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A simple formalism is introduced for describing the quantum phase of a single-mode field (or,
equivalently, a harmonic oscillator) using a particular infinite-dimensional Hilbert space H,„.This
space is spanned by vectors which represent states of the single field mode containing non-negative
numbers of photons. It has a symmetry in the sense that it contains vectors in the neighborhood of
both the vacuum state and the infinite photon number state. A striking property of H,„ is that it
supports Hermitian and unitary phase operators. Indeed the Pegg-Barnett unitary phase operators
are shown to converge strongly on the Hilbert space H,„and so the corresponding limit points are
ordinary operators on H,„.This can be compared with the situation for the infinite-dimensional
Hilbert space H conventionally used in quantum optics on which the Pegg-Barnett unitary phase
operators converge weakly, in general.

PACS number(s): 42.50.—p, 03.65.Ca

I. INTRODUCTION

The quantum phase of a single-mode field has received
increasing attention during recent years [1]. In this paper
we consider only the basic problem of defining Hermitian
and unitary phase operators. This problem was first in-
vestigated by Dirac over 60 years ago [2]. The problem
itself can be defined in different ways depending on the
level of generality. For example, previous authors have
required the phase operators to operate on a vector space
whose elements either represent the states of the field
mode alone [2—13] or the product of field mode states with
the states of some apparatus or other device [14,15] where
the vector space is either an infinite-dimensional Hilbert
space [2—12,14,15], or a more-general space [13,16], etc.
Before we begin, therefore, we must frame the problem
we are considering in precise terms. We define it as fol-
lows. Find the Hermitian phase operator that is canon-
ically conjugate to the photon number operator and is
defined on an infinite-dimensional Hilbert space which is
spanned by the (non-negative) photon number states of
the single mode field. In this paper we give the solution
to this problem. We acknowledge, however, that by defin-
ing the quantum phase problem in different terms, it is
possible to arrive at different solutions (see, e.g. , [3—19]).

The work of many in this field (e.g. , Refs. [4,6,10—13])
has as its focus the construction of raising and lower-

ing operators for the photon number states. These op-
erators are required to be unitary in order to represent
exponential phase operators consistently. However, it is
well known that the infinite-dimensional Hilbert space H,
which is conventionally used in quantum optics, presents
an impasse for this task. The difIiculty is that the low-

ering operation destroys the vacuum component of every
vector. Thus such operators cannot be unitary on H.
Two important methods have been introduced recently
for overcoming this problem and obtaining unitary phase
operators [20]. The first is due to Newton [11]and inde-

pendently Barnett and Pegg [12] (see also [21,22]), who
extended the photon number spectrum to negative infin-
ity so that the vacuum state is mapped to the —1 state
when acted on by the lowering operator. We shall refer
to this method as the NBP formalism in this paper. The
second method was introduced by Pegg and Barnett [13]
and involves a special procedure for taking the infinite-
dimensional limit of the vector space. We shall refer to
this latter method as the Pegg-Barnett formalism. Their
limiting procedure allows the use of vectors that belong
to a space that is larger than II [16]. In this case the
vacuum state vector is mapped to a vector which lies
outside H and which has a divergent mean photon num-
ber. In fact, the Pegg-Barnett formalism solves the most
general statement of the problem of phase in which there
is no restriction on the state space other than that it is
spanned by photon number states of non-negative num-
ber. However, we are interested here in a solution to a
more restricted problem as stated above and neither of
these two approaches provides the solution.

There is, fortunately, yet another approach that has
not been explored previously [23]. Consider for the mo-
ment adjoining to H the vector representing the state
of "infinite photon number" [24] as the vector to which
the vacuum state vector will be mapped by the lowering
operation. This would allow the definition of operators
of the form exp(iP) and exp( —iP), which do not destroy
the vacuum state vector. However, the problem then is
that the infinite photon number state vector is destroyed
by the lowering operation. To make the raising and low-
ering operators unitary we need to adjoin a collection of
vectors in the neighborhood of the infinite photon num-
ber vector. The resulting Hilbert space then contains a
symmetry in the sense that vectors representing states in
the neighborhood of both zero and infinite photon num-
ber are included and this allows it to support the unitary
operators required. We label the larger space as H,„

In this paper we introduce a simple formalism based on
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H,„ for describing the phase of the single-mode Geld. It
gives the solution to the problem stated above. We give
the details of the construction of H,„ in Sec. II. In Sec.
III we introduce various operators on H,„~as the strong
limits of Pegg-Barnett operator sequences. Following this
is a comparison in Sec. IV between the formalism intro-
duced here and the NBP and Pegg-Barnett formalisms.
A discussion is given in Sec. V.

