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We present here a systematic scheme for improving the variational wave functions and corre-
sponding energy levels for quantum systems. By expanding the wave function around a variational
parameter value, a family of independent functions can be systematically generated. The eigenstates
are then obtained by diagonalizing the Hamiltonian matrix within the basis and optimized with re-
spect to the variational parameter. As a test, the ground state of the quartic anharmonic oscillator
has been investigated, and it is found that this scheme converges more rapidly than the conven-
tional Lanczos method and yields better approximations of the energy levels than other variational
methods. The effectiveness of this scheme for larger systems remains to be seen.

PACS number(s): 03.65.Ge, 02.60.—x

Recently Stubbins and Das [1] introduced a system-
atic scheme for improving any variational wave function.
Their work is based on the introduction of a set of varia-
tional parameters in a trial wave function to form a family
of independent functions. These functions are then used
to construct a basis for the variational method. This
scheme was applied to two models with great success:
the quartic anharmonic oscillator [2—4] and the Mathieu
equation [5]. It was found that, starting with the same
trial wave function, this variational approach converges
considerably faster than moments methods.

In this paper we wish to investigate this variational
method in detail and propose an improved variational
scheme which not only has the benefit of fast conver-
gence, but also eliminates the possible numerical insta-
bilities which may occur in the original work.

First we review brie8y the Stubbins-Das (SD) method.
As is well known [6] the variational method is based on
the construction of a trial wave function from a linear
combination of X (independent) functions @~
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with the expansion coefficients c~ determined from the
system of equations

(2)

Here the Dirac bra-ket notation is invoked and 8 rep-
resents the Hamiltonian for the system. The vanishing
of the secular determinant is a necessary and sufficient
condition for a nontrivial solution

det ~II;s —A;~. e~ = 0

with the notation

H'i = 8'IIII@s) (4)

Accordingly these N equations will generate upper
bounds to the exact energies of the system. The- trial
wave function is usually chosen on physical grounds as
well as calculational efficacy and is a crucial factor in
determining the rate of convergence.

In the SD method, instead of using a single variational
parameter P in the trial wave function 4' = 4'(P, z), a
set of variational parameters (P;) is introduced to form
a set of independent basis functions:
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0, = c(p„x),
4, = @(p„x),

@N = @(PN, *)
with P, g Pi. Thus for a basis constructed of K basis
states there are K variational parameters Pq, P2, . . . , PN
that must be determined in order to obtain the energies of
the system. This multidimensional minimization proce-
dure is typically time consuming. A simplification intro-
duced by Stubbins and Das is based on the observation
that consecutive P, 's are approximately evenly spaced,
i.e. , P;+q —P, = h = const. Therefore the problem can
be reduced to minimizing the eigenvalues of H with re-
spect to Pq and h. The SD method has been shown to
be effective [1] in obtaining the solutions of the quartic
anharmonic oscillator model and the Mathieu equation.

However, it has been noticed that as the basis set in-
creases, a numerical instability develops [7, 8] in the SD
method. This hampers its application to some other
systems as the numerical problem may appear before
a reasonable approximation to the energy levels can be
reached. In order to achieve a better understanding of
this instability, let us examine the second basis function
@2(P2, z) constructed using the SD method:

@,(p„x) = 4&(p+ b, x)
Bc,(p, x)

in Eq. (7) have several important properties which are
absent in the SD basis set. First of all, even though they
do not form an orthogonal basis, the overlap of any two
functions (4;~@z)(i g j) has a finite difference from 1
for any variational parameter value. Thus there is lit-
tle risk of encountering numerical instabilities. Second,
the second variational parameter b in the SD scheme has
been eliminated. This parameter b was introduced em-
pirically by Stubbins and Das based on the observation
that optimized P, 's are approximately evenly spaced for
the couple of simple models which have been studied.
However, there is no justification that this assumption is
true for other quantum systems as well. In the basis set
constructed using Eq. (7), there is no empirical parame-
ter. Hence this offers a variational approach which is not
model dependent. In addition, P is the only variational
parameter that remains, and thus the computational ef-
fort may be greatly reduced.

