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Quantum theory of nonlinear fiber optics: Phase-space representations
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In this paper the equations for quantum optical pulse propagation in nonlinear and dispersive
single-mode fibers are presented in terms of two phase-space formulations based on the positive-P
and the Wigner distributions. Included are the effects due to the coupling of the electromagnetic
modes to the vibrational states of a vitreous silica fiber. By making use of the well-known equiv-
alence of Fokker-Planck and Ito stochastic equations, we demonstrate two alternative methods for
formulating the equations of motion as coupled stochastic c-number equations for the propagating
field. The first method involves a representation of the density operator in terms of the positive-
P distribution function. This leads to exact stochastic equations of motion. The second method
makes use of the Wigner distribution function. This method, which requires truncation of third-
order derivative terms in the corresponding Fokker-Planck equation, is necessarily approximate.
However, we discuss certain advantages to the Wigner approach that have made it the preferable
method for exploratory work.

PACS number(s): 42.50.Lc, 42.50.Rh, 42.65.Dr, 42.81.Dp

I. INTRODUCTION

It is the purpose of this paper to consider the develop-
ment of phase-space methods as an alternative to previ-
ous Heisenberg treatments of quantum pulse propagation
in single-mode optical fibers [1—4]. It is our intention to
present two practical methods of analysis for the quan-
tum problem. At the very least, these offer straightfor-
ward means of numerical analysis when operator methods
become intractable due to the nonlinearities encountered
in the theory of strong fields in fibers. It is suggested that
analytic methods based on the classical theory of inverse
scattering may also be applied to the resulting equations.
As yet, however, no such work has been carried out in
that direction, though we see no reason why it should
not.

A good deal of work on the problem of quantum pulse
propagation in fibers has appeared over the last few years
[1—6]. For a review of the subject the reader is referred
to the article by Drummond et al , in Nature .[7]. How-
ever, except for the work originating kom Carter et al.

[5] all analyses have begun with the Heisenberg equations
of motion. Some useful methods for solving these opera-
tor equations, which are always variants of the nonlinear
Schrodinger (NLS) equation, have been developed. In
particular, by using Bethe's ansatz [8], it is possible to
obtain exactly the eigenstates of the simplest nonlinear
Hamiltonian leading to the NLS equation. The states
of this basis are the true quantum solitons of the NLS
equation —they represent a bound cluster of photons of a
definite number; they are number states. The NLS quan-
tum soliton will maintain its identity while propagating
in an ideal nonlinear and dispersive single-mode fiber and
also while interacting with other quantum solitons it en-
counters. However, it is not a trivial matter to construct
arbitrary states of the field Rom such a basis.

For this reason most methods for solving the Heisen-

berg NLS equation with arbitrary initial conditions usu-
ally rely on being able to linearize the equations of mo-
tion in the limit of large photon number. Currently, with
the investigation of soliton pulses [9—11] typically con-
taining 10 photons, this approximation is quite a rea-
sonable one. A more general formulation of the prob-
lem which does not rely on linearization would be useful.
Phase-space treatments offer this possibility in partic-
ular, through the use of the positive-P representation of
the density operator. Moveover, they allow one to dis-
pense with noncommuting operators and deal directly
with standard c-number equations. The resulting equa-
tions appear similar to the classical nonlinear Schrodinger
equation. The main difference is that they are actually
multiplicative stochastic differential equations. Never-
theless, it is expected that the sophisticated tools of the
inverse scattering transform [12] could be successfully ap-
plied to these equations. At the very least, direct numer-
ical simulations of these nonlinear stochastic equations
are not difficult to carry out [13].

We have also found that these phase-space methods al-
low the straightforward inclusion of excess thermal noise
sources which are critical to any realistic appraisal of the
nature of quantum effects in pulse propagation. An im-
portant class of such excess noise is the one due to the
possible vibrational modes of a glass fiber. The high fre-
quency oscillators in this class have a molecular origin
relatively localized groups of silicon and oxygen atoms in
silica provide modes of vibrational motion which can cou-
ple to the electromagnetic field and cause Raman scat-
tering. Low frequency oscillators are formed from the
collective motion of the fiber atoms on the scale of the
fiber diameter and generate what is termed guided acous-
tic wave Brillouin scattering, or GAWBS [14].

These vibrational modes can be included in one of two
ways. They can either be regarded as a type of gener-
alized reservoir which extracts energy from the electro-
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magnetic field, as in [4], or we may treat them as oscil-
lators which are coupled to the electromagnetic Geld and
which are themselves coupled to a reservoir source [15].
We take the latter approach in this paper. We choose
to explicitly include two types of reservoirs. One set of
reservoirs models the small scattering losses of the elec-
tromagnetic Geld that are typical of silica Gbers. The
other set of reservoirs found here are those that couple
to the primary phonon modes of the glass. The primary
modes, in turn, are those that couple to the propagating
electromagnetic Geld. The use of these phonon reser-
voirs allows us to associate with each primary phonon
mode a finite linewidth. The existence of this linewidth
is useful in the mathematical development of the theory
of the vibrational response of the Gber and constitutes
the main reason why it is retained in this paper. Thus
the theory found here represents the rigorous derivations
behind the results presented in Refs. [4,13,15]. New re-
sults are also presented. In particular, the correlation
functions for the thermal noise sources of an optical fiber
have been worked out in the time domain for both the
positive-P and Wigner formulations. Also, a new result
is presented for the Wigner treatment. This is an infinite
vacuum noise term which was previously overlooked by
Drummond and Hardman [13]. Clearly, neglect of this
correction term may lead to serious implications for any-
one attempting to use the Wigner theory.

Phase-space methods

Quantum mechanics need not always be phrased in
the language of operators. The phase-space picture of
quantum mechanics is an alternative to the common-
place method of representing quantum variables with
noncommuting operators. Interestingly, the phase-space
method in quantum theory is almost as old as the better
known representations of Heisenberg (matrix mechanics)
and Schrodinger (wave mechanics), being introduced by
Wigner [16] in 1932 in connection with quantum correc-
tions to classical thermodynamic formulas.

The basic idea is that the quantum density operator p
can be replaced by a distribution function, P say, which
contains the same (i.e. , complete) information about the
state of the system as does p. Noncommuting operators
and an equation for p (the master equation) are replaced
by conventional c numbers (x and p, say) and a distri-
bution function P with which moments of the c-number
variables can be computed, just as in the classical the-
ory of statistical mechanics. However, the peculiarities of
nature described by the quantum theory do not allow a
representation in terms of distribution functions as regu-
lar as those which may be used to describe the classical
mechanics of systems with a large number of degrees of
freedom. Trajectories in classical mechanics are replaced
by diffuse curves in the phase space of quantum mechan-
ics. The quantum distribution functions can rarely be
interpreted directly as positive dejinite probability dis-
tributions, although, as we will see in the case of the
positive-P representation [17], this can be acheived at
the expense of doubling the number of phase-space di-

mensions which would be required to describe an equiv-
alent system of classical variables.

One advantage which obtains &om the representation
method, and the one we shall be making use of, is that
the phase-space picture allows us to reintroduce the idea
of trajectories —albeit trajectories quite unlike their clas-
sical counterpart. The quantum trajectories must obey
the Heisenberg uncertainty principle. This requirement
can be achieved by introducing the idea of a stochas-
tic equation as the fundamental equation of motion for
the system variables. This idea, which relies on the well-
known equivalence between Fokker-Planck equations and
Ito s stochastic differential approach, is outlined in Ap-
pendix B.

II. THE INTERACTION HAMILTONIAN

The Hamiltonian for the system of electromagnetic and
vibrational modes of a silica fiber has been outlined in
detail elsewhere [4,15]. For completeness we shall brie8y
describe the various terms of which it is composed. For
the sake of simplicity, the Hamiltonian is assumed to de-
scribe a polarization-preserving fiber. This allows us to
dispense with the vector nature of the electromagnetic
field. For the complete tensorial Hamiltonian treatment,
see Ref. [4]. Our simplified Hamiltonian is meant to de-
scribe a nonlinear and dispersive single-mode fiber which
supports vibrational states (i.e., phonons) at the molec-
ular and macroscopic level. The coupling of phonons
to photons of the electromagnetic field will be shown to
produce an extra source of nonlinearity beyond the usual
electronic one. Also included is a coupling of both the
photons and the phonons to modes outside those of pri-
mary interest. These "reservoirs" introduce an element
of damping into the problem. Our Hamiltonian is defined
by H = g. i H~, where

Hi ——hcuo ) n, n( + ti) (uii~nini~,
l ll'

H2 ~xn )
l

Hs ——5) ~~P,~ Pi,
lv

H. =n)-ntn, ) g~[P,'„+P,.],
l V

Hs —ti ) (&o + (d )ni n(
lp,

Hs = 5) ((d + ld ~)pi p(
ivy,

'~) gp[nl nl + n(nl ]&

lies

Hs = &) .g-, [Pi.P&'.„+P~-Pi'„„].
lap,

All operators have bosonic commutation relations of the
form [a,a, ] = h I, where m and m' denote difFerent
modes associated with the Geld described by the anni-
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hilation and creation operators a and at. Note that the
Hamiltonian has been written in terms of local operators
which describe excitations at local spatial positions in the
fiber, each position being labeled by a "cell index" l. For
convenience the fiber has been partitioned into 2N + 1
cells, each of length b,z = L/(2N+1). This procedure has
been covered elsewhere, as in [4,6,15]. The first Hamil-

tonian term Hi describes the linear contribution to the
energy of the electromagnetic Geld in a Kerr medium,
and results &om having transformed the &ee-Beld energy
5P urga&ay, in terms of momentum-space operators, into

one involving only the local operators 6& and n~.
This configuration-space operator pair is defined ex-

plicitly by the following Gnite-Fourier expression of the
equivalent k-space operators:

(2a)

frequency of the photon reservoir operator o,&„ relative
to the carrier frequency up, and that u„„ is the angular
frequency of the phonon reservoir operator P&'„„relative
to u~, the angular frequency of the oscillation for the
phonons in mode v.

The last two Hamiltonian terms, H7 and Hs, repre-
sent the physical couplings of the photons and phonons
to their individual reservoir sources. Note also that the
rotating wave approximation has been assumed so that
counterrotating terms are ignored here. In summary the
variables are the following.

photon, location l.

photon scattering reservoir, location l, mode p, .

phonon, location l, mode v.

phonon reservoir, location l, mode p, coupled

to mode v of phonons.