II. THE INFINITE-DIMENSIONAL HILBERT
SPACE H;y

ns= ns A

Here ((n, s) is a positive integer function of n and s,
where n = 0, 1,2, . . . , s and s = 0, 1, 2, . . ., which we use
to label the elements of A. We will give specific exam-
ples of ((n, s) later. For the moment we note that differ-
ent choices af ((n, s) lead to different infinite-dimensional
Hilbert spaces. Now let

8 n=0, 1,2, ...,e (2)

be a set of (s + 1) linearly independent vectors. This
constrains the function ((n, s) to the extent that for each
given value of s ) 0 it takes on (s + 1) different values
for n = 0, 1, 2, . . . , s. The set in (2) spans a (s + 1)-
dimensional Hilbert space @„which is equivalent to that
used by Pegg and Barnett. Accordingly we can define on
4, all the Pegg-Barnett operators, including the phase

We begin by following earlier approaches [8,13] in that
we consider a sequence of finite-dimensional spaces but
quickly depart from previous treatments in two impor-
tant ways. The first is in the relationship between spaces
of difI'erent dimensions: we specify a method of stepping
from one space to a space of higher dimension that dif-
fers from the previous treatments. The second is that
we construct an infinite-dimensional Hilbert space from
the Gnite-dimensional spaces and then consider infinite-
rank operators on the infinite-dimensional space: this dif-
fers from the Pegg-Barnett formalism where the infinite-
dimensional limit is only taken of expectation values and
not directly of the operators or the spaces.

Let A be an infinite set of orthonormal vectors In)~
labeled by the positive integers, i.e., ~(nIm)~ = h for
n, m = 1, 2, . . .. We wish to stress that the vector In)~
does not necessarily represent the state of n photons. The
set A is any countable infinite orthonormal set labeled in
any order. The identification of any vector with a par-
ticular photon number state depends on the definition of
the number operator which we give later. For example,
def»ng & = 0l»~~h'I +11~)~~&~I+ 2I»~~(~l+ ",
where p, e, y, ... are unique positive integers, implies that
the vectors Ip)A, Ie)~, Iy)~, ... represent the 0,1,2, ... pho-
ton number states, respectively.

We construct finite-dimensional spaces from A as fol-
lows. First we introduce a new set of symbols which are
related to the old by

operators. For example, consider the photon number op-
erator K, [13],which is given here by

Clearly N, In), = nIn), and so in the Pegg-Barnett for-
malism In), is the eigenvector of N, with eigenvalue n.

So far we have not specified the relationship between
4', and @,I for s' ) s. If we were to strictly follow the
relationship used by Popov and Yarunin [8] and Pegg and
Barnett [13] we would define

((n, s) = ((n),

where ((n) is a positive integer function of n only [e.g. ,
the function ((n, s) = n+ 1 satisfies this]. We would
then Gnd that the completion of the infinite union 0

o 4„ for which the inner product is given by

(g sl& s') = ) &.'f-
n=O

where
8

If s) =).f-In) e o-

n=0

and A: is the smaller of s and s', yields the Hilbert space
H'. The general vector Ih) = P„oh„I((n))p belong-
ing to H' has the praperty that P„o Ih„I ( oo. This
restriction [25] implies, in particular, that H does not
contain a vector corresponding to the vector Is), in the
Pegg-Barnett formalism in the infinite-s limit and so H
cannot support unitary phase operators corresponding
to those in the Pegg-Barnett formalism. Indeed, defining
operators on H' as the (weak) limit points of the Pegg-
Barnett phase operators yields the Susskind-Glogower
and the Popov-Yarunin operators [4,8], which attribute
the vacuum state with nonrandom phase properties. The
reason this situation arises here is that an asymmetry is
produced by adding new vectors as s increases only at the
end of the sequence of vectors IO)„Il)„I2)„.. . , Is), as
given by Eq. (4). This correspands essentially to adding
new vectors at the upper end of the photon number spec-
trum, which restricts the resulting Hilbert space so that
it contains only elements whose number state coefFicients
h vanish as n —+ oo. Alternatively, in order to produce a
symmetry between both ends of the photon number spec-
trum, we add new states, in the following, to the middle
of the sequence of vectors. To simplify the analysis we
consider only odd s Rom now on; the extension to all
values of s is straightforward.

