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High-order unraveling of master equations for dissipative evolution
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We show how the quantum trajectory method for describing the dissipative evolution of condi-
tioned states can be implemented in a numerically eKcient higher-order unraveling that goes beyond
the Euler method usually employed in such simulations. We demonstrate its applicability through
an analysis of spontaneous emission and find that improvements by two orders of magnitude are
possible for the specific example addressed.

PACS number(s): 42.50.Lc

I. INTRODUCTION

The traditional way of treating dissipative coupling be-
tween a source system and a large reservoir employs a
linear Liouville equation for the system reduced density
operator [1]. This describes the evolution of the system
reduced density operator ps, having traced out the states
of the reservoir, through the irreversible master equation

ries in Hilbert space [4,5,9—12] conditioned on continuous
photodetection with two distinct elements. The first is
smooth evolution under the influence of a non-Hermitian
Hamiltonian H, ft [Eq. (3)] which originates &om the first
and second term (Zo and l:i) in Eq. (2); the second ele-
ment consists of a stochastic influence that randomly in-
terrupts the non-Hermitian evolution by projections [Eq.
(4)] or quantum jumps, determined by the last term in
Eq. (2) (L2):

—ps = ~ps&

where the Liouvillian l'. can be decomposed into two
parts: a coherent part l:0, which describes the (re-
versible) coherent dynamics driven by the system Hamil-
tonian Hs, and a dissipative part Ci + 82, describing the
system damping through its coupling to the reservoir.
We write

where

; exp
l

——H, g bt
l l@),

: cl~)

ihII. = a, ——Cte.
2

(3)

(5)

&ps = &Ops+ &ips+ &2ps
Z 1= —[pg, Hs] ——(CtCps + psCt C) + Cps Ct . (2)

2

The Lindblad operator C [2] acts on the small system
and as written here represents the coupling to a zero tem-
perature reservoir. In spontaneous emission from an ex-
cited atom, for example, the relevant Lindblad operator
C oc 0, the atomic lowering operator, whereas for cav-
ity field-mode damping, the Lindblad operator C oc a,
the annihilation operator. Simulation or Monte Carlo
methods to describe the evolution of single realizations of
systems described by the relevant master equations have
been developed [3—5] based on continuous measurement
theory [6,7]. Photoelectric detection monitors quanta
that irreversibly decay into the reservoir which provides
conditioning information that interrupts the coherence
of the system dynamics [8]. One method which has re-
ceived a great deal of attention recently is the Monte
Carlo method that simulates the evolution of trajecto-
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Apart from providing insight (especially into the behav-
ior of single realizations [13,14]) into dissipative coupling
to a reservoir, any method that evolves a state vector
rather than a density matrix requires less memory on
a computer than a numerical integration of the master
equation. This can make otherwise diKcult problems
treatable. On the other hand, the sampling process in-
volved in the Monte Carlo method requires the integra-
tion of the state vector to be repeated many times before
an average is obtained to describe an ensemble of dissi-
pative systems, and associated moments. The procedure
has been implemented in two ways. One of them involves
making use of a delay function in which the waiting time
distribution for photon detection needs to be calculated
[3]. A second approach involves discretizing time into fi-

nite steps bt [4] and at every step deciding whether or
not a quantum jump occurs. The latter is essentially
based on a first-order unraveling of the master equation,
which makes it disadvantageous when compared with a
direct integration, which one might think of implement-
ing with a more accurate and stable higher-order Runge-
Kutta method. We follow the suggestion given in [5]
and perform the non-Hermitian evolution [Eq. (3)] with
a fourth-order integration technique. However, this does
not remove the fundamentally first-order character of the
unraveling and hence the simulation. It is the purpose of

1050-2947/95/51(4)/3302(7)/$06. 00 51 3302 1995 The American Physical Society



HIGH-ORDER UNRAVELING OF MASTER EQUATIONS FOR. . . 3303

this paper to show how this can be achieved.
In the following section we introduce an improved

Monte Carlo method which provides a fourth-order simu-
lation of the master equation (1) yet retains the simplic-
ity of the method as described in [5] without the need to
introduce waiting tixne distributions. We next examine
the error measure in the Monte Carlo methods employed.
This is followed by a section presenting the results of our
investigation into the error of the Monte Carlo method
and of the quantitative improvements &om the fourth-
order Monte Carlo method.

