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The multimode even and odd coherent states (multimode Schrodinger cat states) are constructed
for polymode parametric oscillators of the electromagnetic field. The evolution of the photon distri-
bution function is evaluated explicitly. The distribution function is expressed in terms of multivari-
able Hermite polynomials; the means and dispersions of the function are calculated. The conditions
for the existence of squeezing are formulated. The correlations between the diferent modes of the
Schrodinger cat states are studied. The transformation of the initial Schrodinger cat states under
the action of a resonant external force is investigated.
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I. INTRODUCTION

Even and odd coherent states for one-mode systems
were introduced in [1]. Their properties were studied,
e.g. , in [2—5], and recently they have been shown to rep-
resent a special set of a more general class of nonclassical
states considered by Nieto and Truax [6]. The multimode
even and odd coherent states and the photon statistics
for these states have been considered in Ref. [7]. The
even coherent states are similar in a sense to the squeezed
vacuum states [8] since they are the superpositions of the
photon number states with even numbers of quanta. In
particular, the photon statistics of the one-mode even
and odd coherent states exhibits properties which are
typical for the other nonclassical states of light [5]. For
this reason the even coherent light may be used in the
interferometric gravitational wave detectors to give the
same efFect of increasing the sensitivity of these devices,
which could be produced by the replacement of the vac-
uum state by the squeezed vacuum light at the unused
port of the interferometer [9].

The even and odd coherent states (Schrodinger cat
states [10,11]) may be generated in different processes
[12—19]. Gea-Banacloche [12] showed a possibility of
the appearance of Schrodinger cat states in the resonant
Jaynes-Cummings model. Gerry and Hach [19] demon-
strated a possibility to generate even and odd coherent
states for the long-time evolution of the competition be-
tween two-photon absorption and two-photon paramet-
ric processes for a special initial field state. Recently,
a possibility to generate the quantum superposition of
macroscopically distinguishable states in two cavities was

shown [20]. In Ref. [21] methods of engineering different
kinds of field states (including Schrodinger cat states )
were suggested. Agarwal et al. have studied [22] the
possibility of generating two-mode cat states by a con-
tinuous measurement.

In the present paper we consider the evolution of the
one-mode and multimode even and odd coherent states
due to the parametric excitation of a quantum system,
since this process is known to produce squeezing in the
quadratures of initially coherent light (see, for example,
[23,24]). It may correspond, e.g. , to the evolution of
the Schrodinger cat states in a resonator filled with a
medium which parameters vary in time [25,26]. We shall
demonstrate that the multimode Schrodinger cat states
of Ref. [7] turn into multimode squeezed Schrodinger cat
states, since each coherent component determining the
even and odd coherent states transforms into a multi-
rnode squeezed correlated state.

Another goal of our work is to study the photon statis-
tics of multimode even and odd light with the account
of the squeezing in the multimode coherent components
through which the Schrodinger cat states are expressed.
We construct the multimode photon distribution func-
tion (PDF) and calculate the means and dispersions re-
lated to this distribution. The remarkable characteris-
tic feature of the photon distribution functions of the
nonclassical states of light is their oscillating and some-
times almost irregular behavior for certain combinations
of the parameters. There exist at least two mechanisms
producing strong oscillations of the PDF. The first one
is related to large squeezing in the quadrature compo-
nents [27—29]. Strong statistical correlations between the
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quadrature components also produce the oscillations of
the PDF [30]. But these types of oscillations are small
in comparison with the oscillations of the PDF, which
are observed in the even or odd coherent states due to
the absence in these states of the contributions of the
odd or even number states, respectively [1]. The PDF
of the multimode Schrodinger cat states turns out to be
a deformed product of the Poisson distributions related
to different modes. However, this function is not fac-
torized into the product of the unidimensional Poisson
distributions due to the statistical correlations between
the modes [7].

The amplitude of oscillations in real experimental sit-
uations must be smaller than that in ideal cases due
to various parasite effects. It is evident, for instance,
that the thermal noise smooths the oscillations in any
state. Nonetheless, a number of papers were devoted
to the quantitative estimations of the temperature cor-
rections to the PDFs of the Schrodinger cat states and
squeezed states [31—36]. Here we analyze another mech-
anism destroying the oscillations in the Schrodinger cat
states due to the possible presence of linear terms in the
Hamiltonian, which describe the influence of some exter-
nal classical force. Such a force "spoils" the even or odd
states by adding to them terms with the opposite parity.
Therefore the amplitudes of the oscillations of the corre-
sponding PDFs decrease. However, this mechanism has
not been investigated in detail until now.