N
1 —in&I /2z

k(n)
1=—N

(2b)

where ak~„~ is the annihilation operator of the mode with
wave number k(n) = ko + nAk, and Ak = 27r/L. Note
that we have also set the number of A:-space modes equal
to 2N + 1 (and later we will allow N ~ oo). We have
chosen to use a carrier wave number kp in this transfor-
mation, where kp corresponds to the central wave number
of interest, and have expanded the frequency up as

(nAk)'
~I, ——(up+ L(u+ nAk(u'+

2
(d".

The extra factor of Lcu has been included to allow for the
expected frequency shift observed for Belds propagating
in Kerr media. We will choose the magnitude of this
renormalization factor at a later stage when it can be
used to simplify the solutions to the equations.

The second Hamiltonian term H2 is easily recognizable
as the Kerr nonlinearity of the fiber, or the intensity-
dependent re&active index term.

The third and fourth Hamiltonian terms H3 and H4,
respectively, describe the &ee energy of the molecular
(and also macroscopic) vibrational states of the glass and
their coupling to the electromagnetic field. This coupling
may also be thought of as changes induced in the re-
fractive index of the fiber by the excitation of phonons.
Thus Pi„ is the operator which annilihates a phonon of
frequency u, within the lth cell. The justification for
the form of H4 is covered in [4].

The remaining terms, H5 —Hs, represent the non-
Hamiltonian terms, i.e., they describe the irreversible as-
pects of the evolution of an electromagnetic wave prop-
agating in a fiber. These are characterized by reservoir
operators (superscripted with an r ) and their associated
coupling constants. H5 is the free energy of oscillation of
photon reservoirs responsible for scattering losses in the
fiber, while H6 represents the &ee energy of oscillation of
the secondary phonon modes which act as reservoirs to
the primary phonon modes. Note that ~„ is the angular

For a more comprehensive discussion of these eight
Hamiltonian terms, see [4].

We intend to make use of an interaction picture, defin-
ing our interaction Hamiltonian HI by the relation H =
Hp + HI, where the free Hamiltonian Hp is taken to be
composed of the free-field terms for the photon Beld and
the photon scattering reservoirs. The free-field part of
the Hamiltonian is thus taken to be

IIO = ((do ——Aid) ) cli Ai + (h)s —A(d) ) o!& Ex' . (4)
l lp,

By employing the same &equency shift for the reservoir
operators, both o.~ and n& rotate with the same &e-

quency so that terms of the form 6~6«do not exhibit
any rotation in the interaction picture. As a matter of
convenience, we absorb the frequency shift term A~ for
the photon operators in the interaction Hamiltonian into
the definition for u~~ . Thus, in this paper the term is
defined as

~ - (~'(n») + ~"(n»)'/2};.~k(l-i )~.
2N+ 1n= —N

+Lb) 6~~r. (5)

III. THE POSITIVE-P METHOD

Here we extract the equations of motion defined upon
the positive-P phase space. The most important result
of this method, which was developed by Drummond and
Gardiner [17], is that positive-definite diffusion coeffi-
cients can be constructed for Fokker-Planck processes
which would ordinarily be negative for cases involving
nonclassical photon statistics, as, for instance, would
be the case if the Glauber-Sudarshan P representation
was employed. In the theory of quantum pulse propaga-
tion the positive-P representation has been our standard
choice for formulating the problem [5,6,15,18,19]. The
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following sections give the details of our analysis of a sin-
gle pulse propagating under the inHuence of the Hamil-
tonian described by (1).

( g~.
nltA(n) = nl+ + A(cx),

OC1l )
A(cx)nit = nl+A(n),

(Iob)

(loc)
A. The Fokker-Planck equation in the positive-P

representation

The basis for the positive-P representation is the as-
sumption that the density operator can be expanded as
a sum, or integral, of nondiagonal coherent-state projec-
tion operators A(n) of the form

l~l)((~l') I

((~l+) l~l)

Here cx = (n ~, n+lV, n ~+&, . . . , n~) is the vector
describing the 4(2N+ 1)-dimensional phase space associ-
ated with 2%+1 field modes, each of which has associated
with it two complex-number field variables of the form o.l
and o.&+. The density operator is then written as

f a l
A(cx)col =

l col + A(cx).~l) (Iod)

A(cx) dp(n)f clP(n)

dp(n) P(cx) ) A,"(n) 0

l, p,

Thus, when solving the equation of motion for p, which
depends on [HI, p], we can use the above operator cor-
respondences to rewrite [HI, A] in a form which contains
only the projection operator A. In this way the master
equation ihip/Bt = [HI, p] can often be transformed into
an equation of the form

p= Pcx Aw dye,

with P(n) the (possibly) complex distribution function
that one wishes to solve for. The integration measure is
simply an area measure over the complex phase space,

1 gv

l, l', p, v

or, after integrating by parts with the assumption that
the boundary terms vanish, the equivalent Fokker-Planck
equation

dp(cx) =
L

l= —N

d l9P(n)
Bt

~, ~~ —~ ~+ ~+~
((~l+) l~l)

it is easy to demonstrate that in operator products in-
volving the mode operators nl, nl, and A(cx), the mode
operators can always be dispensed with by using the sub-
stitutions

nlA(n) = o.lA(n), (loa)

Noting that the projection operator is a product of terms
that can be written as

02
+2 ). ~ ~ „Dl",l"(~) P(~) (»)

l)l )p»

The indices p and v are used to designate the two types
of field variable associated with each mode, i.e., o.l and
o.l+. From this point the Ito stochastic equations can be
written down and then converted to the Stratonovich
form to which the normal rules of calculus may be ap-
plied. Applying this procedure to the full Raman Hamil-
tonian, where the phase-space vector cx is now extended
to cx, P, n', P", to include the phase-space dimensions
of the phonons and the reservoirs, we arrive at

dye = —. dp, P H, A

dpA ~ ) ~ll'~l' + 2~Xn~l ~l ~~l ) gv (pl + plv) l ) g~ollp

+) — 1 ) wl'L&lI —2z+~ckl col + 1o'l ) g~ (pl~ + pl~) + z ) g~cxl~
v P

lO[+)
0+)

ls LI

—t(cd + Aco) col —2g o!l + ) —
+ + x(M + AM) o.'l + Ig o.'l

lu, lE

—ZM~Pl~ —Zg~&l Al X ) ~ gv~Pl~~ + ) ~
—

+ + X&vPl~ + Xg~nl nl + 1 ) g~lJPl~~
P
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O+)
l&p

—Z(&v + &vp) Plvtg 'gvt Plv + ) + + '(~v + ~v ) Pl + 'gvt Pl
Lvtt Ivy

] t9 .
i 1 0

2 t9o!l
clpl

1 l lu

—2zg~n

+—) 2
—2xy nl + —) + + + 2ag nl P,

1 ~ O . +2 1. ~ O p
O)o+ - - 2 Botl O)Pl

from which the Fokker-Planck equation for BP/Bt can
easily be made out.

B. The equivalent Ito stochastic equations

Using the rules for converting from a Fokker-Planck
equation to equivalent Ito stochastic equations, which are
outlined in Appendix B, we arrive at the following set of
equations for the photon and phonon variables:

whilst the Pl variable has noise due only to the latter
term. Instead of explicitly attempting to find a matrix
B(a, a+, t) such that B.B = D, the difFusion ma-
trix occurring in our Flokker-Planck equation, we will
simply write down noise sources (corresponding to terms
like H dW in the theory of stochastic equations given
in Appendix B) which have the correlation properties we
desire. We can do this because the diffusion matrix D
can be shown to be related to the two-time correlations
of the field Buctuations by, for example,

Oo. , 2 +
~ll~ nil + 2&X~nl nl

Ot
ll

l ) .g. (Pl+. + Pl. ) —' ):g„~l'„+n. ,

([ (t) —( (t))I [ (t ) —( (t ))j)
= D",",(cx, P, n", P") 8(t —t'),

or, say,

+Onl

Ot
= +~ ~lllnll »X~nl

ll

(14a)

= Dp",
'

(cx, P, n", P") h(t —t')

—Z(d Pl —Xg Cll Al —2, ) g Pl p + 'gP

P

(14b)

+'ol ) gv(pl + plv) + l) gpc('l +'9 +t Thus we construct the following noise sources (which are
not unique, and may not even be optimal, but they are
certainly easy to implement):

g (t) = (tt'+gty (t(t) —

toto�).

g (t (t) )~t,

+
= + v Plv + 2gv l Al + Z ) gvlgPlvtg + rip+ .

(14c) (18a)

(t) = (tt —tie lt+(t) t 'toto) g t7+(t))

(14d)

The last terms appearing on the far right of these equa-
tions represent the quantum fluctuations associated with
the fields. Each of these terms has its origin in the dif-
fusion coefficients (the second-order derivative terms) of
the Fokker-Planck equation. Their exact characteriza-
tion is the subject of the next section.

C. The noise sources

1
rip (t) = (~„(t),

&Z+(t) = ~ ~l. (t).

(18b)

(18c)

(18d)

The variables (l and (l+ are independent real Gaussian
stochastic functions (from the intrinsic yfs) nature of the
medium due to electronic transitions) with "white noise"
correlations

Note &om the Fokker-Planck equation implied by (13)
that nl has noise due to the two terms

and
O2

Ootl BPl

The variables (l„and (l„+ are independent complex
Gaussian stochastic functions (complex because we re-
quire the autocorrelations of nl and nl+ to be independent
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of these noises), as are the pair (2 and (l~„+ (for similar
reasons). However, these two pairs need to possess the
following cross correlations:

(t) ~& (t, ) e i—(~ +Ace)(2 —2;)

t
l—(w +Aw)(t —t')

[
ti

l (24)

(2o)

When the fundamental noises are of this form then the
noise sources appearing in the stochastic equations (14a)
obey (16) and (17) which appear as

(2) (t') 2) (t)) = 2iy n,' &„,&(t —t'),

(n. , (t') vis, (t)) = 2g. ~l—~ll ~(t —t').

(21a)

(21b)

X.(t)& .'(t')) = ((.(t)(.'(t')) = o

((,'.(t)(,".(t')) = ((:(t)6-. (t')) = o,

(~, (t) ~,+, (t')) = (~;.+(t) ~;,.+, (t')) = 0.