II. HIGHER-ORDER UNRAVELING

In this section we will present our proposal to arrive
at higher accuracy results when using a modified Monte
Carlo method and state the resulting changes &om the
standard method. The Monte Carlo or quantum jump
method is based on the simulation of the conditioned
evolution of either a density operator or a state vector
[4]. At one point it is not, however, a rigorous implemen-
tation of the trajectory concept. Because this method
discretizes time into small steps bt, a quantum jump
[Eq. (4)] in the simulation takes a finite time bt, whereas
in a simulation of quantum trajectories the information
gained [5,15] &om detection should instantaneously be
used in conditioning the quantum state of the system.
This pinpoints the subtle difFerence between conditioned
trajectories and the slightly simpler idea of evaluating the
probability of decay quanta at discrete time steps. The
simplest way to remedy the fact that conditioning takes
time in the simulation is to add evolution with the efFec-
tive Hamiltonian to the projection step [Eq. (4)]. Having
said this, the question arises at what point during the
time interval bt we need to condition the quantum state
according to the result of the detection process. First,
it is worth noting that wherever we decide to do this, it
would not change the accuracy of integrating the master
equation in first order. Second, we may try to increase
the accuracy by choosing a specific point in the interval
bt Let us int.egrate the master equation (1) to second
order in bt:

ps(t + bt) = ps(t) + —bt ( [&ps]i + [&ps]i+ay ) + O(bt') .
2

(6)

The terms that result from evaluating the right-hand side
of this equation can be cast into the following form (see
the Appendix):

1
ps(t + bt) = Ups(t)Ut + bt—UCps(t)ctUt

2

+ btc-Up, (t) Utct1

2

+ bt'U-ceps(t)c'CtU' + O(bt') . (7)
2

Here U denotes evolution under the influence of the ef-
fective Hamiltonian

Z

U = exp
~

——H, ir bt ~,h

which we call the "no-jump" evolution. The four terms
on the right-hand side of Eq. (7) represent four specific
conditioned evolutions or minitrajectories that the sys-
tem might follow. An expansion into minitrajectories is
important because only then can the density matrix evo-
lution (7) be simulated with pure states [as in Eqs. (3)
and (4)]. The first minitrajectory in Eq. (7) represents
evolution without any jump, the second and the third
represent a jump followed by evolution without jumps
and vice versa, respectively, and the fourth includes two
successive jumps followed by no-jump evolution.

We see that it is not sufIjLcient to specify one point in
the interval b't at which to condition the density opera-
tor due to the quantum jump. We have to consider two
points, at the beginning and at the end of bt, and also the
possibility of two immediately successive quantum jumps
in order to increase the accuracy in bt by one order.

We have pursued this idea to obtain results which are
accurate up to fourth order (in bt). The master equation
was integrated along the lines of a fourth-order Runge-
Kutta method for ordinary difFerential equations. This
was done using a MATHEMATK, 'A package [16] of com-
puter programs in order to ensure operator ordering was
maintained. The resulting terms were ordered and cast
into terms that represent minitrajectories. The result in
fourth order then contains 13 minitrajectories (including
the no-jump evolution) as follows:

ps(t+ bt) = Uips(t)U + sbtU1Cps(t)ctUi + sbtCUips(t)U Ct + gsbtU. CU ps(t)Ut CtUt

+ s btU2 CUl ps (t) Ul C Ug + bt Ul CU1 Cps (t)C Ul C Ul + s bt CU1 CU1 ps'(t) Ul C Ul C

+ ,'bt'U. CCU.-ps(t)U,'Ctc'U,'+ 2', bt'U, cccps(—t)c'C'CtU, '+ —,', bt'CU, ceps(t)c C'U,'Ct
2 2

