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Simple example of nonlocality: Atoms interacting with correlated quantized fields
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We present a simple example that shows nonlocality in quantum mechanics. The basic ele-
ments are two microwave cavities equipped with correlated quantized fields that interact with two
atoms. We perform state-selective measurements on these atoms that subsequently reveal a type of
nonlocality recently described by Hardy [Phys. Rev. Lett. Tl, 1665 (1993)].

PACS number(s): 03.65.Bz, 42.50.—p

I. INTRODUCTION

Recently Hardy [1,2] has given an intriguing proof of
nonlocality in quantum mechanics which has been dis-
cussed by several authors [3,4]. He has shown that a
whole class of entangled spin-1/2 quantum states admits
an argumentation against any local realistic interpreta-
tion of quantum theory. Like the nonlocality proof of
Greenberger, Horne, and Zeilinger (GHZ) [5], he does not
use a variant of Bell's inequalities [6]. Beyond that and in
contrast to GHZ, Hardy needs only a two-particle state
in order to formulate his gedanken experiment demon-
strating nonlocality [7]. At the heart of his idea lies a
sequence of four measurements performed on this espe-
cially designed two-particle state. The results of those
measurements lead to a profound contradiction when in-
terpreted under the assumption of a local realistic theory
[3]. Other proofs of nonlocality without inequalities for
two spin-1 particles have been given in Refs. [8,9]. Gen-
eralizations of these considerations can be found in Refs.
[10,11].

Moreover, Hardy has proposed quantum optical real-
izations [12,13] of his arguments in order to test local real-
ism. One of these experiments [12] uses correlated photon
pairs from degenerate parametric down-conversion. The
photon pairs are sent into two overlapping beam splitter
arrangements, which serve as a two-particle interferome-
ter. The clicks of photodetectors in the output channels
demonstrate the nonlocal correlation of the two photons.
In a second interferometric experiment 13] he discusses
the nonlocality of a single photon [14,15 .

It is the purpose of this paper to present a quantum
optical arrangement that allows us to show nonlocality
in a quite simple way along the lines of Ref. [2]. The set-
up, shown in Fig. 1, contains two microwave cavities Cq
and C2, whose fields we correlate [16—18] using at most a
single quantum transported by an excited two-level atom.
We perform a readout of the cavities with the help of two
more atoms. Four state-selective measurements on these
atoms will reveal a chain of arguments against a local
realistic interpretation of the measurement's results.

Our scheme consists of two important steps. In the first
step, the preparation, we correlate the two identical mi-
crowave cavities with the help of a single quantum. Both

II. PREPARATION

The preparation constitutes the first step. The atom,
which prepares the two cavities, starts its journey in an
initial superposition of the ground state ~g) and the ex-
cited state

i e), that is,

~atom for preparation) = cg~g) + c, ~e)

with ]es ~
+ ~c, ]

= 1. The cavities are initially in their
vacuum states. We describe the resonant interaction be-
tween the atom and a single mode of each cavity using
the Jaynes-Cummings Hamiltonian

HI ——hg(a+a; + o a,.) (2)

in the interaction picture. The vacuum Rabi frequency
g determines the coupling strength between atoms and
quantized cavity fields, while cr+, cr and a, , a, are the
usual raising and lowering operators for the atomic tran-
sition and the number of quanta in the fields of cavity
i = 1 and cavity i = 2, respectively.

After the interaction with the first cavity the complete
state vector reads

cavities are initially in their vacuum states. This can be
achieved in the following way; see Fig. 1. A two-level
atom travels through both cavities in a superposition of
its ground and excited state. Hence it carries at most
a single excitation. The cavities are tuned on resonance
with the atomic transition. After the interaction with
both cavities we measure the atom in its ground state.
Therefore the excitation of the atom has been transferred
to the system consisting of the two cavities. This com-
pletes the preparation.

In the next step, the measurement, we perform state-
selective measurements on two atoms, after each of them
has passed one of these well-prepared cavities. Altogether
we need four measurements on the two atoms in order to
show the striking nonlocality argument which has been
reported by Hardy in Ref. [2].
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FIG. 1. Sketch of the experimental setup used to demonstrate nonlocality. In a first step an atom prepares the cavities Cz

and Cq by traveling across them in an initial superposition cg Ig) +c, le) of its ground and excited state. The ionization detector
D detects the ground state Ig) of this atom. In the second step we send the atoms 1 and 2 through the cavities. We prepare both
atoms in their ground states Ig)1 and Ig)2. After they have interacted with the cavities we perform state-selective measurements
on these atoms. We achieve the state selection with the help of classical microwave fields M, and the state-selective ionization
detectors D, (i = 1, 2).