We define the relationship between ((n, s) and ((m, s+
2) for odd s by
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((n, s) for 0 & n & 2(s —1)
((n, s+2) =

&

((n —2, s) for 2(s+ 5) & n & s+ 2

photon number. Also we find from Eqs. (1) and (7) that
ls —n), and ln), are independent of s for s ) 2n ) 0 and
so we define

(7)

oo —n = s —n
(9)

(10)
and where the new values ((n, s + 2) for n = 2(s +
1), 2(s + 3) are diferent &om the values of ((n, s) for
n = 0, 1, 2, . . . , 8. This relationship is depicted graphi-
cally in Fig. 1. There are many functions ((n, s) that
satisfy this; a specific example is given by

(n s) = &

2n+ 1

2(s —n) + 2

for 0 & n & 2(s —1)

for 2(s+ 1) & n & s.

Froin the relationship between ((n, s) for different s given
by Eq. (7) we find that the inner product of two vectors
in the infinite union 0 = U, o 4', is now given by

(I —x)/2

(g, slf, s') = ). g*f +
k

gs —S+~fs' —k+n, I

n=(k+1)/2

where, as before, Ic is the smaller of s and s' and lg, s) and
l f, s) are defined in Eqs. (5) and (6). The completion
of 0 with the new function ((n, s) defined by Eq. (7)
is the infinite-dimensional Hilbert space H»~ discussed
above. We highlight some of the properties of H,„ in
the remainder of this section.

It is helpful to introduce a new notation so that we
can eliminate reference to the parameter s. Consider the
vector given by Eq. (5) with ((n, s) now given by Eq.
(7) and set

so that

, f.+i+

for n&0

for n(0

(8—1)/2 —(s+1)/2

lf s) = ) f ln) + ) f ls+1~n), . (8)

We note that in the Pegg-Barnett formalism the vector
l s), is an eigenstate of N, with eigenvalue s. Since we are
ultimately interested only in the infinite-s limit, we see
that ls), will eventually correspond to a state of infinite

for 0 & n & (s —I)/2. We use the symbol oo in expression
(10) as a reminder of the divergent nature of the photon
number eigenvalues; the properties of the vector lao —n)
can be inferred from that of the right-hand side of Eq.
(10). Figure 2 illustrates the use of the new notation.
From Eqs. (8)—(10) we see that the general vector lh)
belonging to H,„can now be written in the form

lh) = ) h„ln) + ) h„lao+ 1+.n),
n=o n= —1

where h are complex numbers for n = 0, +1,+2, . . ..
From the orthogonality of the vectors in Eqs. (9) and
(10) we find that the square of the norm of lh) is

(hlh) = ) lh„l' & oo

and the innerproduct between two vectors lf), lg) E
H,„ofthe form given by Eq. (11) is

(fig) = ). f'g- .

The subspace of H,„containing vectors in the form of
Eq. (11) but whose coefficients h are zero for n & 0 is
clearly the Hilbert space H that is conventionally used in
quantum optics. Thus, by simply choosing the relation-
ship bettveen each of the spaces 4, according to Eq. (7)
we are able to construct the Hilbert space Hzy~ which
contains H as a subspace. In particular, H,„also con-
tains the vector lao), which does not belong to H. The
importance of this vector is that it corresponds to ls), in
the Pegg-Barnett formalism in the infinite-s limit. Put
more precisely, the sequence l0)o, ll)i, l2)2, . . . , ls)». . .
converges to lao) in H,„because, in fact, ls), = lao)
for all s. The presence of the vectors lao —n) for
n = 0, 1, 2, . . . allows H»~ to support the unitary phase
operators treated in the next section.

(oo) /~- 7) [~-11)
~ ~ ~ ~

8 13 II II II II II II I0)
~ y ~ ~

i7) ill)

] 1 II II II II II II
0

FIG. 1. Relationship between ((n, s), t'(n, s + 2), and
((n, s + 4) for s = ll. The solid disks represent values of
( and the straight lines connect equal values. In particular,
f(n, s+ 2) has s + 3 unique values for n = 0, 1, 2, . . . , s+ 2 of
which s + 1 values are inherited from ((n, s).