To illustrate this improved variational approach, we
investigate the ground state energy of the quartic anhar-
monic oscillator system [2—4], which has been studied by
Stubbins and Das [1]. The Hamiltonian of the system
has the form

1 d 1 2 4H= —— +-x +Ax .
2 dx2 2

Here we use A = 1 in order to make direct comparison.
For even-parity states, the first trial wave function is cho-
sen as

1 ~'@~(p &) &2+
2! gP

(6)

e, =~,.-~* ~'

with normalization constant

where the subindex of Pq has been omitted for simplic-
ity. Since any trial wave function 4~ chosen on physical
grounds is already a good approximation, the true wave
function should have little difference from 4q. As a re-
sult, the value of h—:P2 —P is typically very small (which
has been observed by Stubbins and Das); therefore in Eq.
(6) 42 (P2, x) is dominated by 4q (P, x). This implies that
the basis vectors constructed in the SD method are al-
most linearly dependent on one another, which in turn
gives rise to numerical instabilities in solving the secu-
lar equation of Eq. (3). Ironically, the problem becomes
prominent if the initial trial wave function is chosen to
be very close to the true wave function.

Close examination of Eq. (6) offers an efficient and nu-

merically stable scheme of generating a set of variational
basis functions:

(1O)

Following Eq. (7), the subsequent variational basis func-
tions can be constructed by examining the derivatives of

04&(P, x) 2 OAq

0 @q(P, x) 2 2 4 8 Aq OAq 84'q= —& @i+P T @i+
~P2

@i+
~ ~ )

To further reduce the overlapping among the basis func-
tions, the following basis set is conveniently chosen:

+.(P )=A.(P)

02@ x+.(P, *)= A. (P)

gN 1@ (p ~)—
@N(p *) =AN(P)

2(i —1) —P x /2

where the normalization constants are

As in the SD method, this basis set can be expanded
systematically. However, the basis functions constructed

P (2P2)2,
—1

~~ g(4i —5)!!
i = 1, 2, 3, ... (13)
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with the de6nition

( 1)!!—P!!= 1 (14)

The Hamiltonian matrix can be derived as

(~ ]~]~ )
[2(i+ j) —5]"

g(4i —5)!!(4j —5)!!
pz 4(i —1)(j —1)pz

[2(i+ j) —5]

4

+[2(i+ j) —3]

+[2('+ j) —1][2(i+j) —3] 4p4 (16)

The energy levels are then obtained by solving Eqs.
(3), (15) and (16). The calculations have been carried
out for different numbers of wave functions. In Table I
the optimized P and the ground state energy are listed,
along with the energies &om SD variational scheme and
the Lanczos method [1]. It is seen that in general, the
energy convergence rate using the improved variational
scheme is about the same as that for SD and signi6cantly

The overlap between any two functions in Eq. (12) has
the simple expression

[2('+ j) —5]"
g(4;

TABLE I. The optimized variational parameter P and the
ground state energy calculated with N basis functions using
the improved variational scheme, the SD variational scheme,
and the Lanczos method (A = 1).

1
2
3
4
5
6

Exact

1.20373208
1.54020553
1.74680518
1.89253322
1.78599534

Energy

0.8125
0.80741457
0.80383857
0.80377315
0.80377078
0.80377066
0.80377065

SD [1]

0.8125
0.80417482
0.80380029
0.80377316
0.80377080
0.80377067

Lanczos [1]

0.8125
0.8049
0.80405
0.803803
0.803774
0.803771

faster than the Lanczos method.
In summary, we have developed a scheme to construct

systematically a set of variational basis functions. Com-
pared with the method introduced by Stubbins and Das,
in this approach it is not necessary to introduce any em-
pirical parameter. As a result, possible numerical in-
stabilities have been eliminated and the computational
effort is reduced. For the test model it is seen that the
improved variational scheme yields a faster energy con-
vergence rate than using the Lanczos method.

This work is partially supported by the Swiss National
Science Foundation. The authors would like to thank
Dr. Calvin Stubbins for helpful discussions. One of the
authors (J.D.M.) gratefully acknowledges the hospitality
of the Department of Physics at the University of Zurich.

[1] C. Stubbins and K. Das, Phys. Rev. A 47, 4506 (1993).
[2] F. de Saavedra and E. Buendia, Phys. Rev. A 42, 50?3

(1990).
[3] B. Bansal, S. Srivastava, and Vishwamittar, Phys. Rev. A

44, 8012 (1991).
[4] R. Jauregui and J. Recamier, Phys. Rev. A 46, 2240

(1992).
[5] E. Dagotto and A. Moreo, Phys. Rev. D 31, 865 (1985).
[6] E. Merzbacher, Quantum Mechanics, 2nd ed (Wiley., New

York, 1970).
[7 Y. Zhou (unpublished).
[8 C. Stubbins (private communication).