(22a)

(22b)

(22c)

This is all of the noise appearing in the problem. The re-
maining equations are for the scattering reservoirs; these
do not contain explicit stochastic terms. However, their
corresponding initial conditions do give rise to a source
of noise. The equations are

Note that, because the last equation of this pair corre-
sponds to two off-diagonal matrix elements in the diffu-
sion matrix, the coefficient in (21b) is half of that appear-
ing explicitly in the Fokker-Planck equation (13). Similar
correlations hold for the daggered variables with the ap-
propriate conjugation. The introduction of the time scale
tp is not specified as yet. It will turn out to be convenient
to set this to the natural time scale for the system. Note
the zero correlations:

with corresponding initial conditions for reservoirs in the
far past of (nl„+(t;) nl" (t, )) = n2&, where t, ~ —oo.
The thermal photon number for mode p is n~&

[ e"( o+ v) ~"+ —1 ] ~. Note that this initial condition,
with n~& appearing instead of, say, n~& + 1, is due to the
positive-P representation being one which gives ensemble
averages for normally ordered operator expressions. In
contrast to the case for the Heisenberg operators, these
variables like a& and o.&+ are ordinary complex numbers

and hence do commute. Thus (nl„al"+) = (al+al )
and the order of the variables in these moments is irrele-
vant (however, it should be remembered that they always
correspond to the appropriate normally ordered operator
expectation —so that (nl"„nl„) is the quantity that is rep-
resented by the above positive-P moments.

The reservoir term in the equation for nl in (14a) re-
duces to

t
i ) g—„a',„(t) = — dt') g„e ' + ' ' n, (t')

P 2 P
—'(~„+&~)(t—t') ~ r g. iJ ~ P ~lgsk ~J

= d, (t) + I', (t). (25)

Converting the discrete &equency sums to integral ex-
pressions by introducing a density of states function p
about the carrier &equency up and replacing the discrete
index p by the continueus &equency offset 0 renders the
result

00,'g

Ot
—2((d + A(d) col —2g c22, (23a)

dO P(u)o + 0)g (ldo + 0) e—iA~(t —t')

= 2~ p(~o)g'(~o) ~(t —t'). (26)

0 = + 2(4) + A&) c22 + 2g ex(

2(~v + ~vg ) Plvt 2gvt ~lv~
Ot

+
= + 2(~v + ~vg ) Av + 2gvg Av.

Ot

D. Integrating the reservoirs

(23b)

(23c)

(23d)

The extension of the lower limit on the integral &om —(dp

to —oo introduces an error of in6nitesimal magnitude.
Hence,

" (t) = c2 (t).
2

In the same manner as was described in Ref. [4], the
second term, I'&, behaves like a stochastic quantity due
to the random initial conditions for the reservoir ampli-
tudes. This noise term scales with the loss parameter K,

as is clear &om the correlation function for I'& and the
conjugate term I'& +.

The elimination of the reservoir variables is identical to
the procedure outlined in detail in Ref. [4] where it was
carried out in the Heisenberg picture. As these equations
contain no noise terms we need not treat them in any
special way. Thus, ordinary direct integration gives for

i(~„+du))(t' t;)
(

v (t ) v+(t ))—
2~ ~ll' p(~&)g (~&) n h(~&) ~(t t )

= vn, „h„,h(t —t'). (28)
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Here nth ——nqi, (up) = [e" o~" —1] i. The result is that
the reservoir sum (25) is replaced by a continuous loss
term and its associated noise:

) g„',„(t)~ ——,(t) + 2 (t). (29)

Note that the dimensions for the new variables are [K] =
[I'L ] = s . The steps for the phonon reservoirs are vir-
tually identical:

pr (t) pr (t )
—i(co~+~ )(L—L, )

t
+ ""' "+ """''[-'» (t')] (»)

ti

where (pl"„+„(t;)pl'„„(t;)) = n&&", the thermal phonon
number for reservoir mode p coupled to phonon mode v.
Explicitly nth ——[e" "+ "v " —1] . Thus the reser-
voir sum appearing in the PL equation in (14a) becomes

dt'g e ' ~"+~.v (' ' p (t') —i ) g e ' ~ +~ „)(L L, )p—r (t )

(31)

Also,

-+ 27r p„((ut )g„(sr~) e ' - (' ' i b(t —t')

—:2p„' b(t —t'),

gt ) l'l l' Xn l I + l ) gv(PLv +PLv)
ll V

l + l + ~ l

+~~t() ) g&(P+)a~+,

dl (t) = & 4 (t)

2 —i(w~+cu )(t—t ) ~p
&p th

P

= 2~ pv(~v) gv(~ ) nil (~ ) e " ~(t —t )
= 2q„' n, „b(t —t') (34)

(35)

With n&h(WL + 0 ) = [e"( +n iL'" —1. ] i, and nv

[
eh~„ /kT 1 ]

1 Th

-') ..&'. (t) — .'&.(t) + I'.(t),

where [p„'] = [I'~L ] = s

and the phonon amplitudes:

~~lv . L9 + P P
Bt

—'7v plv —ZgvC1L AL + I l + (L I (36c)
tp

~L * + ~ P + P+ L3+= —p P, +ig„n, n, +I', + (,„. (36 )Bt tp

where we have defined the complex phonon damping pa-
rameter as p„= p' + i~~. Strictly speaking, these
equations should be manipulated with the Ito rules for
calculus. However, we shall scale these equations erst
and see (in Sec. III') that the Ito corrections to the
equivalent Stratonovich equations are tiny for the current
experimental regime of large photon number. Thus we

may ignore these corrections and treat the above equa-
tions with the normal rules of calculus without introduc-
ing any appreciable error in the process.

F. Scaled variables (the macroscopic fields)

E. The traced equations

Replacing the reservoir terms in (14a) with the inte-
grated expressions obtained in the last section leads to
the following system of coupled Ito stochastic differential
equations for the photon amplitudes:

00!l ~ 2 +
Bt

= —i ~ll'O. l' + 2iy al O.l
ll

By introducing a time scale tp and a length scale zp we
can reduce the photon and phonon variables to a conve-
nient dimensionless form. These scales will be explicitly
defined in Sec. IIIH when we choose an appropriate co-
ordinate system to simplify the form of the propagation
equation for the photon field. The following definitions
for the field variables include a factor of (Az) ~ which
removes their previous dependence on the cell size. The
newly scaled quantum fields are chosen as

—'~L ) .g. (4+. + A. )

——"n, + r; + gi~x. L, —~v &o ) g'. (P. )~i,
2

(36a)

W'tp

nAz'

h,„zp
l v ~Lv

(37)

(38)
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2&z(g~) nzp
h,

I 2(~')
(39)

By introducing a convenient form of the nonlinear coef-
ficient which is independent of the cell length, namely,

where the phonon coupling strength has been redefined
as

The term in u~~ is shown in Appendix A to generate
the spatial derivatives which are a consequence of the
dispersive nature of the medium. Thus the continuous
fields P and b„now satisfy equations which look like

—iA(u —(u' —+ P+ its P P+
Ot Bz 2 OZ2 tp

2y Lz
(~')'

we hand that, after rescaling, Eqs. (36d) become

8« n~' 2 +
Bt

= —~) ~««+~x
tp

~It 0 I'&—i« —) .(bi. + b~.] ——«+ n

(4o)

I )—[b++ b„~+
Zp

+~ gg z t g 4 z
V

(44a)

I/y+y I/ 0 rs( )
(~( 1 )

(44b)

b, tp (P+~ Q&X~ ~ &) 2- ~ «~

(41a)

+ I

The conjugate pair of equations for P+ and b+ in the
positive-P representation, which we no longer write down
explicitly, contain the other half of the information on the
system evolution. The noise sources in the continuum
limit have an almost identical appearance to the discrete
results (28), (34), (20), and (19),

(alt r +
0

n

+41 —Zg~ + Z

Az

h,„t, (P+
2nzo g&z

(41b)

I

+i&&' ).Ibi'. +—bi. j
—

2
«+ +

Zp

(r (z, t) r+(z', t')) = Kn h b(z —z') b(t —t'),
(r' (z, t) r'.+(z', t') ) = 2p' n h b(z —z') b(t —t'),
((.'( t)(.'+( ', t')) = h. ( t)(.'( ' t'))

=R ( t)( ( t))
= (((z t) ~(z t ))
= b(z —z') b(t —t').

(45a)
(45b)

(45c)

P
+ +

2n

Bb~+, + i h

Bt " ' 2t 0
p+

+ +h„zp I'i

2n

G. Continuum limit as 3 z —+ 0

(41c)

(41d)

H. Dimensionless coordinates

In this section we reduce the space and time coordi-
nates to dimensionless numbers so that the overall field
equations are in a convenient dimensionless form. The
way we shall rescale our coordinates is to normalize them
with the quantities zp and t p that were introduced in
Sec. IIIF but were not specified. We specify their exact
values here. At the same time we introduce a coordinate

,system traveling at the speed of a pulse moving with the
group velocity u . It is convenient to specify dimension-
less space and time coordinates of the form

As we now show, the equations readily go over to a
continuous form by taking the limit as the cell size tends
to zero. Thus stochastic terms of the form g~ generate
the equivalent continuum term g(z) as follows:

( = z/zp

where

and
t —Z/(d'

(46)

where

(g(z) g(z')) = b(z —z')
Zp

tp

[
A. //[

' (47)

g(z) = lim
as-+o g~z Laz=z

(43)
With this choice of comoving coordinates, ( represents
the distance the field has propagated down the fiber,
while ~ specifies the time coordinate relative to the pulse
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profile, with 7 = 0 at the pulse peak. Notice that we
define zo here in terms of the fundamental time scale to.
In the case of pulse propagation, to can be chosen to rep-
resent the pulse duration. We also introduce the effective
photon number n for the problem,

f

kII
/n-

X~ &0
(48)

cj 0 2 0
2 Br2 8( ojv. ct(2

+r, (q, r) + &iy r. (q, r) —iy r~(q, r), (49)

y~ is taken to be the total nonlinear coeKcient for the
medium and is made up of three contributions. The first
is the fast electronic nonlinear response of the medium
(~), with a time response of the order of a few electro-
magnetic cycles, or 10 —10 s. The second is a
medium time scale ( 10 s) nonlinear response due
to the Raman interaction (~). Finally the slowest of the
nonlinear responses (10 s) is due to electrostriction, or
GAWBS processes (y ).

