabatic passage is satisfied. For a two-
level system, the condition for adiabatic passage may be
written as [8]

where 8(t) =m/2+tan '[b(t)/Q(t)], Q(t) [=pa(t)/A'] is
the time-dependent Rabi frequency, b, ( t )

[=co„—coo+dP(t)/dt] is the frequency detuning from
resonance, and co, is the transition frequency. When the
inequality of Eq. (5) is satisfied the complex hyperbolic
secant pulse inverts a near-rectangular profile that
remains insensitive to further changes in the Rabi fre-
quency. This robustness is inherent to the adiabatic exci-
tation process.

We now examine the excitation properties of the fol-
lowing wave forms which are used to excite the multilevel
anharmonic ladder:
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FIG. 1. (a) Pulse amplitude profile ( ) and correspond-
ing hyperbolic tangent frequency sweep (+++ ) of the pulse
c(t)=sech(at)'+ '. The pulse width r~ (FWHM) is 4 ps. (b)
The near-rectangular inversion spectrum produced by the pulse
in (a) for a two-level system with a peak Rabi frequency of
2m X50 cm
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FIG. 2. The excitation spectrum associated with each of the
wave forms given in Eq. (6) for excitation of the ten-level anhar-
monic ladder. Each curve corresponds to the population in a
specific vibrational level. (a) Complex hyperbolic secant ~ =4
ps, p=14.2; (b) linearly swept hyperbolic secant ~ =4 ps,—1b =9.4 cm /ps; and (c) unmodulated hyperbohc secant,
~~=150 fs. The peak Rabi frequency in each case is 2~X100

—1cm . v=0 ( ); v=6 ( —- —-); others as labeled.
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a(t)=sech(at), ro(t) =roo+2bt, (6b)

a(t) =sech(at), ro(t) =coo (6c)

To construct the anharmonic ladder, vibrational parame-
ters for the isolated CO molecule are taken from refer-
ence [9]. The CO vibrational frequency (co, ) is 2170
cm ', and the anharmonicity constant (to, x, ) is 13.5
cm '. Equation (4) is solved for a ten-level anharmonic
ladder with the system initially in the ground vibrational
level. Thus, we ignore both dissociation and rotational
effects. For simplicity, only transitions with hv=+1 are
considered, and all transition moments are set equal. In
each example where frequency swept pulses are used the
pulse frequency sweeps from blue to red.

Figures 2(a) —2(c) compare the excitation spectra gen-
erated by each of the pulses in Eq. (6). Here, the applied
Rabi frequency is held fixed, and the center frequency of
the pulse (mo) is tuned through the vibrational spectrum
of the anharmonic ladder. The graphs indicate clearly
that the rectangular inversion profile of the complex-
hyperbolic-secant pulse is effective in selectively inverting
vibrational overtones. Figure 2(a) shows that a single vi-
brational level can be selectively inverted with nearly
100% efficiency over a range of about 20 cm ' for the
carrier frequency coo. Thus, a particular overtone can be
selected by simply tuning the carrier frequency to the ap-
propriate frequency range. We note that for the spectral
bandwidth and Rabi frequency chosen in this example,
excitation to v=4 is possible. Excitation to higher vibra-
tional levels requires additional bandwidth and Rabi fre-
quency. In contrast, [Fig. 2(b)] the linearly swept pulse
(which does not have a rectangular inversion profile), and
the unmodulated pulse [Fig. 2(c)], do not provide similar
selectivity, although each pulse has a spectral bandwidth
(F~HM) that is similar in width to the complex hyper-
bolic secant. It is seen in Fig. 2(b) that the linearly swept
pulse is effective in transferring population up the ladder,
however, the wings of the excitation profile prevent com-
plete inversion of any single level.

For practical applications it is important to estimate
the electric-field strengths necessary to achieve overtone
excitation with ultrashort pulses. If a value of 0.15 De-
bye is used to represent the average transition dipole mo-
ment for b,v=+1 transitions in the (CO) anharmonic
ladder (more realistic estimates for specific overtone tran-
sition dipoles can be made from theory), then, from the
Rabi frequency used to generate Figs. 2(a) —2(c), the cor-
responding peak electric field is 4 GV/m. Such field
strengths are achievable with current technology, and are
small enough so that competing nonlinear processes such
as multiphoton ionization are predicted to remain rela-
tively small in magnitude when using ultrashort pulses
[11.