The material of the paper is organized in the follow-
ing manner. In Sec. II we review the properties of the
multimode Schrodinger cat states discussed in Ref. [7].
The properties of polymode parametric quadratic sys-
tems and the multimode squeezed Schrodinger cat states
resulting from the time evolution of the Schrodinger cat
states of a parametric electromagnetic fi ld oscillator are
presented in Sec. III. The photon distribution functions
in the parametrically excited Schrodinger cat states in
the absence of an external force are studied in Sec. IV,
while the transformations of these functions under the
action of the time-dependent external driving force are
considered in Sec. V.

II. MULTIMODE EVEN AND ODD
COHERENT STATES

For each mode of the electromagnetic field, the eigen-
vectors of its annihilation operator az (coherent states)
with the eigenvalue n~ are generated &om the vacuum
state ~0) by the displacement operator [37], namely,

) = +(n )10):—exp(n~a —n*.a )10)

The normalization constants

exp(]n
~

z/2)

2/cosh ~n~'
(4)

exp(]n]z/2)
2/sinh ]n]'

contain the square of the parameter complex vector
n = (ni, nz, . . . , nN). The presence of this nonfactoriz-
able factor expresses statistical correlations between the
modes. The action rules for annihilation operators on
these states

a, ~n+) = n, Qtanh~n~ ~n ),

a~]n ) = n~Qcoth)n)z)n+)

allow us to calculate the means and the dispersions of
quadratures and photon numbers. The states ~n+) and
]n ) are orthonormal. Thus using Eqs. (6) and (7) we

get

(n+la ln+) = (n+Ia,'ln+) = o

So the multimode dispersions coincide with the second
moments for the operators

(n+la'a~In+) = n'n~ = (n+Ia, a.ln+)'.

Further, the expressions for other elements of the disper-
sion matrix are

o+(at, ag)—:(n+] 2i (ataA, + ai, a~t)]n+)

= n'nA, . tanh]n~ + zh, A,

o-(a,' a~) =— (n-l&(a,'a~ + a~a,')ln )-
= n,'ng coth ]n]' + 2h, g.

cr(q, q) = o(a, a+) + Reo(a, a),
o.(p, p) = o (a, a+ ) —Reo.(a, a),
o (p, q) = Imo (a, a).

(12)
(»)
(14)

Specifically, this yields, for a special case of one mode in
general, nonzero correlation and squeezing

o(p, q)~ = Im(n ),

These expressions allow us to calculate the dispersions of
canonical coordinate q and momentum p,

In [7] N-mode even and odd coherent states defined as

ln+) = ~+(ln) +
I

—n)) (2)

ln) = lni, n2, ",n~). (3)

were considered, where ~n) is a direct product of coherent
states in each mode:

o(q, q)+ = —+ ~n~ tanh ~n~ + Ren,
2

(q q) —= + lnl coth
2

o (p, p)+ ———+ ~n
~

tanh ~n
~

—Ren,
2

o(p, p) = —+ ~n~ coth]n[ —Ren .
2

(16)

(17)
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(n+fn, fn+) = fa, I'tanh fnf',

(o. In, fn ) = fn, I

coth fnf . (21)

Dispersions for the photon numbers

crag~ = (o~ fn~nq fn~) —(n~ fn~ fn~)(n~ fnk fo.~) (22)

can be expressed as

O.,g+ ——fn, f
fo.g, f

sech fnf + fn, f
tanhfnf S,I„(23)

cr, k = —fn, f
fo. l, f

cosech fnf + fn, f
coth fnf h, g. (24)

Comparing the dispersion of the photon number a~& at
some fixed j with its mean value in the same mode n~,
we see that for the even cat state the photon statistics is
always super-Poissonian and for the odd cat states it is
always sub-Poissonian. This result has been discussed in
Ref. [5] for one-mode Schrodinger cat states.

The case of zero correlation corresponds to real o. . If
this expression is positive, it yields a variance less than
that in the vacuum state for 0 (p, p)+ only.