+ bt CCUicps(—t)ctUtctct + bt CCCUips—(t)Utctctct
+ ,', bt'U, ccccp, (t—)c'ctctctU,'+ o(bt') . (9)

The subscripts on the non-Hermitian evolution U indi-
cate the fraction of the time interval bt for which each
particular U evolves the density operator, e.g. , Uqy3 ——

exp( i H,e bt/—35). The way in which Eqs. (7) and (9)
are turned into a Monte Carlo simulation is clear: each
minitrajectory defines the conditioned evolution of the

I

system and is assigned a specific probability with which
it occurs, analogous to the jump and no-jump probabil-
ities in the standard method. Just as in the standard
procedure, a random number uniformly distributed be-
tween 0 and 1 is drawn to choose at random which of
the minitrajectories will govern the system evolution in
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the next time step bt. The no-jump evolution is tested
first as this, for small bt, is the most likely minitrajec-
tory. We note that the probability for evolution with-
out detection remains unchanged as compared with the
standard method and because the no-jump evolution is
most likely the diversity of the minitrajectories hardly
inHuences the necessary computing time. However, if the
no-jump minitrajectory is not selected then one of the
alternative trajectories in Eq. (9) must be chosen. For
example, if the normalized state of the system at time
t is lilt(t)) then the state of the system after evolution
corresponding to the fourth minitrajectory in Eq. (9) is

liII(t + Pt)}
—1 H tf l5 /st1 c —t H tt 2bt/sh

liII(t)}
1

[as in Eq. (9)] generalizes in a straightforward way to
systems with more than one Lindblad operator CA, . As
in the erst-order unraveling procedure one simply ex-
tends Eq. (5) to include the additional decay channels
through the H, tt = Hs —(ih/2) P& C&CA.. . However, in
fourth order Eq. (9) must be generalized to a sum
over all possible permutations of sequences of difFerent
jump operators Ck, e.g. , the last term takes the form

(1/24) bt Q, , q t UiC, C~ Ct, Ctpg(t)Ct CqC~CtUit
The procedure we have described can be related to the

unraveling of the master equation as it results from a
formal integration of Eq. (1) [4], that is,

p(t) = exp (Z(t —to)) p(to)

(io) tm t2

which includes a renormalization factor JV. The state l@)
is evolved with the e8'ective Hamiltonian over two-thirds
of the time step bt using a fourth-order lunge-Kutta inte-
gration step [5]. After projection with the Lindblad oper-
ator C the evolution is continued with the non-Hermitian
Hamiltonian for the remaining third of the time step 8t.
Only then is the resulting state vector renormalized. The
probability for this minitrajectory to occur is given by the
product of the factor 3ht/8 and the renormalization JV.

We note that the whole procedure described above
I

= ) dt dt i . dti
m=0 tp

(Cp+C1) (t—t ) g (Cp+C1) (t t 1)—28

xC. Z .("+")("-")p(to)).

The rather complicated formula also applies for a small
time step bt. The di8'erent terms in the sum contribute to
diR'erent orders in bt. A first-order approximation to Eq.
(ll) replaces the sum over integrals by the sum terms
m = 0, 1 and approximates the integral. The result is

p, (t+ ht) = )
m=O

dt
~m

dt 1 ~ ~ dt1
t

)( ( e( 0+C1)( +St tea)Q (Ce+C0l)( rn tttn —1)Q Q (Cp+Cl)(t1 —t) (t)j2 C 2'' 2&

(Cp+Ct) St (t) + gt (Cp+C1) btg (t) + ~(gt2) (12)

This result leads to a procedure as described by Eqs. (3)
and (4), the only difference being the evolution with the
non-Hermitian Hamiltonian that follows the projection
[Eq. (4)]. Higher than second order approximations to
Eq. (11) involve approximations to multiple integrals to
higher than first order. Using the trapezian rule extended
to multiple integrals we arrive at Eq. (9) as an approxi-
mation to Eq. (11). It is worth noting that Eq. (9) is not
unique in the sense that it integrates the master equation
(1) to fourth order.