FIG. 2. Diagram representing a portion of the number
state basis of H,„siugtnhe new notation of Eqs. (9) and
(10). Each disk represents a vector in the orthonormal set
(ln) I loo n))ra 0, 1,2, ... . Th=e line connects the vectors span-
ning 4, for s = 15. The whole basis of H,„can be rep-
resented by extending the diagram indefinitely to the right.
The bottom row of disks in the extended diagram represents
the basis of the subspace H.
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III. OPERATORS ON H, y

We now introduce infinite-rank operators on H,y~.
In particular we wish to define the photon number and
phase operators as a canonically conjugate pair. We
adopt the Pegg-Barnett approach [13] for defining these
operators via sequences. But whereas in the Pegg-
Barnett formalism it is only the limit points of expec-
tation values that are considered, here we find the limit
points on H»~ of the operator sequences themselves.

The Pegg-Barnett number operator N, given by Eq.
(3) takes the form

( -i)/2
N. = ) nln)(nl

n=O
—(s+1)/2

) (s+ 1+n)loo+ 1+n)(oo+ 1+n
n= —1

exp(i&s, ) = ):ln)" (n+ il + ls)" (oI
n=O

( -i)/2

) . In)(n+ il
n=O

—.(s—i)/2
+ ). l~+ n)(~+ n+ il+ I~)(0l

n= —1

= [exp( —its, )]t

for s = 1, 3, 5, . . .. We have set the "phase window" [13]
to [0, 2vr) and used Eqs. (9) and (10) in the second line.
The same expression results &om other choices of the
phase window provided an appropriate sequence of values
of s is chosen accordingly [26]. The sequence of operators
exp(its, ) and exp( —its, ) are found to converge strongly
on H, z to exp(iP) and exp( —iP), respectively, where

in the new notation. It is not diKcult to show that the
sequence Ni, N3, N5, . . . has the strong limit exp(iP) = ) In) (n + il

n=O

N —= ) nln)(nl
n=O

(i3)

on the domain D(N), which contains vectors of the form
Eq. (11), but whose coefficients satisfy

+ ) l~+n)(~+n+ il+ l~)(ol
n= —1

= [exp( —iP)]t .

From the orthogonality of the vectors In) and
I
oo —n) for

n = 0, 1, 2, . . . we find that

) fnh„l2 ( oo
n=O

where

exp(iP) exp( —iP) = exp( —iP) exp(iP) = 1,

and h = 0 for n ( 0. Thus we identify the vector
In) with the state of n photons. However, one may ask
whether we are justified in identifying loo) as a state of
infinite photon number when this vector lies outside the
domain of ¹ To see that the answer is "yes" consider
the sequence of inverse number operators (1+N, )

i for
8 = 1, 3, 5, . . ., which is easily found to converge strongly
on the whole space H»~ to

) (1+n)
—

'In)(n, l+ 0 ) Ioo+ n)(oo+ nl
n=O )n=o

The vectors Ioo —n) for n = 0, 1, 2, . . . are degenerate
eigenvectors of this operator with eigenvalue zero. In
this respect all of these vectors do, in fact, correspond to
states of infinite photon number. It is therefore quite nat-
ural that such vectors lie outside the domain of ¹ We
note also &om Eq. (10) that these vectors are orthonor-
mal: (oo —nloo —m) = b for n, m = 0, 1, 2, . . ., which
gives further support for our notation. Care should be
taken, however, not to confuse the label oo —n as repre-
senting "infinity minus n." Rather the vectors Ioo —n) are
a collection of orthonormal vectors representing states of
infinite photon number.

The Pegg-Barnett unitary phase operators [13] are
given here by

i —:) In)(nl + ) Ioo + n)(~ + nl
n=O n=O

is the unit operator for H,„.Thus the limit points are
unitary on H» . This contrasts markedly with the lim-
its of the same sequences on H where the limit points are
the Susskind-Glogower operators which are not unitary
[27]. The unitarity of exp(iP) guarantees that there is a
corresponding Hermitian phase angle operator on Hsy
We introduce this operator via the phase eigenstate basis.

The eigenstates of exp(iP) do not belong to H,„,but
can be accommodated in a rigged Hilbert space H,„
[28—30]. We describe H, „briefly here. Let = be the
space of all linear combinations of the vectors In) and
Ioo —n), for n = 0, 1, 2, . . ., and let O,„be the nuclear
space consisting of all vectors Ih) [given by Eq. (11)] in
Hsym, w'hich satisfy

for m = 0, 1, 2, . . .. The space 0,„,which is conjugate
to 0,„,contains all those vectors

I f) E = satisfying
(fl~) ( oo for all lur) 6 O,„and for which (flu) is a
continuous linear functional of lu) on 0,„.The triplet

gged Hilbert space H
It is not dificult to show that the vector
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l0) = (2vr) ) exp(in0) ln)
n=O

+ ) exp(in0)l~+ 1+ n)

where 0 is real, belongs to A,„and also that it has the
property

exp(iP) l0) = exp(i0) l0) .