exp[ i/"III'rlla om for prep»ation)10)110)z III. MEASUREMENTS

egg +c, cosgv e 0 ~

i csin—(gT,) ~~g ) ~~

i ) z ) ~~0 ) g,

The second step starts with an atom 1 in its ground
state Ig)1 sent through cavity 1 and an atom 2 in ground
state Ig)z sent through cavity 2. Thus the initial state of
the whole system is the product state

where 7 stands for a given interaction time and In), de-
notes the nth Fock state of the single quantized mode in
cavity i. After cavity 2 we obtain for the state of the
complete system

e '~ ' e '~" ' Iatom for preparation)10) I 10)z

cg10) 110)z
—ic, sin(gr)11) I 10)2

i c, cos(gv. ) sin(gw—)10)111)z Ig)

+c.Cos'(g&) lo& I Io), le) . (4)

When we now 6.nd the preparing atom in the ground
state Ig) the pure field state of the cavity system reads

I&) = A' cgIO)110)z —ic sin(gw)11)110)z

—Ice cos(g'r ) sin(g7') 10)I 11)z

with the normalization A' = (1 Ic Iz cos4 gw) I~z. This
completes the erst step. Et becomes clear immediately
from Eq. (5) that the single excitation carried by the su-
perposition of the preparing atom now couples the two
cavities: The state I@) represents an entangled state,
which forbids us to talk of a photon that actually oc-
cupies one of the two cavities. Rather it is exactly this
specific structure of Ig& that gives rise to the nonlocal
situation described in the next section. Our aim in the
next step is to transfer the entanglement of lofti) to two
initially independent atoms. Subsequent state measure-
ments on these atoms will reveal the remarkably simple
example of nonlocality.

l~(0)) = I&) lg) Il~)2 (6)

with ci = A cg, cz = —A'c, sin gr, and cs
—A c, cos gr sin g7. The three coefficients c; are at our
disposal and, more importantly, we are able to adjust
tile condltloI1 cic2ca g 0.

Let us now start with the four different measurements
on the atoms. We probe the state of each atom with the
help of a classical microwave field M, (i = 1, 2) and a

with the field state Ig) taken from Eq. (5). It is again
the Jaynes-Cummings Hamiltonian Eq. (2) that governs
the interaction of each atom with the respective cavity.
The atomic operators in the Hamiltonian HI belong now
to atom 1, whereas the atomic operators in HI operate
exclusively on atom 2. If we choose the interaction time
v' in such a way that gw' = vr/2 is fulfilled for both atoms,
we arrive at the final state

l@(~'))= exp '/~(III + HI)T' l@(0))

= A' cgle) Il~) 2 —c.»n(~~) le) iig) 2

—C. «s g~ »n(~~) la&ile)z lo)110)2. (7)

We note that atoms and quantized light fields are no
longer entangled. Both cavities are left in their vacuum
states and the cavity fields decouple from the atoms. This
expresses the fact that both atoms will transport the pho-
ton away from the cavity whenever there exists one. This
is what we call the readout of the cavities [19].

In what follows we perform state-selective measure-
ments on the two atoms regardless what the Beld state
is. This is possible, in correspondence with Eq. (7), since
the atoms and the cavity system are no longer entangled.
Hence we concentrate on the pure atomic state

la«ms) = Cilg)ilg). + C.le)ilg)z+ Cslg)ile)z (8)
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Thus we do not need the two microwave zones for this
first measurement. According to the atomic state Eq.
(8), we will always find

EiE2 ——0 (10)

for the measured values E;. We will never register a
click on Di and a click on D2.. There is at most only
one quantum in the whole system and therefore Eq. (8)
does not contain a term of the form

I e) i le) 2, which would
provide the possibility of a double click.

In the second measurement (ii) we analyze atom 1 in
the superposition

Si = 1~ii' l»i ——.'Ie)»(gl ——'i(el
C2 C2

where Iiiil = (1 + Ici/c2I ) ensures normalization.
Now we need the microwave field Mi in order to adjust
the measurement of this special superposition. The coef-
ficients c; are taken from the atomic state Eq. (8). If we

measure Sq on atom 1, we find for atom 2 the reduced
pure state

tri (Si Iatoms) (atomsl)
P2 = e22e,

tri2 (Si I
atoms) (atomsl)

(i2)

where trq denotes the trace over atom 1 and trq2 denotes
the trace over atom 1 and atom 2 keeping the reduced
state normalized. Consequently, if we now measure the
observable E2 on atom 2, we will obtain with certainty

following state-selective field ionization detector D;. See
Fig. 1. The combination of M; and D; —the analyzer i—allows us to analyze an arbitrary superposition of Ig);
and Ie); of atom i [16,17].