III. ERROR MEASURE

an average over the outcomes z;l~ from single trajecto-
ries i at time step j. The number we choose as an error
measure for a particular result is calculated as

(14)

where

Tolls

is the exact result that may be obtained from
an analytical solution and the sum over j means averag-
ing the square of the number Pz over the n time steps in
the evolution. By examination of one of these sum terms
Pz we find

Next we will give a description of how to assign an error
measure to Monte Carlo results. Typical results from the
Monte Carlo method are time evolutions of observables
calculated as an average of (say) N single trajectories.
These % trajectories constitute a sample drawn at ran-
dom from the universe of trajectories. The outcome of
an observable (say) x at time step j in the time evolution
is

/3,' = ~ ) . (**I~ —»I.)' —(s*l')'

where (s l~)2 is the squared standard deviation of the
sample

N

(s*l~)' = ~ ).(~'I. —*I~)'.

Prom the principles of the Monte Carlo method we know
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that taking into account the whole universe of trajecto-
ries the mean yields the analytical result xol~. Although
we do not (and cannot) take into account all trajectories
in the universe, we might take the sum in Eq. (15) to ap-
proximate the squared standard deviation in the universe
(~*l.)':

1.0

0.5

N

cree = . xi j xo j (17)
A

0.0
V

Furthermore, for the case of a normal distribution we can
use -0.5

so that

N
O~ =8~ )N —1 (18)

-1.0
0.0 2.0 4.0

7t

I

6.0 8.0

(19)

is the standard error of the average. Hence the number P
we chose as an error measure is a root mean squared av-
erage of the standard error along the time evolution and
in particular we expect it to be proportional to I/~N.

FIG. l. Ensemble averaged time evolution for the expecta-
tion value (os) (inversion in the two-level system). The dot-
ted line shows a sample of 250000 trajectories obtained by
the fourth-order Monte Carlo method (g/p = 1, pbt = O. l,
and zero detuning). It is hard to distinguish the dotted line
from the solid line showing the analytical result. The dashed
line shows a sample of 250000 trajectories obtained by the
first-order Monte Carlo method for the same parameters.

IV. B.ESULTS

We have investigated the improvement gained from im-
plementing the higher-order unraveling formula [Eq. (9)]
by looking at the problem of resonance fluorescence from
a two-level system [11].In a rotating frame the efFective
Hamiltonian is

ih
H, fr ——hA o+o. + h(go. + + g*o ) ——po+o, (20)

2

where 0+, o are operators for the two-level system
which flip the state of excitation, L = u —0, denotes
detuning between the two-level transition frequency ~
and the field mode frequency 0, and g = —

2 pE'~ in-
corporates the strength Eg of the driving field and the
dipole matrix element p. The decay constant p describes
the coupling to the vacuum and the I indblad operator C
in Eq. (2) becomes ~go . For our simulations we chose
g/p = 1 and zero detuning. In Fig. 1 we show two Monte
Carlo method results, one using the first-order unravel-
ing as given by Eqs. (2) and (3) (dashed line), the other
one using the fourth-order unraveling formula [Eq. (9)]
(dotted line). Note that in implementing Eq. (9) the
last six terms are not needed in this problem because
(o )2 = (o.+)2 = 0. The fourth-order result is hard to
distinguish f'rom the analytical solution (solid line) ob-
tained by solving the master equation. It can clearly
be seen that for this sample size N and time step bt,
the fourth-order Monte Carlo method converges accu-
rately. The first-order method would have required a
much smaller time step to achieve the same accuracy.
The two parameters N and bt compete in their influ-
ence on the error. Having chosen a particular step size
bt, an increase in N will not always continue to improve
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f