The mean photon numbers n~ = a.a~ prove to beJ 2

II = —(a a') ~(t) I t I+ (& & ) I t I. (29)
(a) . (al

The initial wave function of the multimode coherent state
reads (see, e.g. , [38])

{xfo.) = vr i exp
I

——+ v2xn — —
I

. (30)
fnf' nn)

2 2 2 )
In this section we will confine ourselves to the case when
the linear terms in the Hamiltonian (25) or (29) are ab-
sent. Taking into account the expression for its evolution
under the action of Hamiltonian (25) found in Ref. [38]
and Eq. (2), we obtain the wave functions of the squeezed
cat states n~, t), which coincide at the initial time with
the states o.~) described in Sec. I:

(xfo.~, t) = ~ ~~4 [det A ]

x exp ——xA A x ——oA*A n—
2 " ' 2 "" 2

cosh (~2xA„—'n)
sinh (~2xA„—'n)

where cosh corresponds to o,+ and sinh to o, . Here A„
and Aq are N x N matrices Ap: A] 2'A3 and Aq ——A4+
iA2, where matrices A~, j = 1, 2, 3, 4, form a symplectic
block matrix

III. PARAMETRIC CAT STATES
FOR A MULTIMODE OSCILLATOR

Our first goal is to consider the time evolution of
the Schrodinger cat states under the action of a generic
quadratic multimode Hermitian Hamiltonian [38,39]

( As A4 )
satisfying the first-order linear differential equation

A =AHAB

H = —qB(t)q+ C(t)q.
1

2
(25)

with the initial condition A(0) being the unity matrix.
The 2N x 2N commutator matrix E is defined as

Here q is a Schrodinger vector operator (p, x)
(pq, p2, . . . , p~, xq, x2, . . . , x~) composed of the momen-
tum and coordinate operators (quadrature components)
for each mode. CoefFicients B„„=B „of the 2N x 2N
matrix B(t) = ffB„ If

and 2N vector C(t) may be ar-
bitrary functions of time. Canonical coordinates are ex-
pressed through the annihilation and creation operators
as (we assume 5 = 1)

(26)

where the 2N x 2N unitary block matrix u reads

(27)

(1 is the K x N unity matrix). The Hamiltonian can be
reexpressed in terms of creation and annihilation opera-
tors via (26) (u~ means the transposed matrix)

[% & ] = '(~)~ (34)

I( O 1
bf

( —1 0)' (35)

(f b
&I

& ( rg&f (alf fa)'
i ') (36)

Matrix M satisfies the di8'erential equation

M = iMZB

The explicit formula (31) enables us to calculate the av-
erage values and variances of the quadrature components
as well as the creation and annihilation operators at mo-
ment t. However, it is more convenient to use for this
purpose the time-dependent Schrodinger operators —in-
tegrals of motion b(t) and bt(t) which coincide at the
initial moment with time-independent creation and an-
nihilation operators a and at [38,39]. The former are ex-
pressed in terms of the latter via the matrix M = u Au:

8(t) = u'B(t)u, (28) with the initial condition that M is a unity matrix at
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(al ((* —~~ &b)
i-~* & r ~b') (38)

The W x 1V matrices ( and g are related to matrices A„
and Aq as

( = —(A„+ A~), g = —(A, —A„).
1

(39)

zero time. Due to this equation M is a symplectic matrix
MZM = Z. Consequently, the inverse transformation
to (36) reads

( -I I -) = (&* ) (&* ) + (~ *) (~ ') —(&'~')'
—coth Inl'[(gn*), (('n) i

+(&*n)~ (~n*)~] (4S)

(n+ Ia,'«In+) = (~*—n)' (&*n) ~
—(&n*)~ (~n*) ~ + (~*~')~~

+ tanh ln]'[(q*n), (gn*))
+An')~ (&*n)~] (42)

{n+la.-«ln+} = (('n) ~ (&*n)~ + (~n*).(~n*) ~
—(('n'), ~

—tanh lnl [(gn*),.((*n)(
+X*n)~(~n') ~] (40)

Using Eq. (38) we can calculate the evolution of the
means and the dispersions of the creation and annihi-
lation operators (8)—(24). The average values of single
operators remain zero. The second-order averages are

{n-la,"«ln-} = -(~'n)2N'n)~ —(&n*)2(~n*)~ + (~*~')2~

+ coth Inl2[(g*n), (gn')i
+(& *),(&* )] (43)