Thus l0), which we call a phase state, is clearly an eigen-
vector of exp(iP). The phase states l0) for 0 in a 2'
interval form a complete orthonormal set, e.g. ,

1= 0 Od0,

(0'l0) = —) exp[in(0 —0')]—:b(0 —0')2'

where b(0 —0 ) is the 2vr-periodic Dirac delta distribution.
The completeness property allows an alternate, equiva-
lent definition of the unitary phase operator:

exp(i4) = exp(i0) l0) (0]d0 .
2'

It follows &om the orthonormal property of the phase
states that exp(iP) is the exponential of the phase angle
operator given by

e, +2~
Ps = 0l0)(0ld0

Hp

for arbitrary Oo. The value of Oo defines a 2' phase win-
dow in the usual way [13].

Strictly speaking, the commutator of N with Ps does
not exist because the range of Ps lies outside the domain

D(N) of N and so the product Nrtis is not an operator
on Hey . However, it is still possible to evaluate the
expectation value (f lNPs l f ) for

l f) E D(N) by operating
N first on (fl. Thus we find

(fl[N &s]lf) = i(1 —2~1(fl0o)l')

for all
l f) C D(N). It can then be shown by a trivial

extension of the usual proof [31] that all lg) 6 D(N )
satisfy the Heisenberg uncertainty relation

(&N')(&A') & -(1 —2 l(gl00)l')' .
4

These last two expressions agree with the corresponding
expressions found in the Pegg-Barnett formalism.

It reinains for us to show that Ps is canonically conju-
gate to the photon number operator ¹ We note that l0)
contains the broadest spread of number states possible.
Moreover, N is the generator of phase shifts as given by

(0l exp(iNb)lh) = (0 —8lh)

for all lh) g H fl 0,„,where 8 is real, and Ps is the
generator of number shifts as can be seen &om the matrix
elements of exp(iP) in Eq. (14). These results show that
Ps is canonically conjugate to N in the sense defined by
Pegg et al. [13,32]. We also note that

(hl exp(iN) exp(its) lh)

= exp( —i)(hl exp(its) exp(iN)lh),

e —1

a. = ) ~n + 1ln)..(n +
n=O

(e—1)/2

) Qn+ lln)(n+ ll
n=O
—(e —1)/2

) Qs + n + 1loo + n) (oo + n + 1
l

n= —1

= ( !)'
The strong limits of the sequences of a, and at are found
to be a and at, respectively, where

a = )- gn+1ln)(n+1l = (at)'
n=O

on the domain given by vectors lh) of the form Eq. (11)
whose coeKcients satisfy

) lh„l n(oo
n=o

and h = 0 for n & 0. Clearly ata = N and

[a, at] = ) ln)(nl .
n=O

(16)

Indeed, N, a, and a are, in fact, identical to the cor-
responding operators in the conventional approach which
uses H as the state space. The right-hand side of Eq.
(16) is the unit operator for H. We note that H contains

where lh) 6 H, and so ps is also canonically conjugate
to N in the Weyl sense [33].

Hence, to summarize, we have constructed a Hilbert
space Hey~ which is spanned by non-negative number
states and found on it the Hermitian phase operator
canonically conjugate to the photon number operator.
Thus use have solved the phase problem defined in the In
troducti on.

We now pursue the nature of the operators on H,„
a little further and, in particular, examine the polar de-
composition of the annihilation operator sought by Dirac
[2]. The annihilation and creation operators are given in
the Pegg-Barnett formalism [13] by
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the domain of a and a~ and so the above commutator
cannot operate on a space larger than H. However, since
all physical states belong to H, the commutator is also
physically indistinguishable &om the unit operator 1 on
Kpy~ s

The operator exp(iP) generates a state of infinite pho-
ton number &om the vacuum state exp(ig)l0) = lao).
Can such an operation be produced through a physical
interaction? The answer has been pointed out previously
by Barnett and Pegg [12,13]. All physical interactions
between the field mode and other systems involve inter-
action terms which are functions of the annihilation and
creation operators. Since the annihilation operator de-
stroys the vacuum state we see that it is not possible
for this operation to occur in physical situations. It fol-
lows that a field mode that is initially in a state with
a Gnite mean photon number and that interacts with a
system that has a finite energy will always have a Gnite
mean photon number. Thus the state of a Geld mode in
physical situations is always represented by a vector that
belongs to H.

