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Nonclassical effects in phase space
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We introduce a quantitative measure of nonclassical behavior based on negative regions of quasipro-
bability distributions. Zeros of the antinormal ordered phase-space representation characterize a state to
be maximally nonclassical with respect to this measure. All pure states of a particle or of a single field

mode, except those with Gaussian quasiprobability distributions, have one or more zeros in this repre-
sentation.

PACS number(s): 03.65.8z, 42.50.Dv

It is a fundamental principle of quantum mechanics
that one cannot, with absolute precision, specify both the
position and momentum of a particle. Consequently, the
classical notion of phase space with the state of particle
described by a single point has to be modified when deal-
ing with quantum systems. In its place, we have a family
of phase-space quasiprobability distributions, depending
on a real parameter s, corresponding to different operator
orderings [1,2]. These quasiprobability distributions have
been widely employed, especially in quantum optics
where they have been used to calculate and illustrate the
properties of nonclassical states of light [3]. The
quasiprobability distributions are not simply calculational
tools; two of the family of distributions have been suc-
cessfully measured for optical fields [4]. Nonclassical
behavior is connected with properties of the quasiproba-
bility that are incompatible with their interpretation as
true probability distributions. In particular, nonclassical
effects are associated with negative values of the
quasiprobability for some values of the ordering parame-
ter s. This is the motivation for our work in which we
present a measure for the degree of nonclassical behavior
for a state. In place of the often employed division of
states into "classical" and "nonclassical, " we provide a
quantitative measure indicating how "classical" or "non-
classical" a given state is. This measure is based on the
existence of negative regions of the s-ordered quasiproba-
bility distributions [1].

The normalized quasiprobability distributions W(a, s)
for a state with density matrix p are defined to be [1,5]

W(a, s)= Jexp(ay* —a*g)C(q, s)d g,1

~2

where C(ri, s) is the characteristic function

C(g, s)=C(ri, s) exp
(s —s)

(3)

For s )s it follows that the two quasiprobability distribu-
tions are related by a convolution of the form

W(a, s)= I W(P, s) 21 —Pl'
m(s —s) s —s

(4)

The convolution means that W(ao, s) may be calculated
from the function W(a, s ) by averaging with a Gaussian
at a=ao. The relation (4) can be understood by observ-
ing that W(a, s) satisfies a sourceless diffusion equation
with s taking the role of reverse time [1]. The diffusion

values s =1, 0, and —1, respectively. The P, W, and Q
quasiprobability distributions give rise to normally,
symmetrically, and antinormally ordered moments of the
creation and annihilation operators, respectively. In gen-
eral, the quasiprobability distributions are only well
behaved for certain values of the ordering parameter s.
However, for s & —1 the distribution will be positive
definite and for s &0 it will always be regular in the sense
that it can be expressed in terms of functions. For s )0
the quasiprobability distributions will, in general, be ex-
pressed in terms of generalized functions such as 5 func-
tions and their derivatives [6]. These properties are illus-
trated in Fig. 1.

Two characteristic functions for the same state but
different values of s differ by a factor depending on the
difference in the values of s:

C (71,s) =Tr [p exp(isa + —i)*& ) I exp
2

Here & is the annihilation operator for a single field mode
or is a non-Hermitian combination of the position and
momentum operators for a particle [1]. The quasiproba-
bility distributions (1) are a generalization of the well-
known Glauber-Sudarshan (P), Wigner ( W), and Husimi
(Q) quasiprobability distributions corresponding to the
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always regular

FIG. 1. The principal properties of the s-quasiprobability dis-
tributions.
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smooths W(a, s) in the direction of decreasing s. This al-
lows us to prove the following theorem: If W(a, s ) ~ 0 for
all a and W(ao, s ) =0for at least one ao, then there is no s
with s)s and W(a, s) ~0 for all a. The proof follows
directly from the convolution (4). The Gaussian in the
integrand is strictly positive and the function W(P, s ) is,
by assumption, positive semidefinite; it follows that the
integral, and hence W(a, s ), cannot take a negative value.