The scaled equations (in which the photon Geld would
evolve as a first-order equation in ( if we dropped the
mixed space and time derivatives introduced by the
transformation to the comoving frame) is

J. Scaled noises

After keeping track of the scaling parameters the asso-
ciated correlation functions at this stage are summarized
again. First, I'~, the source of noise associated with the
loss of light &om the fiber due to scattering. This is a
thermal effect involving the thermal occupation number

(nth) of the scattering reservoir. Because the autocorrela-
tions of I', I'+ vanish, these must be treated as complex-
valued sources with a nonvanishing intensity correlation.
This correlation in the time and the frequency domains
has the usual appearance for a white noise variable [and
originates &om (28)]:

(r (( r) I (( T )) = b(( —( ) h(r —7 ),

(52a)

(r, (q, -) r,+(q', -')) = "'"
b(q —q') s(-+ -').

(52b)

Next, r~, which is the noise due to fast (virtual) two-
photon electronic scatterings within individual atoms.
This is the quantum manifestation of the intensity-
dependent re&active index induced by the field as it
propagates within the fiber. Because the cross correla-
tions vanish here, and the autocorrelations are real valued
(the noises are the scaled form of (i, (&+), r~, I'+ may be
treated as independent real-valued sources with autocor-
relations [cf. (19)]

v —
b & p+p+ r&

07 (50) (r.(q, ) r.(q', ')) = — —&(( —(') &( — ')
n XT

Note that as well as arbitrarily setting the free param-
eter A~ to Au = u'~k" ~/2to, we have also defined the
dimensionless complex phonon damping parameter as

= top„, and the loss parameter p = rzo/2io' We have.
also let b = ~'to/zo. We shall neglect the terms in h since
they are typically very small (e.g. , b is of the order of 10
for pulse durations around the 100 fs mark). The precise
nature of the scaled noises (which we have grouped and
renamed) is discussed in Sec. III J.

I. The Fourier Belds

Since we will denote the dimensionless frequency by
u = uto it will be convenient to denote Fourier variables
in this paper with a tilde ( ). Thus if f(r) is a function
of the time v, our Fourier pair is defined by

(53)

= (r.'(& ~) r.+(&' ~')). (54)

(r4(q r) r-(q r')) (r4'+(q r) r-+(( r'))

Finally, the noise due to the coupling to the vibrational
modes. There are two sources here. The first is the cross
correlation between the source r~~ appearing in (49), and
r~ appearing in (50) [and originating as the composite
noise term appearing at the far right of the corresponding
Eq. (44a)],

f(r) = f
COO

du) e ' f(ur)
271

for the reverse.

for the forward transform and

(51a)

(51b)

= = b(C —&') b(r —&').
2n

Compare this with the original correlations (20) which
are the unscaled version of this result. This is a purely
quantum effect which, like the correlations for the elec-
tronic noises, is independent of the temperature. Because
the autocorrelation of 1~~ vanishes [see (22c)] this must
be treated as a complex-valued noise source.
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The second vibrational correlation function of inter-
est is the intensity correlation of I'~, which is clearly a
thermal effect involving the thermal occupation number
of the associated vibrational mode. The nature of this
source is the same as for I'~ and so it too is complex
valued:

(with the term due to the initial conditions in the far
past) is

b„((,T) = lim b„((, T—) e

Taboo

+I'"((,T') (57)

Hence, left in this form, all noise sources are b correlated.
These equations may be solved together by integrating
the phonon equations (50) in time (at each point in space)
and then updating the photon variable P. As it stands,
the model represents the "homogeneous gain" problem
if we assume only one vibrational mode. Thus by using
appropriate values for h„, p', and u~ we may solve the
coupled photon-phonon equations, say, numerically. Of
course, what we shall do instead. is eliminate the phonon
part of the problem completely by assuming that it can
be modeled as a large number of vibrational modes, each
with a narrow linewidth. This is a much more satisfac-
tory approach since in reality the number of vibrational
modes is large and much more closely approximates a
continuum than a single broad line (as would be the case
for the homogeneous gain model).

Notice that all of the correlation functions given in
this section scale inversely with the photon number n.
This means that if we were to calculate Ito drift cor-
rections of the form BI,~BB,~/Oxl„as in (B9), for the
equivalent Stratonovich equations describing our system,
then these would scale as n . Since we are generally in-
terested in cases when n 10 we will neglect the Ito
corrections and interpret the equations from this point
on in the Stratonovich sense, i.e. , we will employ the
normal rules of calculus. This is a valid approximation
because the neglected corrections directly affect only the
deterministic part of the evolution, and hence only the
mean-field behavior (and not the quantum fluctuations
themselves). Their omission will thus have a negligible
effect on moments relative to the mean Geld, which is
generally the principal quantity of interest. This proce-
dure should of course be reexamined for the case when n
is small, when corrections to the mean-Beld behavior may
be significant. In this case one may either generate the
(nontrivial) Ito corrections directly, or else interpret the
equations strictly in the Ito sense, where the positive-P
equations are exact.

K. Elimination of the phonon variables

To rid ourselves of the phonons and the corresponding
term which goes as [P+ +P ] in the photon equation, we
write down the formal integral for P and substitute it
back into the photon equation. This procedure generates
a response function for the medium with a characteristic
time delay. This is the primary efFect of the phononic
scattering. Secondary effects are due to the phonon noise
which has been introduced. The formal phonon integral

We neglect the initial condition term since it rapidly de-
cays due to the coupling of the phonons to reservoirs. The
final equation for our photon Geld is what we may term
the Raman-modified nonlinear Schrodinger equation:

02
4+i —4' 4' —v4'

67 XT

T

+7) dT k(T —T ) P (T )(5(T )

(58)

When the last three terms in this equation are neglected
(which represent the thermal and quantum noise of the
system), the Hermitian equation for P+ reduces to the
complex conjugate equation and the result is the classical
equation of motion for the field postulated by Gordon [20]
with a nonlinear response for the medium defined by

h(T) = —) h„[e ~" —e ~-
]

=) Ii e ~" sin[a T] (T ) 0), (59)

q„(T T') I v+((—TI) (60)

This stochastic term represents all of the noise effects due
to the vibrational processes. This term is more compli-
cated than the corresponding noise operator found. in the
Heisenberg treatment since there is also a conjugate part-
ner I'+. In contrast to the Heisenberg picture I'~+ is quite
distinct from I' . This means that the correlation func-
tions which define this pair have a slightly more complex
appearance. These correlations are defined by the fol-
lowing expressions for the time and frequency domains.
Note that we have yet to go over to a continuum of vibra-
tional modes. This will be done in the next section, so
the following may be considered as intermediate results.
For the time domain we have
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(I ((, r)I, ((, 7 )) = (I ((,T) I ((,T ))
= —6(( —j')) Is e S"' '+2o,„e e"' 'cos(to, (e —e ))),2n

(61a)

+ e-&-~ ' —
~

(I' ((,e)I'+(g', e')) = —b(j —j') ) Is .
I I', + 2o,„e s"' ' cos(to (e —e')) ).

And for the Fourier domain where u replaces v. we get

(I'.(q, -)1.(q', -')) = (I.+(q, -) I'.+(q', -'))

(61b)

1= —b( —(' b(d+u' h, , +
2n 'y~ + &((I)I (22 ) QIe + &((222 + (2) )

1 1
(61c)

(I'-((', ~)I,"X',~')) = =2(( —(')~( + ')).»-2.',', , +, , ', , I
[~t~(~-) + 1] nt~(~-)

2n . " "
(~ )'+ (-. —)' (t )'+ (61d)

Clearly we have four equations in the positive-P treat-
ment as opposed to only two in the Heisenberg formula-
tion [4] a consequence of the double dimensionality of
the positive-P representation.

L. The inhomogeneous gain model

The current form of the coupled photon-phonon equa-
tions contains the phonon contribution in terms of a sum
over all of the possible modes of the phonon spectrum.
We adopt the view that the number of modes is extremely
large and calculate the effect of taking the limit as the
individual linewidths shrink to zero. Compared to the
Raman gain bandwidth of 10 THz this is actually a
good approximation to the true situation. Because this
model of the vibrational modes allows us to assign differ-
ent coupling strengths to different parts of the spectrum,
we will refer to this approximation as the inhomogeneous
gain model.

Thus, to arrive at a Anal set of correlation functions
for the noise sources of our glass Aber which will turn out
to be satisfyingly compact, we shall assume a model in
which the frequency spacing between modes is taken (for
convenience) to be uniform and the linewidth vanishingly
small. For simplicity we shall assume p„' = p for all
modes, so that h(2), which we get by taking the Fourier
transform of (59), becomes

Now we assume that the modes are finely spaced and
turn the summation into an integral by introducing a
convenient function n(O) and making the replacement)-„„„()

0 7r
(63)

h(u) = ) h . = 6'(u)) + ih" (2).
'y —2(d + cd

(62)

The factor of vr is introduced here so that o.(O) may later
be identified with the conventional gain function found
in the current literature, i.e. , nII(O) or n (0) depending
upon the frequency region that interests us [or n (0) +
n„(O) in general]. At this stage we merely assume that
o.(O) ) 0, since it is effectively a coupling strength. Since
we shall later take the limit as p ~ 0, the form of h(w)
[determined by the choice of n(O)] is finally given by

h(cu) = lim d&
1 n(0)

~~o /22r p 7r (p —iu) 2 + 02 (64)

As we are interested in the limit as the linewidth p —+ 0
we rewrite the square bracket in (64) and take the limit
after real and imaginary components have been sepa-
rated. It is not diKcult to show that

1
, = R(ur) + iI(ur),

'y —z(d + 0 (65)

where

p2 —~2+ 02
R(u)) =

[p'+ u' —0']'+ [2pO]'
(66a)

I(~) =
[p'+ u'+ 0']

(~ —0) + p2 (u+ 0)
(66b)

1
g2 ~2' (67a)

I -+ ~ ~(~ —l~l) = ~(& —l~l) (67b)(0'+ ~')

hence

Considered as an integrand in 0 it is easy to see that as

p —+ 0 we have
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1 h" (0) 0
(02 —~2) (69)

This is purely the result of modeling our vibrational
modes, to which the field may couple, as a continuum
of harmonic oscillators with very narrow linewidths. The
Kramers-Kronig expression usually turns up as a rela-
tion between the real and imaginary components of the
frequency-dependent susceptibility in the theory of the
refractive index of linear media (in which the polariza-
tion is strictly proportional to the incident electromag-
netic field amplitude). In our context it turns up as a
susceptibility relation due to the nonlinear part of the re-
&active index, since the quantity Id('h(( —(')Pt((')P((')
is electively the Kerr component of the refractive index
(as a function of the pulse profile) due to the "Raman"
effect. By calculating the gain of a small signal in the
presence of a strong quasi-cw pump field it is possible
to show [4] that n(0), the mode density function that
we have introduced, can be identified with the "Raman"
gain spectrum introduced by Gordon [20]. We note fur-
ther that h"(2) is an odd function and h'(~) an even
function.