Figures 3(a)—3(c) compare the robustness of the wave
forms described by Eq. (6) to changes in the applied Rabi
frequency. Figure 3(a) shows the superior robustness in
selective inversion derived from excitation by the com-
plex hyperbolic secant. When the threshold for complete
inversion to v=j is achieved (Q,„=2m X25 cm '), the
inversion remains insensitive to further changes in the
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FIG. 3. Rabi frequency (peak) dependence of each of the
wave forms described in Eq. (6). (a) Complex hyperbolic secant
~~ =4 ps, p = 14.2; (b) linearly swept hyperbolic secant ~~ =4 ps,
b =9.4 cm '/ps; and (c) unmodulated hyperbolic secant
~~=150 fs. v=5 ( ——~ ——); others as labeled. The pulse
center frequency is 2125 cm ' in (a) and (c); 2147 cm ' in (b).

Rabi frequency. Our calculations (not presented here)
show robustness over at least one order of magnitude of
applied Rabi frequency. In contrast, Figs. 3(b) and 3(c)
show that neither the linearly swept pulse nor the unmo-
dulated pulse is robust with respect to Rabi frequency.

Finally, we show how the excitation spectrum of the
complex hyperbolic secant pulse exhibits a resolution
that is narrower than its full spectral bandwidth. Figure
4(a) shows the excitation spectrum of the complex-
hyperbolic-secant pulse when its spectral bandwidth is
doubled compared to Fig. 2, although its temporal width
(r~) remains the same. The results show that doubling
the bandwidth (sweep rate) does not degrade the selectivi-
ty of the excitation, however, the extra bandwidth pro-
motes population to higher vibrational levels within the
anharmonic ladder. In contrast, Fig. 4(b) shows the exci-
tation spectrum when the temporal pulse width is shor-
tened to 1 ps, but the spectral bandwidth is kept the same
as in Fig. 4(a). In this case the inversion is no longer
complete, and significant excitation begins to appear in
the v+1 and v —1 states. The effect exhibited in Figs.
4(a) and 4(b) is related to that found in previous work on
adiabatic selective excitation [10,11],where it was shown
that the spectral resolution obtained with linear
frequency-swept pulses can be much narrower than the
full pulse spectrum, and is limited by the bandwidth asso-
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be much greater than 5. In the multiphoton excitation
scheme examined here, the sub-pulse-bandwidth resolu-
tion exhibited by the complex hyperbolic secant pulse is
determined by both the adiabatic nature of the excitation
and the (near) rectangular nature of the excitation profile.
%'hen the bandwidth associated with the inverse of the
pulse width becomes comparable to the anharmonicity
[Fig. 4(b)], or I/r =co,x„ then the selectivity of the
complex-hyperbolic-secant pulse begins to degrade.
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FIG. 4. Excitation spectrum due to the complex-hyperbolic-
secant pulse showing the dependence on the pulse width ~~ and
the sweep rate p. (a) v~ =4 ps and p =28.4; (b) v~ = 1.0 ps and
p=7. 1. The ratio p/~~ is the same in each case, and corre-
sponds to a FWHM bandwidth of =200 cm '. The peak Rabi
frequency in each case is 2mX100cm '. v=2 ( —- —.—.); v=6
( —- —-); others as labeled.

CONCLUSIONS

We have shown numerically that the complex-
hyperbolic-secant pulse produces robust selective excita-
tion of overtone levels in an anharmonic oscillator. Fur-
thermore, the superior resolution and robustness of the
complex-hyperbolic-secant pulse derives both from its
(near) rectangular inversion profile, and from the adiabat-
ic nature of the excitation process. We note that the
analysis presented above does not include the effects of
rotational structure. Previous work has shown that rota-
tions can degrade the efficiency of the adiabatic excitation
process [1(b), 10(b)]. Nonetheless, the analysis presented
here remains relevant to gas-phase systems for cases
where the rotational structure of the molecules does not
seriously affect adiabatic population transfer, and to sys-
tems where the rotational motion of the diatomic mole-
cule is strongly hindered.

ciated with the inverse of the temporal width. For exarn-
ple, in a three-level system consisting of a ground level
coupled by the light field to two upper levels, and where
the frequency separation of the upper levels is 5, either of
the upper levels can be adiabatically inverted as long as
I/r «5, even though the full spectral bandwidth may
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