This works as follows. When a two-level atom enters a
microwave field M in a state pig)+vie) with Ipl + Ivl
1, it undergoes a unitary transformation to the state Ie)
due to the interaction with the classical microwave field.
The values of p and v are adjusted via an appropriate
setting of these fields. Ideal detectors D ionize the excited
atom and detect the appearing electron. The signal for
this shall be a click at the detector. On the other hand,
the atom leaves the microwave zone in the ground state
Ig) if it enters in the state orthogonal to pig) + vie), that
is, in the state v*lg) —@*le). In that case the detector
does not answer with a click. In general the two-level
atom will be in some superposition of these orthogonal
states. Thus, in some cases the ideal detector will deliver
a click and in some not. Whenever we register a click, we
project the superposition on the state pig) + vie). This
completes the state-selective measurement. That is, with
the help of analyzer i we are able to measure observables
of the form [pig);+ vie);][p';(gl + v*;(el] which represent
projection operators with measurable eigenvalues 0 (no
click) and 1 (click).

As a first measurement (i) we determine whether the
atoms are both in their excited states and the appropriate
observables are

&i = le)»(el &2 = Ie)»(el.

the result E2 ——1, that is,

if S~ ——1 then Eg ——1.
Exactly the same arguments apply when we analyze in
the third measurement (iii) the observable

C3 C3
(14)

on atom 2 and Ei on atom 1. The factor lg2I = (1 +
lci/csl ) denotes again the normalization constant. By
symmetry the result will be

if S2 ——1 then Eq ——1 .

The last measurement (iv) aims towards the combina-

tion of Sq and S2 with two appropriate microwave set-
tings. We derive from Eq. (8) the result SiS2 ——1, that
is, Sz ——1 and S2 ——1 with a probability

tri2(SiSqlatoms)(atomsl) = lqig2cil

Therefore we obtain as the result of our last measurement

(iv) SiS2 ——1 with probability lgig2ci I
. (17)

Hardy has now proven in Ref. [2] that the combination of
the four predictions (i)—(iv) makes a local realistic inter-
pretation of quantum mechanics impossible. We are not
going to repeat his proof. The aim of the present paper
is just to provide this simple physical system, which gives
rise to the nonlocality argument brought up in Ref. [2].

Nevertheless, for the sake of completeness, we give a
short reasoning why the four predictions (i)—(iv) of our
experiment sound like a contradiction when considered
under the assumption of a local realistic viewpoint. Sup-
pose two observers 1 and 2 operating and reading the
analyzers 1 and 2. Note that these analyzers might be
far away from each other. Let us consider a run of the
experiment, where observer 1 decides to detect Sq and
observer 2 decides to detect S2. According to prediction
(iv) there is a nonvanishing probability [20] that they
read the values Si ——1 and S2 ——1, provided they have
chosen suitable microwave field zones. Observer 1 can
point now to prediction (ii) and deduce that observer 2
finds his initially unexcited atom in the excited state, if he
decides to measure E2. The other way around observer
2 points to prediction (iii) and deduces that observer 1
will find his atom excited, if he decides to measure the
observable Ei. However, we know, that there is due to
the preparing atom —at most only one quantum in the
whole system. Hence both observers cannot be right and
we have already seen prediction (i) that quantum
theory indeed forbids the situation of two excited atoms.
The arguments of the two observers lead to this evident
contradiction because they both argue based on local-
ity assumptions. Both observers think that they obtain
their measurement results regardless of what the other
is actually measuring. However, the results that can be
obtained by observer 1 depend on the observable that
observer 2 decides to detect and vice versa.
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IV. CONCLU'SIONS

We have seen how nonlocality arises in the interaction
of two-level atoms with the quantized modes of two cor-
related microwave cavities. It is a simple system that
consists only of basic elements. A first atom that passes
both cavities was used for the preparation of the system.
This atom itself was initially prepared in a superposi-
tion of its ground and excited state before it enters the
cavities. This superposition is crucial for the presented
arguments. In order to get prediction (iv) with a nonvan-
ishing probability Eq. (16), the coeflicient ci ——JVcg must

not vanish. Thus, the ground state has to be present in
the superposition Eq. (1). After this preparation we used
two more atoms, each interacting with a single cavity, in
order to perform the readout of the cavities. A prop-
erly chosen interaction time has allowed us to transfer
the prepared correlation of the two cavities to an entan-
glement between the two atoms. VVe have demonstrated
how state-selective measurements on these atoms reveal
their nonlocal correlations in a remarkably simple way.

I would like to thank Lucien Hardy, Wolfgang Schle-
ich, and Clemens Leichtle for enlightening and interesting
discussions.
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