M. The response function

A detailed summary of the properties and formulation
of the response function is given in Ref. [4]. For that rea-
son, only a brief review of the relevant points concerning
h(v ) is presented here. As demonstrated in the previous
section, we adopt the inhomogeneous gain model for the
vibrational modes by introducing a continuum of vibra-
tional angular frequencies instead of the discrete num-
ber which were indexed by the subscript v. Thus we let

-+ 0, and introduce a density of modes function n(0)
for modes with an angular frequency near O. We also re-

, + , (I-I) (6&)
a(0) 0 isgn(u)

0

Note that for a particular form of n(0) the integral with
finite p should be done first and then the limit taken, as
given by (64). This is what the last equation means.

The above is a derivation of the Kramers-Kronig rela-
tion which states that h'(u) (the dispersive part) may be
obtained f'rom h" (w) (the absorptive or gain part) by an
integration, namely,

place the linewidth p of the modes uniformly with p and
allow this to tend to zero. In this case we can summarize
the relevant properties of the response function in terms
of n(0):

h(7) g 0 only for w ) 0 (and decays as 7 ~ oo),
(70a)

1
h(~) = — dO n(0) sin(0~)

0
(~ ) 0), (70b)

f d~h(~) = 1 —(~ /~ ),
0

(70c)

—2 471du e ' h(u),
271

(70d)

/2vr h(u) = dO, , + n(I~I) (70e)a(0) 0 isgn(u)

1 a(0)= lim
0

(p —iw) + 02

The particular choice for n(0) that we have made is one
which can adequately model both the low and the high
frequency sections of the experimentally observed gain.
Its form is suggested by Eq. (59), which gives the re-
sponse in the time domain for phonon linewidths of finite
size —a(0) is then proportional to the imaginary part of
that response in the frequency domain. Thus we model
n(0) by

n

, , [A,' —0,'+0'] + [2A, O, ]'
(71)

Note that in this expression h~, A~, and O~ are analogous,
respectively, to the coupling strength, linewidth, and os-
cillation frequency of phonon modes in the homogeneous
gain model. However, they appear here simply as fitting
parameters in the inhomogeneous gain model. By using
the expression for a(0) given by (71) we can find h(u)
by doing a contour integral and taking the limit p ~ 0.
Thus Rom (70e)

Tl
(h~OiA~)0 dO

2vr h(~) = lim
([A —0 + 02]2 + [2A.O.] )[(p —iu) + 0 ]

h~ 0~ [(Ai + iu) + Oz]

[A2 —02 + (u2] + [2A, O, ]

Thus the explicit forms for the real and imaginary parts
of h(u) are given by

I ". h~0, [A2+0, —~2]

v 2~,. [A2 —02+ u2] + [2A, O, ]

n

[A2 —02+ u2] + [2A, O, ]

The appropriate values for h~, A~, and O~ are determined
in Ref. [4]. However, since we have chosen a different set
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of comoving coordinates for the phase-space treatment,
it is worth going over what these Gtted parameters are.

In this paper where our dimensionless &equency vari-
able is ~ = ~t(), the physical (dimensional) parameters
are obtained by dividing h~, Az, and O~ by to. The
parameters then obtained are angular &equencies with
units of Trad js. Particular values for these parameters,
which specify the gain in the polarization parallel to the
propagating electromagnetic 6eld, can be found in Ref.
[4] where, by trial and error, a direct fit to the experi-
mental data for the high &equency portion of the gain
curve, which de6nes Raman processes, was obtained us-
ing j = 1, . . . , 6. The GAWBS results, for which the
j = 0 contribution is reserved, will be considered sep-
arately and added in later (see Sec. IIIP). Assuming
that these gain parameters are known, we could at this
stage specify the response function in the time domain
uniquely. It would have a form analogous to (59).

Note also that the &action of the nonlinear response
due to vibrational transitions in this model is given by

N. Behavior of the noise sources

Now we take a look at the correlation functions for
the stochastic variables I', I'+. What we are interested in
here is the behavior in both the time and &equency do-
mains. The frequency domain results for I', I'+, I', I'+
are trivial:

(I'. (& ~) I,"(&' ~')) = „'"~(& —&') ~(~+ ~')

(75)

(76)

(x +x)
XT

(74)

The result for the autocorrelation of I'~ is obtained here
by a sequence of steps. We begin with the expression
(61c) and assume all linewidths to be uniformly given by
+v

(I;(q, u)l. ((,",-')) = —S(q —q')S(-+-')) h. , +
2A 'y+&(~++~ ) 7+&(~v ~ )

+2nth 2 +~'+ (~-+ ~')' ~'+ (~- —~') ) (77)

Now we go over to a continuum of vibrational modes where we make the two replacements (i) c0 ~ 0 and (ii)
m f dAn(O)/w,

dO n(A)
1 1

p + i(o + ~') p + i(o —u')

+2~~h(fl), +w'+ (&+ ~')' y'+ (B —m')'

1
~((' —(")~(~+ ~') ).I'(~')

Then we take the limit as p —+ 0 for each of the I~. Some
care is necessary here. Strictly, for a given form of n(A),
the integrals should be carried out and then the limit
taken. But it is possible to write down the general result
in terms of n(A) without doing this by using a seemingly
obvious plausibility argument. First of all we rewrite Iq

Now as p becomes extremely small we may write this,
depending on the sign of cu', as

Ig(u') = i—
+ 0(—~') n( —u') dA, . (8O)p2+ (0+ cu')

(79) The 0 function is unity for positive arguments and zero
elsewhere, i.e., O(x) = 1 (x ) 0). Likewise for I2 we
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have

dn ~(n)
o p2+ (n —~')

n(n)
0 0 —M

Lorentzian line shape thus contribute a factor of m as p
goes to zero. Note that we may take the lower limit of the
p integrals to —oo without introducing any error here. In
this way Iq and I2 can be combined. to give

Ii(u') + I2(u') = vr n(lu)'l) —2i dn . (82)
n(n) n

o O2 —(u')

+ o(a') n(u') dn, . (81)
p2 + (n —ur')

The integrals containing p as the parameter defining a
1

In the same manner one may straightforwardly show the
d I4 to be 2~~~~(l~l)~(l~l) s«

the general expression for the correlation of I'~ with itself
in the Fourier domain is

«(& ~) r (&' ~')) = —„b(&—&') b(~+ ~') [~th(l~l) + I/2] ~(l~l) ——I —I I — —I i n(n) n
(S3a)

= = ~(C —(') &(~+ ~')(I~~~(I~I) + 8(—~)I ~(I~I) —~V2~ t (~)). (sob)

Next we need to Gnd the cross correlation between I'~ and I'~+. The same sequence of steps is carried out here as for
the autocorrelation. Thus, beginning with (61d),

(r. (q, ~) r.+(q', -')) = —b(q —q') b(- + -') )

b(( —(') b(~+ 2') dnn(n) 2 +
7m o p +(n+w) p +(n —(u)

(s4)

As p —+ 0 this correlation function behaves di8'erently
depending on whether ur' (or m) is positive or negative
since either one or the other Lorentzian contributes, but
not both, giving

p[nth(n) + 1] pn, h(n)
o p'+ (n+ u)' p'+ (n —u)'

ning with the original (finite p) time correlations, given
by (6la) and (6lb), and directly taking the limit as the
linewidth p —+ 0. If the expressions derived in the ke-
quency domain are correct then the results for the time
domain will agree for the two methods. Thus inverse
Fourier transformation of the autocorrelation (83a) gives

(I ((, 'r) I ((,T ))

= ~(l~l) [~~h(l~l) + o-(—~)] dO ~'+ (n —l~l)' [~th(l~l) + 1/2) ~(l~l)
OO

2' 6

(85)

The integrated Lorentzians have a value of 7t. and so 6-
nally

or

i cx(n) n
(n' —cu')

(s7)

(r.(q, u) r.+((', u')) = —' b(q —q') b(- + u')

&& [~~i (l~l) + o(—~)l ~(l~l). (86)

O. Noise correlations in the time domain

Let us now return to the time domain by inverse
Fourier transforming the results of the last section. Then
we can check the result with that obtained by begin-

(r.(q, )r.(q', '))

2 dnn(n) n, h(n) cos[n(~ —w')]
b(C —C')

27m 0

+ dB —'"I —
i~(A))

0
(88)

Note that for the last term in (87) we have made use of
the exact definition of this term,
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71 0 0 —(d

d(d e ' ——sgn(ur) n(~u~)
2

result is obtained rather quickly. For the generic fit to
n(A) that we have chosen, i.e. , (71), it is possible to cal-
culate the temporal correlation function explicitly. To
do this we rewrite the thermal phonon number using the
following identity:

i . o.(0)A
~ ~-+o () [(p —i~)2 + 02] (89)

1
ntg(A) = 1 AA ). 1+

2 4' 2
- 2

m= —~ m2+
2m

This last equality allows us to exchange the order of inte-
gration in (87) and carry out a straightforward contour
integral which gives (88). We note that by beginning
with (61a), the correlation in the time domain, the same

(9o)

Substituting this into (88), with (71) for ~(O), we ob-
tain the following result after performing contour inte-
grations:

' c" (A) e " 'coe(A (7 —v')) + ' ' c'(A) e" ' 'sin(B, J~ —v'f)).

As a consequence of the expansion (90), the coefficients

C+~(A) and the function B~(~ —~', 6), which depend on
the thermal parameter A = 5/kTto, are expressed in
terms of infinite series as (94)

—2wIm~I/6
B'(~, ~) —= )

A2 —02 —(2vrm/4) + [2A~0, ]

(92)

A2 + 02 + (2~m/4)

A2 —n2 —(27rm/b, ) + [2A .& .
]

(93)

In general these series require numerical summation, but
are highly convergent for all but cryogenic temperatures.