100
~ I

1000 10000
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100000

FIG. 2. The error measure P as an average over the time
evolution from pt = 0 to pt = 8 for di6'erent sample sizes
and time steps using the first-order method. Sample sizes
range from 20 to 250 000. The time steps are pbt = 1, 0.1, 0.01,
and 0.001 and are depicted by the symbols o, , Q, and A,
respectively. Other parameters are the same as in Fig. 1. The
solid line shows 1/~N.

the error. At some point, the first-order character of the
decision between no-jump and jump at every time step
[Eqs. (3) and (4)] will start to dominate, so that increas-
ing the sample size does not reduce the error any further.
This leveling out is the most prominent feature of Fig.
2. As we expected from the discussion above, the error
measure first shows a I/~N dependence before it begins
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to Qatten out and rexnain constant with increasing N,
owing to the constant influence of the step size bt T. he
remaining errors at very large N roughly depend linearly
on the size of bt. This means that we can estimate the
required sample size and time step to achieve a particular
accuracy.

We now reexamine the same evolution, but using the
fourth-order unraveling formula [Eq. (9)]. The result is
shown in Fig. 3. Only for the largest tixne step bt was the
region of constant error reached within the sample sizes
we chose. By comparison with the first-order method,
the accuracy achieved with a given time step is much
greater so that we can drastically increase the size of the
time step and still obtain results of the saxne accuracy.
Using the first-order method, we need to reduce the time
step to bt = 10 in order to achieve an error of the
order of 10 . The fourth-order method allows us to use
bt = 10, which is two orders of magnitude larger. We
note that the higher complexity of Eq. (9), as compared
to Eqs. (3) and (4), leads to only a slight increase in
computing time. So with a mean of four jumps occurring
during a time evolution that consists of 8000 steps, this
improvement means that if the fourth-order method is
required to perform at the same accuracy as a first-order
unraveling, much larger time steps can be used and there
can be a considerable saving in computational effort (by
orders of magnitude).

We have also applied the fourth-order unraveling for-
mula [Eq. (9)] to a more complex system: the problem
of the Jaynes-Cummings revivals with cavity loss. Mak-
ing use of a large step size bt, we can show that also
for this system the Monte Carlo method converges accu-
rately. Especially when insisting on high accuracy results

this is an enterprise that would have taken significantly
longer given xnodest personal computer or workstation
computing power and using the first-order method.

V. CONCLUSIONS

We have presented a fourth-order Monte Carlo method
to simulate dissipative evolution of quantum systems.
Using an error measure which is a squared mean of the
standard error of the average from the single trajecto-
ries, we have shown the competing in8uence of sample
size N and size of the time step bt on the error in Monte
Carlo results. In the region of sample sizes where the er-
ror from the finite size of the sample dominates, we find
a 1/~N dependency of the error, whereas in the region
where the finite time step dominates the error, it remains
a constant with increasing size of the sample. The lin-
ear error dependence on time step size bt for very large
samples enables us to estimate an error given a particu-
lar time step and sample size in our model problem. We
have shown how the modified fourth-order Monte Carlo
method can reduce this error by two orders of magni-
tude while increasing computing time only marginally.
Alternatively, the same accuracy can be achieved by the
present method in a computing time that is two orders
of magnitude shorter. It is not necessary to calculate
waiting time distributions and the implementation on a
computer remains as simple as for the standard method.
Moreover, the method can be directly applied without
the need of prior analytical calculation.
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APPENDIX: THE SECOND-ORDER
UNRAVELING
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In this appendix we will show some of the details of the
second order unraveling, that is, we give the steps needed
to go f'rom Eq. (6) to Eq. (7). We start by performing a
Taylor expansion on Eq. (6) to obtain

FIG. 3. The error measure P as an average over the time
evolution from pt = 0 to pt = 8 for different sample sizes
and time steps using the fourth-order method. Sample sizes
range from 20 to 250 000. The time steps are 7bt = 1,0.1,0.01,
and 0.001 and are depicted by the symbols o, CI, Q, and A,
respectively. Other parameters are the same as in Fig. 1. The
solid line shows 1/~N.