Finally, we note that the annihilation operator a, which
operates on a dense subset of H, can be decomposed into
unitary phase and photon number operator parts

(8—1)/2

) nin) „(ni + ) (n —s —1)in) „(ni
n=O n=(s+X) /2

—(8+i)l2
= N, —(s+ 1) ) lao+ n+ 1)(oo+ n+ 1l

n= —1

i = ) nln}(ni+ ) niacin+1)(~+n+1l (18)
n=O n= —1

on a dense subspace of H,„.The eigenvalue equation
for Z is

Sin} = nin),

for n = 0, 1,2, . . .. If we relabel the vectors by their l.
eigenvalues

for 8 = 1,3, 5, . . .. Thus l., is diagonal in the photon
number basis, but with diferent eigenvalues to N, . The
sequence converges strongly to

a = exp(iP) V N . (17) i
—(n+ 1))c —= loo —n)

for n = 0, 1, 2, . . ., we then have

This is the polar decomposition of the very operator a
sought by Dirac [35]. An interesting feature of this de-
composition is that a is a product of two operators, one
of which (exp iP) operates on a larger space than H while

the other ( 1V) operates on a dense subset of H. We now
see the reason why the previous attempts to find the de-
composition of a using only H were unsuccessful: the
unitary phase operator could not be constructed because
it operates on a larger space.

IV. COMPARISON WITH RELATED
FORMALISMS

Unitary phase operators are possible on H,„because
the vacuum state can be mapped to the state loo), which
is orthogonal to all the states ln) for n = 0, 1, 2, . . .. In
the NBP formalism [11,12] the vacuum component is also
mapped to a state that is orthogonal to the same set
of photon number states. This leads us to examine the
relationship between the two formalisms.

Newton [11] introduced a fictitious spin-~ property to
the field mode to enable its mathematical description to
include a photon number operator I that has both pos-
itive and negative integer eigenvalues. Barnett and Pegg
also considered extending the photon number spectrum
to negative infinity, but without the spin property [12].
We now construct an operator on Hsy~ with a spectrum
equivalent to that of L for comparison. Consider the se-
quence of operators

l: = ) nln}cc(ni .

This shows that l. and H,„are mathematically equiv-
alent to L and the corresponding space used by Newton
and also Barnett and Pegg. Does this mean that here
we are simply reinterpreting the negative photon number
states in the NBP formalism as states of infinite photon
number? The answer is quite clearly "no" for the follow-
ing reasons. Imagine that we map the Hilbert space used
in the NBP formalism onto H,„by identifying a state of
n photons in the NBP formalism with ln) for n & 0 and
loo + n + 1) for n ( 0. The NBP photon nuxnber opera-
tor would then be given by 8 in Eq. (18) which operates
on states of infinite photon number whereas our operator
N, given by Eq. (13), is the conventional photon num-
ber operator which operates on a dense subset of H only.
The time evolution of a state in the NBP formalism [36]
would be given by a Hamiltonian that is proportional to
8 in contrast to that here, where the Hamiltonian is pro-
portional to N. The NBP annihilation operator would
be given by

).~n+1ln)(n+1l+ ). v'lnll~+n)(~+n+11
n=O n= —1

which acts on states of infinite photon number whereas
our operator a is the conventional annihilation opera-
tor acting on a dense subset of H. Clearly the two for-
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malisms differ by more than a simple reinterpretation
of the photon number states. Indeed, it is only when
the corresponding interpretation of negative or infinite
photon numbers is used in each formalism that the re-
spective photon number and annihilation operators have
the forms expected of them. For example, vectors that
are interpreted as negative photon number states must
belong to the domain of the photon number operator,
whereas vectors that are interpreted as infinite photon
number states cannot belong to the domain of this op-
erator. Thus the interpretations of negative and infinite
photon number states are necessarily associated with the
NBP and the new formalisms, respectively.