Employing the same procedure for the cross correla-
tion, the Fourier transform of (86) gives

or

(r.(C, ) r.+(q', '))

2 dO n(O) nth(A) cos[O(w —x')]
h(( —(")

27m 0

+ one"~ —
'&~(n)).

0
(95)

This is also in agreement with the answer obtained by
beginning directly in the time domain with (61b) and
letting p ~ 0. Performing direct integration of this func-
tion with the same substitutions that led to (91) leads
to

+, , S, ih, , . . . 4~hAO,(I' ((,~) I'+((', ~')) = —b'(( —(') ) + ~ e"&I ' sin[A~(~ —~')] — ' ' 'B'(7- —7-', E)n j=0

~ C~+ (3,) e"~ I
—

I cos[B& (w —r')] + C~ (6) e ~ I

—
I sin[Bile 7 (96)

Note that this is diff'erent from the autocorrelation (91)
only in the imaginary part, where the result now depends
on the sign of (v —7').

We now have the correct behavior of the stochastic
variables in both the time and &equency representation.
This is important if we wish to do calculations analyt-
ically in certain simplifying cases, or model the noise

I

sources numerically for the more general case when this
is the only option available to us.

P. GAVTBS correlations

Our treatment of the excess noise has so far been quite
general and includes both the Raman spectral features
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relevant at high frequencies of the order of THz and
the low &equency noise, on the GHz scale, known as
guided acoustic wave Brillouin scattering. In this sec-
tion we consider exclusively the GAWBS component of
the noise since this is distinct &om the Raman contri-
bution (GAWBS has been discussed thoroughly in ear-
lier references [4,14,18]). For completeness we include
here the same model that we adopted in [4] and write
down the equivalent GAWBS correlation functions for
the positive-P representation, and then later the Wigner
representation also.

Before we consider the time or frequency behavior of
the low &equency noise, we should perhaps address the
question of the validity of the Dirac b-function approxi-
mation for the spatial correlation functions that we have
assumed for the phonon modes to this point. Certainly
for the high frequency Raman modes of oscillation, which
can be highly localized in space and contain as little as a
few dozen neighboring atoms, the assumption of indepen-
dent thermal phonon noise at different spatial locations
seems a reasonable one.

The question arises as to whether this approximation
also holds good for the GAWBS modes, which represent
the collective motion of vast numbers of atoms on the
scale of the Aber diameter. Currently we have no avail-
able experimental information to suggest what the corre-
lation length l~ for this noise should be set at. A rough
estimate based on a coherence time suggested by the
linewidth of a typical GAWBS mode ( 10 s ) and the
group velocity of sound along the fiber (say 10s m/s)
would give l~ 1 mm. As this length is much much
smaller than typical pulse reshaping lengths in the fiber

(of the order of meters) the approximation of indepen-
dent thermal noise at different spatial locations along the
Aber would also appear to be justifiable in the low &e-
quency GAWBS region. That the GAWBS correlation
length l~ is at least known to be much shorter than typ-
ical fiber lengths of the order of a meter or more is es-
tablished &om the observation that GAWBS noise power
spectra scale directly with the 6ber length, and not, say,
with the square of the length as would be the case if l~
was of the order of the fiber length itself [21]. For these
reasons we assume here that the approximation I,~ = 0 is
not a serious simplification of the theory.

The model for the low &equency portion of the gain
spectrum that we have chosen is obtained from the gen-
eral fitting function (71) by setting Ap ——Op,

4h A'-
n (u)= (97)

This section of the gain rises linearly and then tails o8'
to zero rapidly at about 1 GHz or so. More precisely,
the GAWBS bandwidth is given [4] approximately by
3Ap/2 where Ap/tp (0.81 GHz) x 2' rad. The effective
coupling strength of the noise is given by the parameter
hp/tp (0.132 GHz) x 2vr rad. These parameters are for
typical silica Gbers with a cladding diameter 125 pm
and a core diameter which supports a beam waist for the
fundamental transverse mode 4 pm. Of course, for the
positive-P equations, there are two different correlation
functions of interest, expressed in either the time or &e-
quency domains. The first of these (given in the time
domain) is found by taking n(A) = ~(O) in (88),

(I ((,o) Ioo(I, o )) = d(O —
O ) dp o o && o»[B(o —o )] d- o

27m () 4Ap4+ 04) (e~ri —1)

ho —AD~a —a
( o»]&o(o o')] + oooo]&olo o'I]) 'o'~I&olo'

2n AOL
(98)

The thermal phonon number has been approximated above using

(99)

The equivalent Fourier expression for this correlation function, given by (83b) with ~(O) as the gain function, is

(f.(q, ~) f.((,u')) = —S(( —(,"') S(~+ ~') [~th(l~l) + O(—~)] n. (I~l) ——»m1, , i . n (O)OdQ

hoAo, , 4Ao/E+ i(too —2Aoo)

)n A40+ ~4

Similarly we find the cross-correlation functions, beginning with (95),

(100)
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OO 4h A'0
(1.({",~) 1'+({"',~')) = $({,' {,") dO, ' ', „cos[O(~—7')] + e*"{

hp —A= —8{t,
' —j') e "'

~ coo{As{e—e')j q sic{Ao1e —e'f) + csin{A o{ e—e'))I,2n Ap4

and then for (86)

(r.({.', u) r. (q', u')) = —S(& —&') S(~+ ~')[nt~(l~l)+ 8(—~)1~(l~l)1, , 4hpAp2 1= = ~(& —&') ~(~+~')
n (4A4o + ~4) 6 2

(102)

All of these correlation functions could in fact have been
obtained &om the more general expressions of the pre-
vious section by realizing that the thermal approxima-
tion (99) is equivalent to taking only the m = 0 term
in the thermal expansion (90). Note that these GAWBS
correlation functions do not consist only of a pure ther-
mal term, scaling as 1/A T, but have a temperature-
independent component which has to be viewed as man-
ifestly quantum mechanical in origin. This brings us to
the end of our consideration of the problem &om the
point of view of the positive-P representation.

IV. THE %SIGNED METHOD

In this part of the paper we turn to the question of
whether the Wigner distribution function can be used
as an alternative to our formulation based upon the
positive-P function. Obviously, since the physical re-
sults are independent of the representation chosen, an
exact employment of these two methods must give iden-
tical answers. However, it turns out that approximations
have to be made when attempting to generate simple
mathematical solutions &om the Wigner representation.
Thus the two methods in fact may give rise to differing
predictions. Also one method might be favored over the
other depending on the sort of problem we are trying to
solve. It is the aim here to compare and contrast these
two representations in terms of the possibility of utilizing
stochastic equations.

In the case of the Wigner distribution, this representa-
tion is well known in quantum theory and is used by many
workers. As can be inferred from the relatively simple
appearance of the resulting equations in this represen-
tation, this method has advantages due to the reduced
dimensionality of the Wigner phase space compared to
the positive-P phase space. However, when attempting
to derive stochastic equations &om the equation of mo-
tion for the Wigner distribution we find that the equa-
tion is itself not a true Fokker-Planck equation. This can
be remedied in a brute-handed fashion by simply trun-
cating the ofFending higher-order derivative terms in the
corresponding "Fokker-Planck-like" equation (that is to
say, terms higher than second order in the field deriva-
tives). As we shall see, this truncation procedure does

generate viable stochastic equations, but at the expense
of accuracy in the long-term evolution of the fields. In
particular, the truncated Wigner equations do not con-
tain the necessary information to predict the correct be-
havior of third- (and higher-) order correlation functions.
But for large photon number and relatively short propa-
gation distances, the truncation does not affect calcula-
tions dependent upon second-order correlation functions
(as would be the case when one considered squeezing ex-
periments) .

We note that the conditions for the reliability of the
Wigner method are basically those for which linearization
of the Heisenberg equations is valid. Thus, in contrast to
the positive-P treatment, the Wigner method is no more
general than the Heisenberg method, although it does
offer an alternative treatment which allows for direct nu-
merical simulation of the corresponding field equations.

The use of a truncated Wigner equation was first
demonstrated by Graham [22] in 1973 to predict the
tunneling rate between the two above-threshold steady
states of the degenerate parametric oscillator (DPO) due
to quantum noise. The truncated Wigner analysis pre-
sented in this paper was first carried out by Drummond
and Hardman [13]. However, an exact derivation of this
result is given here, which points out the existence of a
frequency renormalization term in the equations which
was previously overlooked. In the limit as the spatial cell
size is taken to zero this renormalization term cannot
be neglected. Indeed, it becomes infinite in this limit,
compensating for the infinite vacuum noise which enters
the Wigner problem from each of the (infinitely many)
frequency modes.

A. The Wigner function

Just as it was for the positive-P case, the Wigner repre-
sentation of the density operator also leads to correspon-
dences between raising and lowering operators acting on
the density operator and differential operators acting on
the Wigner function itself. But before we can write down
these correspondences we first need a definition of the
Wigner function.

For this, we begin with a representation in terms of the
quantum characteristic function, as given for example in
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Gardiner's Quantum Noise ([23], Sec. 4.4.4). Then we
shall transform this expression in different ways in order
to bring out various features of the Wigner function.

Thus we begin with the following definition for
W(o. , o.*), the Wigner function defined over the complex
phase space of the variable n:

x and p then we can reexpress the definition (103) for
W(n, n") in the form W(x, p). We do this by performing
the trace with the state vectors Ix) in the "position" ba-
sis. These are the eigenstates of the operator x. They are
related. to the eigenstates of the "momentum" operator
pby

W(a, o*) = —jd Ae + Tr(pe " ). (103)
1

I*) = dpe '*"
I p) (1o8)

The trace is over some complete set of basis states; we
shall specify three different types of trace in order to
bring out one aspect or another of R' in this section and
the next. To begin with, we can represent the density
operator in (103) by the positive-P function as defined
by (7). Then by taking a trace over the coherent-state
basis we can show how W is related to the positive-P
distribution used in the first part of the paper. When we
do this the appearance of W changes to

p(p p+) —2(ca —P){n —P+)d2pd2p+

and

~y) = fdxe'"~T). (109)

This relationship follows from the commutator for x and
p, as discussed in Ref. [24], Sec. 23. The momentum
operator p can also be expressed as p = (i/2)B/B—z.
By using these results it is straightforward to derive the
following expression for the Wigner function in terms of
the position basis:

(104)
2

W(x, p) = — dy(x+yIpIz —y)e (»0)

We can see directly from this result that the Wigner
function is obtained from the positive-P function by a
complex Gaussian convolution. Thus W is always less
singular, or more smeared out, than the corresponding P
result. For example, if the field is initially in a coherent
state, i.e. , p = Ia.) (n. I, we have for the two distributions

This form for W(z, p) is close to the original distribution
function introduced by Wigner [16].