ps(t+bt) =
I
1+btC+ Z

~
ps(t)

bt'
2 j (A1)

in second order. We work to second order in bt through-
out this appendix and for convenience we set 5 = 1 in
this appendix only. The I iouville operator 2 is given in
Eq. (2) and may be used to obtain
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2 ps(t) H—sps(t) + 2Hsps(t)H$ + H—sctcps(t) + iasps(t)ctc —iH$Cps(t)Ct —ps(t)H$ —iCtCps(t)H$
2

——ps(t)ctcas +iCps(t)CtHs + C—tCHsps(t) + C—tcctcps(t)
2 2 4

+ Ct—Cps(t)Ctc — Ct—CCps(t)Ct — ps—(t)asctc + ps—(t)Ctcctc — Cp—s(t)Ctctc
2 2 2 4 2

1iCH—sps(t)Ct + zcps(t)asct — Cc—tcps(t)ct — Cps—(t)CtCCt + CCps(t)CtCt.
2 2

(A2)

U = I+ bt
~

-'a, — cc -~ +
~

-a, + ccc-c+ -a,c c+ cca-,
~

.
I t ) bt' (, I
2 ) 2 q 4 2 2 )

This then leads us to the second-order expansion of Ups(t)Ut,

Now, as in the first-order unraveling, we anticipate a term in the expansion to be of the form Ups(t)Ut, where U
is given in Eq. (8). The factor Ups(t)Ut is simply the density matrix version of Eq. (3). To evaluate Ups(t)Ut we
first need the second-order expansion of U which is

Ups(t)U = ps(t) + bt
~

zasps—(t) — CtCps—(t) +ips(t)Hs ——ps(t)C C
l

~ 1 t 1 t
2 2

hs'
2H$ ps (t)Hs + —Ct Cps (t)Ct C + i Hs ps (t)C tC —i C"Cp$ (t)Hs —H$ ps (t) + Ct CCt C—ps (t)2 2 4

+ asCt Cp—s(t) + Ct Cas p—s(t) —ps(t) Hs + ps(t) Ct CCt C — ps (t)Ct C—as — ps(t) Hs—C'C
2 2 2 2

(A4)

Now if we subtract this expression for Ups(t)Ut from the second-order expansion for ps(t + bt), which is Eq. (Al)
with 8 ps(t) from Eq. (A2), we obtain the residue

bs'
ps(t + bt) —Up (t)Ut btCps(t)Ct + iasCps(t)C—t +iCps(t)ctHs ——CtCCps(t)Ct — Cp (t)CtC—tC

2 2 2

i CHs ps(t)C—t

+iCps(t)asCt ——Cctcps(t)ct ——Cps(t)ctcct + CCps(t)ctct ~.
2 2

(A5)

These terms are to be assigned to minitrajectories. The first term Cps(t)Ct is in the correct form for a minitrajectory
and corresponds to the first-order Eq. (4) when placed in a density matrix form. The last term CCps(t)ctct is also
in the correct form, but the remaining terms are not obviously minitrajectories (i.e., they are not Hermitian, etc.).
However, we note that, to first order in bt, we can expand a new minitrajectory Ucps(t)ct Ut as

UCps(t)C" Ut —Cps(t)ct + bt iHsCps(t)C—t Ctccps(t)Ct+iCp (t)CtHs — Cps(t)ctctc—
2 2

If we multiply this equation by bt/2 we see that it results in half of the first term on the right-hand side of Eq. (A5)
and exactly the second through to the fifth terms of Eq. (A5). We conclude that we need only btUcps(t)ctUt/2
to obtain almost half of Eq. (A5). The sixth to ninth terms of Eq. (A5) are easily found to be the minitrajectory
btcUps(t)Utct/2 As mentioned. , the last term is already a minitrajectory, although to second order in bt we have

ccp, (t)ctct = Uccp, (t)ctctUt {A7)

and we may use either form. In Eq. (7) we have used the second form because it is closer to the terms appearing in
higher orders such as the fourth order unraveling in Eq. {9).This completes the proof of Eq. (7).
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