The mean photon numbers are obtained from formulas
(42) and (43) by setting j = l. The dispersions of the
photon numbers turn out to be

= ((*(')(n*n') + ((*n')(n*(') + h'I I'[(& *)'(&* )' + (~ *)'(&* }'+ 2(& *}«* )«* }« *}]
—[((*(')+ (g*g')][(( *)(9 *) + ((* )(9* )] —(('9')[(( *)(& *) + (&* )(&* )]
—(&'(') [(( n) ((n*}+ (qn*) (qn*)] + tanh lnl'[2(q*g') (q'n) (pn*) + 2(p*p'}((*n)((n*)
+2((*q') (g*n) ((n*) + 2(n*(') (('n) (en*) + (('(') ((*n)((n*) + ((*&')(&*n)(&n*)

-((* )'(n* ){( *) —(n* )'(( )(n *) —(n ')'(n* )(& *) —
(& *)'(&* )(~ *}] (44)

~~~- = (&*&')(~*~') + (&*~')(~*&') —cosech'lnl'[(&n*)'(&*n)'+ (~n*)'(n*n) '+ 2(&n*) (&*n)(~*n) (~n*)]
—[((*&')+ (~*a')][(&n*)(en*) + (&*n)(n*n)] —((*n') [(&n*)(&n') + (n*n) (~*n)]
—(q*(') [((*n)((n*) + (r1n*) (qn*)] + coth Inl'[2(q*g') (q*n) (qn*) + 2(q*g') ((*n)(gn*)

+2(('~')(9' )(( *) + 2(n*(')((* )(9 ') + ((*&')(&* )(( *) + (&*(')(~* )(~ *)

-(&*n)'(~'n) (&n*) —(~'n)'(&*n) (~n') —(~n*)'(~*n) (&n*) —(&n')'(&*n) (~n*)] . (45)

= p'
H = —+0'(t) —,

2 2' O(0) = 1. (46)

The parentheses in these formulas mean the jth element
of a vector or the jjth element of a matrix.

To illustrate the results obtained let us consider an
example of a one-mode parametric oscillator described
with the Hamiltonian (we use dimensionless variables) {+In+,t) = {xlO, t)2&+ exp I—

~2nx1x cosh

n' a* 1
2 E)

The wave functions of the time-dependent cat states read

In this case the elements of the 2 x 2 transformation ma-
trix (32) read

Ag
——e„—:Res,

A3 ———c. =—Ime,

A4 ——~„

(47)
(48)
(49)
(»)

where e is the solution of the classical oscillator equation

s(t) + n'(t)s(t) = 0

( lnl2 n' s*
O, t)2% exp I—

2 2

& ~2nx&x sinh
j

where the evolution of the vacuum state is

{BIO,t} = (m)
'~ s '~ exp

I

(iYx' )
&2s)

(54)

satisfying the normalization condition The parameters of transformation (38) expressing the
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evolution of the annihilation and creation operators in
the one-mode case are

(56)

Expressions (40)—(43) allow us to obtain the variances of
the coordinate and the momentum (12)—(14)

(65)

where II (y) is the N-dimensional Hermite polynomial
defined via the generating function (here a and y are N
dimensional vectors and R is a symmetric K x % matrix)

(57)

cr(q, q)+ ———+ frI/' —Re(('vy) + /( —q/'/n[' tanh fan'
2

+Re[((n* —gn*) ],

1
exp

~

——aRa+ aRy
~

= ) II& &(y),
2 ) m™ (66)

~(q q)- = —+ I~I' —Re((*~) + I&
—~l'I~I' cothl~l'

2
m'. = mi!m2.'~ ~ .m~!,

a&1 a'+2 &N

+Re[((n* —r&n*) '], (58)

(59)

~(p, p)- =
2

+ lnl'+ Re%'~) + I&+ &I'I~I'cothl~l'

~(p, p)+ = -+ lnl'+ ReN*n) + I(+ nl'I~I'tanhl~l'

—Re[((n* + r&n*)'],
m1 ——0 mN ——0

Using the representation of a cat state in terms of the
coherent states (2), we obtain the photon number distri-
bution

—Re[((n* + i&n*) ]. (6o)

As in Sec. II, one of the cases of pure squeezing is real
n & 0 and real (*q. Then the largest squeezing will be
achieved for the variance 0 (p, p)+ in case of real ( and r&:

o(p, p)+ ——((+g) (1/2+ o. tanh(n ) —1 J, (61)

where we have taken into account the identity

(P+) = l(ml~+ t) I'

1 + (—1)~'

2 exp Re(nq*j 'n) —~n~2

mt~ det(~
2

x II« "&(&-'~) (67)

(62)

which is a consequence of Eqs. (52) and (56). This vari-
ance is less when ( and rj have opposite signs. It can be
made infinitely small for ( » 1, namely,

1
0.(p, p)+ —(1/2+ n tanh(n ) —1 ) (63)

This expression in turn reaches its minimum with respect
to o. for o. = 0.8, so that

~(p, p)+'" —o.o55/(('). (64)

IV. PHOTON DISTRIBUTION FUNCTIONS
IN SQUEEZED CAT STATES

Our next goal is to obtain the photon distribution func-
tion for the multimode squeezed cat state. For this pur-
pose we erst calculate the matrix elements between the
squeezed Schrodinger cat states ~n~, t) and a number
(Fock) state ~n), where n = (ni, n2, ..., n~) is the vec-
tor of photon numbers in all modes. For the squeezed
coherent states (of which the squeezed Schrodinger cat