B. Operator correspandences

and

P(o., n+) = 8 (n —n. ) b (n+ —n*) (1o5) Now we can state what we mean by operator corre-
spondences for TV. If, for instance, we replace p by xp in
expression (110) for W(x, p), it is easy to show that the
result is equivalent to the expression

W(n, n*) = —e
'7r

(106)

a = x+ip and at = x —ip, (1o7)

so that x and p are the noncommuting Hermitian quadra-
ture operators with corresponding commutator [z, p]
i/2.

If the numbers x and p represent the results of a mea-
surement of the variables corresponding to the operators

We shall see that this fuzziness of the Wigner function
arises because it is the distribution most suited to cal-
culating symmetrically ordered moments of the field op-
erators a and at. These symmetrically ordered moments
include the vacuum fluctuations (responsible for the extra
width of the distribution), in contrast to the P function
which is associated with normally ordered moments in
which the vacuum has been factored out.

To manipulate the Wigner function it is useful to have
a list of operator correspondences similar to those de-
scribed for the P function earlier. The easiest way to
find these correspondences is to work with a form for
the Wigner function which brings out most clearly the
dependence of the function on the real and imaginary
components of the variable n. Thus we shall write the
annihilation and creation operators (a and at, respec-
tively) in the following way:

t' in~
x + ——

i W(x, p).4 c)pi

ia
xp m x + ——W(x, p),4 o)pi

i a~
p —— W(z, J ),4 t9x)

i a)
px -+ z ———W(x, p),' p)

i a&
Sp -+

~ p+ —
& I

W(z J).4 )9x)

(112a)

(112b)

(112c)

(112d)

In practice, however, what we deal with usually is a mas-
ter equation composed of various powers of the opera-
tors a and at. Now, since the eigenvalue of the operator
a = x +ip is n = x +ip then the following is true from

In similar fashion we get results for the operator p by
making use of the relations (108) and (109), rewriting
W in terms of a trace over the momentum states when
convenient. The complete table of correspondences for x
and p is given by
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standard complex analysis:

O 1 O . O& O 1(O . O—x —[, +i . 113

1OI
ap m

~
n + — W(n, n*),

2 OA
(114a)

Combining this with the correspondences above in terms
of x and p, we get [in terms of n and a*, and remembering
also that W(x, p) = W(n, a*)]

correspondences, there is always a derivative term on the
right-hand side connected with R'. This is in contrast to
the positive-P case in which derivative terms are absent
in the first and third correspondences of (10). This means
that the order of the derivative terms appearing in the
equation of motion for the Wigner distribution will gen-
erally be higher than that for the equivalent evolution
equation for the positive-P distribution. In particular, if
the latter is a true Fokker-Planck equation (i.e. , second
order in the derivative terms) the former will not be.

C. Example
1O&

atp + o.* —— W(n, n*),
2 OA)

1O)
pat m n* + — W(n, n*),

2 On)

(114b)

(114c)
Ho = &~oa a and

As an example let us consider a relatively trivial Hamil-
tonian which includes a y~ ~ type nonlinearity plus the
free field, namely H = Ho + HI where

1O)
pa i n —— W(n, n*).

2 On* )
(114d)

Now we have a set of operator correspondences which en-
able us to write down the evolution equation for W(n, n*)
directly from the equation for Op/Ot. This is the route we
shall take. Another approach might be to begin with the
evolution equation for P(n, n+) that was obtained in the
first part of the paper; an equation for W(n, n*) can then
be generated by making use of expression (104) which
relates the Wigner function to the equivalent positive-P
result.

Finally, notice that in the above operator —c number

[HI, p] —= iy at'a'p —pat'a'
Bt (116)

which, after using the operator correspondences given
above in (114) results in

We shall apply the Wigner formalism to this example just
to see how it works. This will be useful since it will allow
us to identify the main features of the method without
having to worry about the sort of complications which
arise in the more realistic Raman Hamiltonian and to
which we will return later. Since we can remove the free-
field part of H by moving to an interaction picture, the
density equation associated with (115) becomes

OW(n, n*) . (. 1O&'& 1 O
l'

Ot i 2 On~ i 2 On*)
1 O 'I'f „1OI'
2O ) i 2O

1 0 1 19= 2iy (n*n —1)n* — (n*n —1)n + — n —— n' W(a, n*).
Bo.* f90! 4 &90.~80.2 4 go.*2go. (117)

D. Approximate signer stochastic equations

The final equation obtained in the last section has (ex-
cept for the third-order derivative terms) the appear-
ance of a Fokker-Planck equation with zero coefIicients
for the difFusive terms. For intense fields these third-
order terms may be neglected for the early development
of the Wigner function TV. This is because they are small
in comparison to the first-order terms at least to begin
with. The main reason for this is that the first derivative
terms scale roughly with the mean photon number while
the third-order derivative terms scale inversely with the
same quantity. This certainly suggests that truncation
of the higher-order terms for short times would be justi-
fiable. However, for much longer time scales significant
quantum correlations that would ordinarily be carried by

these third derivative terms can cause appreciable error.
For instance, the truncation of third-order terms means
that if the Wigner function starts ofF as a positive func-
tion then it will remain that way. However, it is often
the case that in order for the full quantum character of a
system to manifest itself the Wigner function is required
to take on negative values at times. This cannot happen
with truncation. The process of truncation must thus
be viewed from the start as one which is inevitably ap-
proximate at some stage. Nevertheless, it may be a good.
approximation for long enough times to justify its con-
sideration as an alternative calculational method to the
positive-P treatment. In fact, as has been shown by di-
rect numerical comparison of the two methods [13], the
Wigner representation can generate stochastic ensembles
with a sampling error significantly smaller than that for
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the corresponding positive-P ensemble, particularly for
cases involving highly nonclassical light.

At this stage it is worth discussing how the Wigner
function is related to moments of the Geld. Whereas for
the case of the positive-P function, in which normally or-
dered moments of the Geld operators are represented by
similarly appearing moments of the complex Geld vari-
ables, the moments taken over R' represent symmetri-
cally ordered combinations of the Geld operators. For
instance, if the subscript "sym" stands for symmetric or-
dering, then we have (as an example) the following sym-
metric orderings rewritten in terms of normal order:

(ata ), = —(ata + aata + a at) = ata2 + a,

where the factor of three is due to averaging over the
three possible orderings of the operators, as explained in
Ref. [23], Eq. 4.4.63. Likewise,

1-- -- -- 1= —(ata + aat& = ata + —.
sym 2

Field moments in the Wigner representation are thus
given by

the Geld, which includes vacuum fluctuations which are
not present in a normally ordered treatment (as for the
positive-P method considered earlier in this paper). This
Geld equation is lacking an explicit noise term. However,
a stochastic element arises due to the initial conditions o.
must satisfy, since the initial distribution function is in
general smeared out. Whereas for the P representations
a coherent state is represented by a singular distribution
function with no spread, the Wigner distribution for a co-
herent state exists on an extended region in phase space
because it is, as previously mentioned, a complex Gauss-
ian convolution of the positive-P representation. If the
Geld is in a coherent state specified by o., and bn repre-
sents the initial displacement from n. (at t = 0) for one
member of a Wigner ensemble of trajectories governed
by (122), then

(123)

where the subscript W' indicates that these averages have
the meaning defined in (120). These conditions (123) on
the input fluctuations are required so that for a coherent
state in the Wigner representation

= l~ I'+ (I~~I') = l~-I'+ I/2. (124)

The proof of this relation is most easily given by be-
ginning with the Wigner function expressed in terms of
its characteristic function, as in (103). This question is
treated in Ref. [23], Sec. 4.4.4. Thus W(n, o.*) is a
quasiprobability function. That it is real valued may be
seen by taking the conjugate of (110). However, as noted
before, it is not positive definite in general. It may as-
sume negative values.

Stochastic equations in n may be derived which are
equivalent to the truncated form of the equation for
W(n, a*), where the third-order derivative terms have
been neglected. Thus if we take W~(n, n") to be the
truncated Wigner distribution for the example Hamilto-
nian of the previous section, we have

For o..= 0, the field is in a vacuum state and the initial
spread of trajectories (equivalent to the factor of 1/2)
is seen to represent vacuum noise. Hence for the trun-
cated Wigner equations a stochastic element originates
in the initial vacuum noise of the field. As we increase
the number of &equency modes later on, this contribu-
tion of 1/2 will begin to add up. In the limit where the
number of modes goes to infinity (the continuum limit)
this will lead to a term in the equations which behaves
like a renormalization factor, counterbalancing the inG-

nite noise contribution. Further noise has its source in
the coupling of the field to reservoirs, as we shaH see.

E. The Raman evolution equation

0&~ . 8, , 0= 2iy (o.*n —1)n* — (o*n —1)n W,
Ot Bo!* Oo!

Oo!

Bt
= 2iy(n*n —1)n. (122)

(121)

from which the equivalent Ito equation for o. is just

The intention here is to derive the equivalent evolu-
tion equations for the Hamiltonian introduced in Sec. II.
Thus, using a straightforward generalization of the re-
sults for the single-mode definition for W(cx) given in
the previous section (where cx is a vector which stands
for all variables involved in the system) we obtain from
the master equation:

Note the factor of —1 in the intensity term here. This is
due to the symmetric ordering and represents a correc-
tion to the Wigner-averaged estimate of the intensity of

ih —= [HI, j]Bp
Ot

the following exact Wigner evolution equation:

(125)
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F. The stochastic equations

Zal ) gv (plv + plv) Z ) goal y, ~ (127a)

The equations for individual trajectories, derived &om
the truncated form of the Wigner evolution equation (i.e. ,
ignoring the third-order derivative terms), are just

OO. l

6't
—z, ) (dizen ale + 2z+~(az az —1) al

ll

The description is now complete once we specify the
initial states of the field variables al and Pl and their
respective reservoirs al„and Pl"„. For thermal states,
at a temperature of T K, the mean number of quanta
occupying a mode of frequency ~ is given by n&h

1/[exp(Ru/kT) —1].We shall take all the phonon modes
and the reservoir modes to be initially in their respective
thermal states (at time t;) with the thermal occupation
number appropriate to that state. Hence we have for the
reservoirs

= —zcuv Pz„—zg„(az al —1/2) —z ) gv„Pz»,
&Iaz, (t') I') = nzh+ 1/2

(Ipl"»(t*) I') = nzz", + 1/2

(129a)

BQ!l —Z(d 0!l —Zg@A'l )
Ot

z- l v p 7'
zan vz, plvz. zgvz, plv

i9t

(127b)

(127d)

((al*ai —1) al) = ((az'az —az)"-)
~l+O. l (128)

Except for the lack of an explicit noise term here, which
(as noted before) manifests itself in the Wigner case as
initial vacuum noise, these equations are very similar to
those obtained for the positive-P representation. How-
ever, note the factor (al az —1) al in the equation for
Oaz/Ot, instead of the term al a.l+ which arose in the
positive-P case. This is because for the Wigner repre-
sentation we have

where n~& and n&b were defined for the positive-P treat-
ment in Sec. IIID. I ikewise, the phonon modes would
initially obey (Ipl„(t;)I ) = nzz, + 1/2 since they are
in equilibrium with the reservoirs. However, we will soon
eliminate the reservoir variables and this will have the ef-
fect of introducing a rapid damping on the initial phonon
amplitudes so that we may ignore the initial values com-
pletely.