Even so, one may ask how the concept of a state of a
negative number of photons differs &om that of a state
of an infinite number of photons when neither can be
occupied physically. We note that both negative and in-
Gnite photon number states are orthogonal to states in
H and so the distance [based on the norm in Eq. (12)]
between any state in H and a negative or infinite photon
number state is ~2. Thus neither negative nor infinite
photon number states are approached closely by states
in H. Despite this we can describe a procedure, which
is based on the limiting procedure of the Pegg-Barnett
formalism, that provides a physical interpretation of the
states of infinite photon number. Imagine that a field is
prepared in the photon number state ~n), where n is some
given positive integer, and that the physical properties of
the Geld are calculated accordingly. Imagine further that
this is repeated for an infinite sequence of increasing val-
ues of n. We note that this procedure involves a sequence
of states that does not converge strongly to any vector in
H; in fact, it can be shown [16] that the sequence is rep-
resented by a vector in a space that is larger (i.e. , more
general) than H. The results of some of the calculations
of the physical properties will converge as n —+ oo, e.g. ,

((N + 1) ) + 0 and (Ags2) = vr2/3 independent of
n. The limit points of these results represent the proper-
ties of a state of infinite photon number. This procedure
therefore provides a concrete interpretation of states of
infinite photon number. In contrast, there is no analo-
gous interpretation of negative photon number states.

Moreover, unlike states of negative photon number,
states that have a divergent mean photon number al-
ready appear in the conventional approach, which uses
the Hilbert space H to represent the state of the field
mode For ex. ample, the state ~B) = g(n + 1) ~n)
which belongs to H has a divergent mean photon num-
ber. Thus, in this respect, our use of the state ~oo) is not
exceptional [34].

This brings us to an important point regarding the
interpretation of quantum phase. %'e note that if the
initial state of the field mode is represented by a vector
in H, then in both the NBP and the present formalisms
it remains in H for all times under physical interactions.
Despite the differences mentioned above, the calculations
in both formalisms will yield the same physical results be-
cause the corresponding operators are identical for vec-
tors in H. The approach taken in this paper, however,
gives a new interpretation of these physical results in
terms of Hilbert-space operators which are defined on

non-negative photon number states only. Thus it gives a
more conventional interpretation of the representation of
quantum phase on an infinite-dimensional Hilbert space.

We have used the operator sequences &om the Pegg-
Barnett forinalism [13] as a basis for building phase op-
erators on the space H,„.This gives a close relation-
ship between the formalism presented here and the Pegg-
Barnett formalism. In particular, the calculations in
both give the same physical results. The feature that
distinguishes the two is that we have taken the Limit

of operator sequences on an infinite-dimensionaL space,
whereas the corresponding limit in the Pegg-Barnett for-
malism is taken only of expectation values calculated on
finite-dimensional spaces. Let us examine this point
more closely. Our use of an infinite-dimensional Hilbert
space places a restriction, which is absent from the Pegg-
Barnett formalism, on the vectors we can treat, as shown
by Eq. (12). For example, the vector ~(s + 1)/2)„which
is easily handled in the Pegg-Barnett formalism in the
infinite-s limit, does not have a corresponding represen-
tation in H,„.This indicates that the Pegg-Barnett
formalism is a more general formalism in that it allows
more-general vectors [16]. On the other hand, by relaxing
the generality a little we are able to retain the physically
important features of the Pegg-Barnett formalism and
omit fine mathematical features of no physical value in
the problem at hand.

More importantly, the existence of the strong limits of
the Pegg-Barnett phase operators on H,„means that
infinite-rank operators on a Hilbert space can be used
directly to represent observables of the field. Since the
s ~ oo limit is taken of the operators and vectors before
calculating expectation values, the usual mathematical
tools associated with infinite-dimensional Hilbert space
can be used for the analysis of a system involving a Geld
mode. For example, the equation of motion can be ex-
pressed in terms of the standard quasiprobability distri-
butions when the Geld is in a state represented in H.
There is no need for truncating the number state ex-
pansion at a finite value of s. This gives the present
formalism an important advantage —it alloias the use of
conventional mathematical tools.

We conclude this section with the observation that
while the formalism presented here difFers &om both
the NBP and Pegg-Barnett formalisms, nevertheless it
can also be viewed as a hybrid containing various fea-
tures of these related formalisms: an extended infinite-
dimensional Hilbert space like that used in the former
and the non-negative photon number spectrum and the
recipe for canonical conjugate observables of the latter.

V. DISCUSSION AND CONCLUSION

We have introduced here a simple formalism for the
quantum phase based on an infinite-dimensional Hilbert
space H,„~and the strong limits of the Pegg-Barnett op-
erator sequences. An interesting property of H,„ is that
it is symmetrical in the sense that it contains vectors in
the neighborhood of both the vacuum state and the infi-
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nite photon number state. This allows it to support Her-
mitian and unitary phase operators which are canonically
conjugate to the photon number operator. Moreover, the
space H,„ is spanned by non-negative photon number
states only. Thus the Hermitian phase operator is the so-
lution to the phase problem defined in the Introduction.
The formalism also yields the polar decomposition of the
annihilation operator as sought originally by Dirac. We
noted how the unitary phase operator in the decompo-
sition operates on a larger space than the annihilation
operator itself. This is the reason why the search for uni-
tary phase operators on the infinite-dimensional Hilbert
space H conventionally used in quantum optics has been
unsuccessful: a larger space is necessary.