A second consequence of Eq. (4) is that the parameter
space of s is divided into two intervals belonging to well-
behaved and not so well-behaved quasiprobability distri-
butions. The division between these parts, illustrated in

Fig. 2, occurs at a particular value of s, which we denote
s, . This critical parameter may be regarded as a measure
of the degree of nonclassical behavior associated with a
given state [7]. We can readily regain a simpler, qualita-
tive distinction between classical and nonclassical states
by defining a particular value of the order parameter S as
a threshold and referring to states as classical if s, ~S
and as nonclassical states otherwise. if we set the thresh-
old to be + 1 then we recover the existence of negative re-
gions of the P function as the criterion for nonclassical
behavior [8]. For S =0 the existence of negative parts of
the Wigner function form the criterion. It is worth not-
ing that s, ~ —1 as the Q function is always non-negative.
Moreover, for all pure states, s, is less than or equal to 1

and equals 1 only for the coherent states [9]. We seek a
general expression for the value of the critical parameter
valid for all pure states.

We begin by specializing the first result to the value
s= —l. If W(ao, —1)=Q(ao)=0 for at least one value

ao, then the theorem implies that W(a, s) has negative re-
gions for all s ) —1. As we have already noted, the Q
function is non-negative and hence states represented by
Q functions with one or more zeros have the minimum
possible value of the critical parameter. It only remains
to determine which pure states have Q functions with one
or more zeros.

A pure state represented by the ket
l
4 & has a Q func-

tion that may be expressed in terms of the overlap be-
tween l%' & and the coherent states la & [1],

which is clearly positive-semidefinite and will have zeros
if and only if ( %lao & =0 for at least one coherent state
lao&. We will now show that such zeros exist for all
states except the coherent states and the ideal squeezed
states [10]. The proof of this result follows a proof

developed by Hudson to study the properties of the
Wigner function [11].

A general state of a single field mode or harmonic os-
cillator may be represented as a superposition of the
number states

l
n &:

le&= g c„ln & .
n=0

It is clear from this definition that the Q function will
have zeros if and only if f (a) has zeros. We can readily
bound the magnitude off (a) by the inequality

This characterizes the sum to be of growth order less
than or equal to 2 [12]. This, together with the analytici-
ty of f (a), allows us to apply Hadamard's theorem [12],
which states that any function that is analytic on the
whole complex plane, has no zeros, and is restricted in
growth to be of order 2 or less, must be of the form

f(a)=exp(Aa +Ba+C), (9)

where A, 8, and C are complex constants. This form
corresponds to a Gaussian Q function. It is relatively
straightforward to show that the only states for which

f (a) has this form are the squeezed coherent states [10]
lg, P &, which are related to the ground state l0& by a uni-

tary transformation

l(,P& =exp(Pa+ —P*a) exp( —,
' [pa+ —(*a ] )l0&, (10)

where g and P are arbitrary complex numbers. All other
pure states will have Q functions with at least one zero,
and hence all quasiprobability distributions W(a, s) with
x ) —1 will be negative for some values of n.

The squeezed states (10) will not lead to well-behaved
quasiprobability distributions for all values of s. The re-
gions corresponding to well-behaved and not so well-

behaved quasiprobability distributions will be separated
by a critical parameter related to the squeezing parame-
ter g:

s, =exp( —2 gl) .

That all pure states can be represented in this form fol-
lows from the completeness of the number states. We
define the complex, analytic function f (a) to be

T

a nf (a ) =exp ( '0
l
a &

= g c„'
2 , "&n! '

positive definite indefinite

positive semidefinite

FIG. 2. The critical parameter s, separates all the positive
definite s-quasiprobability distributions from those that are neg-
ative for some parts of phase space.

The results derived here are strictly valid only for sin-

gle modes. This is because Hadamard's theorem is prov-
en in general for functions of only a single complex vari-
able. However, Soto and Claverie [13] have proven a re-
stricted version of the theorem and this is all that is need-
ed to extend the results of this paper to multimode states.

We conclude that the critical value of s dividing well-
behaved from not so well-behaved quasiprobability distri-
butions is —1 for all pure states except those with Gauss-
ian Q functions. These states are the familiar coherent
squeezed states. The behavior of the critical parameter



3342 BRIEF REPORTS 51

suggests that of all states the Gaussian states are the most
nearly classical. This conclusion is in agreement with
that reached by studying a number of other methods to
distinguish between classical and nonclassical behavior
[14j.

The division of the quasiprobability distributions into
well-behaved and not so well-behaved regions of s space
is not restricted to pure states. Our measure of the de-
gree of nonclassical behavior is still we11-defined for
mixed states. For the mixed states the critical value can
take on any value greater than —1 with values near to—1 occurring for mixed states that are close to the pure

states other than those with gaussian Wigner functions.
Zeros of the Q function for a mixed state lead to s, = —1

as stated above. We will apply the ideas developed in this
paper to mixed states and to the study of mode dynamics
elsewhere.
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