states consist) this matrix element was found in [39] [the
subscript 0 means that we consider the case of zero linear
terms in Hamiltonians (25) or (29)]:

(P+)0 ——4X~p (68)

where 'P~ is the photon distribution function for poly-
mode squeezed and correlated light found in Ref. [40].
Consequently, the envelope of the distribution function
(P+)o has the same shape as that of the photon dis-
tribution function for polymode squeezed and correlated
light (if one neglects the fast oscillations connected with
zeros at even or odd numbers).

In the one-mode case we use the property of the Her-
mite polynomials

In deriving this formula we use the property of the mul-
timode Hermite polynomial to be either an even or an
odd function if the sum of the indices of the polynomial
is respectively an even or an odd number. This property
may be easily proved from the definition of the Hermite
polynomial through the generating function.

Formula (67) demonstrates an example of the interfer-
ence in the discrete configuration space of photon num-
bers: it yields the factor 4 in the case of the constructive
interference of two amplitudes and the factor zero in the
destructive case. So in the even states we can observe
only an even number of photons, while the probability
of having an odd number of photons equals zero. Con-
versely, in the odd states the probability of having an
even number of photons equals zero. When the probabil-
ity (P+)o is not equal to zero, we have the equality
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s!'(u) = (",-)'*s.
~ u (69)

p(n)

0.4.

to rewrite (67) as

/gb , ( n
m! (

(70)

0.3-

0.2

0.1

0.5 Time

In the unsqueezed case (when q = 0 and I(I = 1) the
PDF reduces to the quasi-Poissonian form

2~
(&+)o = [1+(—1) ]'~+', p( —

I
I').

FIG. 2. Probability of ending four, two, six and eight pho-
tons (from the upper to the lower curve) in the cat state
o. = 2 evolving under the parametric excitation (69) without
the external force. Time is in units of rt.

I et us consider the special case of the parametric res-
onance when the eigenfrequency of the oscillator changes
harmonically at twice the frequency (we assume ~ && 1)

This formula is simplified in the long-time limit vt )) 1,
when the argument of the Hermite polynomial tends to
zero. Then the nonzero probabilities can be expressed as

1 + v cos(2t)
1+ K

(72)

s = cosh(Kt /4) exp(it) —i sinh(rt/4) exp( —it), (73)

The approximate solution to Eq. (51) in this case was
found in [41] (see also [25]):

(2t)!exp Im(n )
22'(I!)2 cosh(Kt/4) cosh(InI2) '

(2l + 1)!IaI' exp Ilm(n')
22~ ~(l!)z cosh(Kt/4) sinh(rt/2) sinh(InI )

'

(77)

( = cosh(rt/4) exp(it),

rI = i sinh(Kt /4) exp( —it).

(74)

(75)

These relations hold for not very large values of the inte-
ger l, when 2t « exp(Kt /4). If 1 « 2l « exp(rt/2), then
we may use the known asymptotics of the Hermite poly-
nomials [42] and the Stirling formula for the factorials to
rewrite Eq. (76) as

Note that this solution satisfies exactly the initial condi-
tions and the normalization constraint (52). The PDF in
this case is obtained trivially by substituting the above
values into (70):

(~ ). = [1+(-1)-]'
exp tanh(rt/4)lm(n ) —InI

2~m! cosh(~t/4)

n
x [tanh(vt/4)] H . (76)

i sinh(vt/2) )

2 exp Im(n2) —4le "~~2 —vt /4

v vrl cosh(InI2)

x cos 2 2l e " Re o.e

+ sinh 2v 2le " Im ne

p(n)

0.4.

0.3

0.2

2exp Im(n ) —4le "~ —vt/4j

v ~l sinh(InI2)

x sin' 2 2le-"'j'Re

0.1

10

+ sinh 2v 2le " Im ne

FIG. 1. Envelope of the photon distribution for the cat
state n = 2 evolving under the parametric excitation (69)
without the external force, at times et = 0, 1, 2, 3 (from the
highest to the lowest maximum).

The envelope of the PDF (76) is depicted in Fig. 1. We
see that as times increases, the distribution becomes more
Hat and the probabilities of higher photon numbers in-
crease. The temporal dependence of these probabilities