In fact, essentially the only diferent piece here that is
not in the conventional treatment of the single mode field
is the particular method for dealing with states of infinite
photon number. However, states with a divergent mean
photon number are not new to quantum optics. We have
already noted that the state g(n+ 1) i~n) belongs to
the conventionally used Hilbert space H and has a diver-
gent mean photon number. Also the eigenstates of the
Geld quadrature operators have a divergent mean photon
number. Thus our use of extra states with a divergent
mean photon number is not exceptional [34].

Let us elaborate this point a little further since it is
crucial for a complete understanding of the present for-
malism. Any given physical realization of a single-mode
Geld in a cavity entails basic physical constraints that
arise &om considerations such as the physical structure
of the cavity mirrors, etc. , and which are important in
the limit of extremely intense fields. These constraints
limit the number of photons physically possible in a field
mode because, e.g. , exceeding the limit would damage
the mirrors, etc. For the case of a single mode of the
field propagating in free space (where periodic boundary
conditions replace the mirrors) one may argue that there
are physical constraints associated with, for example, the
physical nature of the (remote) source of the energy of
the field [13]. However, it is clear that these constraints,
whatever their origin, are not included in the conven-
tional theoretical model of the ideal single Geld mode be-
cause, from the commutator [a,, at] = 1, we find that the
spectrum of the number operator N = ata is unbounded
above and the sequence of photon number states is infi-
nite. This leaves us with two options: either (a) ignore
the physical constraints and retain the conventional com-
mutator [a, at] = 1 or (b) include the physical constraints
and adopt a modified commutator [a, at] g 1.

ln option (b) the modified commutator gives a mod-
ified photon number operator. The phase operator is
found as the operator which is canonically conjugate to
the modified photon number operator. The Pegg-Barnett
formalism, without the infinite-dimensional limit, pro-
vides operators of this type [13].

Alternatively, for option (a), which is the one implicitly
chosen here, we must use an infinite-dimensional space
that supports the commutator [a, at] = 1, that is, a space

that contains the domain of ata. Many such spaces can
be found with H and H,„being the particular examples
considered here. Which of these spaces is the more appro-
priate physically for the model of the Geld mode? The
obvious difI'erence between H and H,„ is that H,„
contains extra states, such as ~oo), of infinite photon
number. However, we note that the commutator itself
implies that the spectrum of K is necessarily unbounded
and also that both H and H,„contain states, such as

P(1+n) ~n), that have a divergent mean photon num-
ber. Thus the unboundedness of the photon number does
not provide any grounds for regarding either H or H,„
as being the more appropriate space. On the other hand,
there is an important physical distinction between these
spaces on the basis of phase since H, & supports phase
operators that attribute the vacuum state to a random
phase, whereas H does not support such operators. In-
deed all evidence suggests that the space H supports only
operators that attribute the vacuum with a nonrandom
phase. Thus H,„ is clearly the more appropriate Hilbert
space for the model of a single-mode field.

There is one last point we wish to make. The loner
bound of the photon number spectrum has been held re-
sponsible for the difIiculties previously encountered when
attempting to define a well-behaved phase observable on
II. Our analysis here (see also [27]) shows, however, that
it is the large photon number behavior of H that forbids
the definition of appropriate phase operators. The lower
bound of the photon number spectrum is simply a physi-
cal feature that distinguishes the energy of the harmonic
oscillator from, say, the angular momentum of a bead on
a circular wire. In short, the inability to define appropri-
ate phase operators on H results from the mathematical
structure of H and not the physical nature of the energy
spectrum or the Geld mode itself. The present formal-
ism overcomes these difIiculties by adopting the larger
Hilbert space H,„as the state space.

In conclusion, we have presented a simple formalism
for describing the quantum phase that is more conven-
tional than the NBP approach and less general than the
Pegg-Barnett formalism. It supports the limit points of
the Pegg-Barnett operators on an infinite-dimensional
Hilbert space and thus allows the use of a Hermitian
phase operator as well as the conventional mathemati-
cal tools for the analysis of the single-mode field.
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