is shown in Fig. 2.



3334 V. V. DODONOV, V. I. MAN'KO, AND D. E. NIKONOV 51

V. DESTRUCTION OF THE SCHRODINGER CAT STATES BY EXTERNAL FORCES

Let us consider now the evolution of the Schrodinger cat state distribution function due to the influence of linear
quadratures terms in the Hamiltonian (29). In this case the transition amplitude from a coherent state to a number
state (in the notation of Sec. III) is given by Eq. (5.58) from Ref. [39]:

(81)

where Ay is given by the formula

Ay = exp
~

—pq*(
2 )

(82)

The N vector p is the solution to the equation

—ij = (f* —rjf, (0) = 0. (83)

The quanta distribution function is given by the formula

P+ = w~](mJn, t) 6 (mJ —n, t)] . (84)

In the previous case the amplitudes had simple parity
properties and because of this, the expression for the dis-
tribution function had no cross terms. In the presence of
linear terms in the interaction Hamiltonian, the ampli-
tudes have no properties of either even or odd functions
of o.. For this reason we will have four terms after factor-
ing (84), that are no longer different by merely a number
factor. Combining all four terms we could write the ex-
pression for the photon distribution function in terms
of the products of the multivariable Hermite polynomi-
als. The main difference from the previous distribution
is that now the probabilities do not turn into zero for
either even or odd photon numbers. So the property of
even (or odd) Schrodinger cat states not to contain states
with an odd (or even) number of photons is destroyed.
Note that just this property leads to strong oscillations
of the photon distribution function for the Schrodinger
cat states. The additional oscillations are produced by
squeezing in the coherent components of Schrodinger cat
states. For squeezed and correlated states, the oscillating
character of the photon distribution function was studied,
e.g. , in [27,30] for the one-mode case and in [28,29] for

(85)

Instead of proceeding to the limit g -+ 0 in the amplitude
(81) it is more convenient to use the generating function
for this amplitude [see, e.g. , Eq. (5.13) of Ref. [39]]

1
(P~~, t) = (det() ' 'exp P( 'nP+—P—( '(~ —7)2

2

n 1

2 2
+ ~n*( '~+~-(v" —n'( 'v)

+ vn'(- (86)

Equations (84) and (86) in the case of rI = 0 lead to the
following expression for the photon distribution function:

the two-mode squeezed vacuum state. It is obvious that
in the polymode squeezed even and odd coherent states
the photon distribution function preserves the property
of having strong oscillations. The linear terms in the in-
teraction Hamiltonian reduce the oscillations related to
the interference of the two squeezed components of the
Schrodinger cat states, thus producing a nonzero prob-
ability of having both an even and an odd number of
photons.

To analyze the process of the destruction of
Schrodinger cat states by the external force we con6ne
ourselves to the simplest case of an oscillator with a con-
stant frequency 0 = 1. Then g = 0 and ( = e'~, so
that

P(n)

0.4-

0.3

P(n)

0.4 .

0.2 . 0.3 .

O. I 0.2

n
10

0.1

FIG. 3. Photon distribution for a cat state with o. = 2 in
an oscillator with constant frequency 0 = 1 driven by the
permanent force f = 0.4 at the instants of time t = 0 (solid
curve), s/4 (dashed curve), m/2 (dot-dashed curve), and 3'/4
(dotted curve).

n
ZO

FIG. 4. Same as in Fig. 3, but for the resonant force
f = 0.5exp(it) at times t = 0 (solid curve), 0.2 (dashed
curve), 0.4 (dot-dashed curve), and 0.6 (dotted curve).
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0.4
P(n)

0.4.

0.3 0.3

0.2 0.2

0.1 0.1

1 2 3 4 5 6
Time

2 3 4 5
Time

FIG. 5. Probability of finding three (dashed), four (solid),
seven (dot-dashed), and eight (dotted curve) photons in the
case of Fig. 3 as a function of time under the action of the
permanent force f = 0.4.

P+ =
2

,
exp ( —~o.

~

—
~p~ )(~o. —

p~ exp [2Re(o.p*)]

+)n+ p)' exp [—2Re(np')]
+2(—&) Re([(~ —&)(~* + 7')]
x exp [2ilm(np')]}) . (87)

For small values of parameter p this formula yields the
following nonzero probabilities of observing the photon
numbers with the "incorrect parity:"

P+ (opposite parity)

)2m —2
= 4/p/ N' e ' ' (m'+ /nf —2m/nf'

x cos [2 (P —P~)]}, (88)

where P and Pz are the phases of the complex numbers
o. and p.

Note that function p(t) may be large even for small
linear terms in the Hamiltonian (29); for instance, in the
resonance case f(t) = foe", this quantity increases pro-
portionally to time p = i fot [see Eq. (85)]. Therefore it
is interesting to consider the limit case of Eq. (87) when

FIG. 6. Same as in Fig. 5, but for the resonant force
f = 0.5exp(it).

figures.
In Fig. 3 we see the PDF of a cat state initially with

o. = 2, evolving under the action of a permanent driving
force. The originally even cat state loses its property:
the probability of the even number decreases while the
probability of the odd ones increases. The same feature
is observed for the resonant force (see Fig. 4). However,
looking at the temporal evolution of the PDF under the
action of the permanent force (Fig. 5), we see that, first,
the probabilities of some photon numbers are close to zero
for a significant length of time. In other words, the state
is converted to almost the opposite one: even to odd and
vice versa. Second, we notice a remarkable property that
for a permanent force in a constant-frequency oscillator,
the state returns to exactly its original value after each
period of oscillation. In our case it corresponds to time
T = 2'. Thus the cat state is never completely destroyed.
More surprisingly, similar behavior occurs for a resonant
force. There is an oscillating term in the curly brackets
of (89); thus under the action of a small force the state
will return close to the original one after a period T =
vr/(ufo), which is equal to vr for the case in Fig. 6. We
see, however, that after each period this revival of the cat
state becomes weaker.

2m
P+ = 2N~, exp (

—
/n/

—
fp/ )

x (cosh [2Re(ay*)] ~ (—1) cos [2lm(cry*)]}. (89)

We see that the linear terms in the interaction Hamilto-
nian tend to remove strong oscillations of the distribution
function exhibited in the initial Schrodinger cat states.
For instance, if 2lm(np*) = (n/2) + kyar, then we have no
oscillations at all; moreover, the distributions in the even
and the odd states have an identical dependence on the
number m, differing only by the normalization constants.
Even more striking is the behavior of the distribution
function when Re(np*) = 0. Then the situation where
the probability to observe an even (odd) number of pho-
tons in the initially even (odd) state is equal to zero (up
to small corrections of the order of ~n/p~ ) is possible.
Various dependences of the distribution function (87) on
the parameters m and p are illustrated in the following

VI. CONCLUSION

We have shown explicitly that the photon distribu-
tion function for the multimode parametrically excited
squeezed Schrodinger cat states differs essentially from
the product of Poisson distributions describing the mul-
timode coherent state. Moreover, we have demonstrated
how the linear terms in the interaction Hamiltonian de-
stroy the property of Schrodinger cat states to have only
even or only odd numbers of photons. This kind of in-
teraction is nontrivial in the sense that in the resonance
case, an arbitrary, small, time-dependent external force
can either completely destroy the oscillations or trans-
form even states to almost odd ones and vice versa. For
a permanent force the PDF returns exactly to its initial
value after one period. For a resonant force the states re-
turns close to the original one after a period determined
by the force and the amplitude of the cat state.
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