G. Tracing and scaling the equations

Following the same procedure set out in the positive-P
treatment, the results of tracing over the reservoir vari-
ables are outlined brieQy here. The equations for the
photon and the phonon fieMs, respectively, become, af-
ter the tracing,

i.e. , these terms have the same average behavior in the
two representations. Similarly we have (al al —1/2))
(al+al), for the term appearing in the equation for
apz„/czar.

Oo,
Ot

—z ) calzzgazr + 22+~(az az —1)al
ll

—'al ).9.(Pz*. + Pz. ) ——al + 1
z (1SOa)
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BP( . p= —'Y 4 —'& (~i~i 1/2)+r~P
Ot

(130b)
i + gh. p' r"((,~).

where again we have defined p = p' + iu„. The
thermal noise terms are similar to those found for the
positive-P case, except that the thermal occupation num-
bers in the Wigner representation are augmented by 1/2:

(134b)

The rescaled noise sources are totally defined by the cor-
relations

(rP(t) rP*(t')) = r. [n,„+1/2] hu h(t —t'),

(rl. (t) rl. (t )) = 2& I."th+1/2]b«'~(t —t ).
(131a)

(131b)
(r, (q, ) r,*(q', ')) = "'"+ ' '

b(q —q') b( — '),

(135a)

After making the transformation to the macroscopically
defined fields of Sec. IIIF, the relevant equations look
like

H. Elimination of the phonon variables

(135b)

Dpi . ~ . n(d „Cd tp K

Ot
& ) ~ll'0l' + &XE 4l 4l — 4l 4l

tp AL2; 2ll

I
—iA —).[bi*. + b~. ]+

Zp n
(132)

Y~ lv 2t ~l ~l
0

Wtp1 6.ZO rl+2nD' 2n

(133)

Now, as Lx ~ 0 the extra Wigner terms in the large
square brackets diverge. This is because they represent
vacuum noise in each of the "frequency" modes appro-
priate to 1/2 a photon. This diverges as the number
of modes goes to infinity. This well-known effect in the
quantum theory of bosonic fields states that the variance
of the field at a point in space and time is unbounded. To
measure this variance as b,z ~ 0 (which translates into
the temporal step size Aw = b,x/w'tp in the comoving
frame) we would have to employ a detector with a band-
width of I/Aw. No real device has infinite bandwidth,
and so a real measurement is one which necessarily av-
erages the field over the time resolution appropriate to
the measurement apparatus. Thus the infinite zero-point
fIuctuations do not cause problems, even though they are
quite real and give rise to the Lamb shift and the natural
linewidth of atoms. This problem of the infinite vacuum
noise (or zero-point motion) is discussed by Louisell [25],
Sec. 4.7.

It is convenient to leave this divergent term as a dis-
crete component of the equations which can be ade-
quately taken into account when real numerical model-
ing is performed with discrete-sized steps. Keeping this
in mind we can write down the final Chmenshonl'ess form
of the equations (in the comoving f'rame as in Sec. III H)
with the divergent Wigner term characterized by the tem-
poral step size Aw = Ax/ld tp.

T

b„((,z) = d7'e ~ & i " Iy(( 7-')I
2

1
+ /h p' I' (j,r') I.2nd, 7.)

(136)

We use this to evaluate the relevant term in the equation
for P,

T
—) [b'+b„] = d~'h(~ —v') IP(v')I + I" (g, ~)

V

(Xa + XR) (137
2ny L~ '

where
T

r~((, 7.) = —) Qh„p' d~' e ~" r~((, r')
V

(138)

and h(~) is the same response function which occurred
in the positive-P formulation. The final "phonon-free"
equation for the photon fIux amplitude is

0$ i XaI + e +, 4 + i —I41 4 —~ 4
Dg 2 Bv +T'

T

+i& d~'h(~ —~') IP(~')I + r, + iver. ,

If we assume that the width of the damped phonon
modes is sufFiciently small then the initial value of the
phonon amplitudes, b„(( = O, w = —oo), decays away
rather quickly. This is the assumption we make when
we adopt the point of view that the Raman gain pro-
file is due to the contribution of a very large number of
inhomogeneous modes which effectively generate a con-
tinuum in the frequency domain (as described in detail
in the positive-P part of this paper). Thus

1+, /+i
2 07 XT nA7. )

—vp —'p ) [b„*+b„] + g2q r. (q, ), (134 )

where e = (1 + X /X~)/(nb, v) is an efFective frequency
shift introduced by the-explicit presence of vacuum noise.
This is actually an unbounded term in the continuum
limit and what we really have in mind is a large but
finite &equency cutoff in the theory, for which the above
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equation closely characterizes the behavior of the field. The term l~ is real valued so that the only interesting
correlation function is the autocorrelation,

(r ((,w) 1 ((', w')) = b(( —(') dOn(O) [n (0) + 1/2] cos[O(w —w')].
7r n 0

(14o)

We may integrate this using the thermal expansion (90) and our representation (71) of n(O) to obtain a result in
terms of the coefficients C+~(A) of (93), and functions B~ (w) of (92),

(r (p, z)r ((', z')) = —b(( —(') ) ~ ~ C~ (&) e"il~—~'I cos[fl. (~ ~')]+ ~ C~ (K) e"&I —
I sin[A~~& —w'~]

j=p

4~h.,~,n. . .
)Q2

(141)

Expressed in the Fourier domain,

(r. (q, -) r. (q', -'))
III P, and substituting into the general time domain cor-
relation function (140), we obtain for the GAWBS noise

= (r*(& -~) r (&' ~'))

= —b(( —(') b(cu + cu') [nfh(~tu~) + 1/2] a(~rd~).
n

(142)

(r ((, 'r) r ((, )r)1, 4heAo cos[A(w —7')]

&(& &) = &(& &) + b&(& &). (143)

For a coherent state the vacuum noise in the Wigner rep-
resentation thus enters the picture in the initial intensity
correlations at the input to the fiber as

The initial vacuum Huctuations must of course also be
taken into account to describe the problem completely.
Thus, to represent that aspect of the problem adequately,
let us write the propagating field as the sum of an
ensemble-averaged component (which we call the mean
field) and a term which changes randomly &om one mem-
ber of the ensemble to the next, i.e.,

—AOI~ —~'I
2Aphn

x cos Ap 7 —7 +sin%0 'T —7 (146)

(r.(q, -) f.(q',

since 4—:5/kTto. Thus it is clear from this expression
that in the Wigner case the additional GAWBS noise
term entering into the stochastic evolution equation for
the field is purely thermal in nature, scaling directly
with the temperature T. The GAWBS expression in the
Fourier domain corresponding to (142) is

(by(0, ~) by*(0, ~')) = —b(~ —~'). (144)

This follows &om the scaled stochastic variables o.~ since
by (37) and (124)

't

(
t

)
bl/

= y'(0, ~')y. (o, ~) + —b(~ —~').
n

(145)

(147)

For the more general case of vibrational noise, and in
particular for the Raman portion of the gain curve, there
will be small additional nonthermal contributions to the
noise process, as the lack of them in the GAWBS case is
due to the linearized approximation of the thermal factor
spelled out by (99).

V. SUMMARY

I. GAWBS correlations

Lastly, we explicitly consider the low frequency portion
of the gain curve, which is due primarily to the process
of guided acoustic wave Brillouin scattering. Thus, us-
ing the same gain function ~(Q) given by (97) from Sec.

In this paper we have made use of two phase-space rep-
resentations to treat the problem of quantum pulse prop-
agation in an optical fiber. The first of these was based
on the positive-P representation, which is a nondiagonal
coherent-state basis expansion of the density operator.
This allowed us to write down a Fokker-Planck equation
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describing the motion of the distribution function for the
photon and phonon variables. It is always possible in
this representation to find a distribution function which
remains positive, provided it was initially. Equivalent
Ito stochastic differential equations were then obtained
Rom the Fokker-Planck drift and diffusion coeKcients.
These ordinary c-number equations, which offer an exact
formulation of the nonlinear quantum propagation prob-
lem, offer the possibility of direct numerical simulation
in a straightforward way.

Using the second phase-space method, which involved
a truncated form of the equation of motion for the Wigner
function, and is therefore an approximate formulation of
the problem which is valid under the usual conditions
for linearization, we showed that it is possible to ob-
tain a single stochastic equation for the field amplitude

P (along with appropriate initial conditions). This is in
contrast to the equivalent pair of positive-P equations
which are defined on a phase space with twice the number
of dimensions. In practice, this means that the Wigner
phase space can be sampled by a given number of stochas-
tic trajectories more thoroughly than for the positive-P
space. The result is that the sampling error in the Wigner
case can be smaller, particularly for cases of highly non-
classical light, for which the positive-P trajectories need
to sample the extra dimensions of the positive-P phase
space in order to generate the correct statistics.

Of particular interest in the Wigner equations is the
appearance of corrections (e) to the deterministic equa-
tions that depend on the frequency cutoff. These act like
the renormalization terms in Feynman-style perturbation
theory, in the sense that they are infinite at infinite cutoff.
These will cause severe problems in higher-order calcula-
tions if carried out analytically. Of course, they can be
included in lattice calculations, and become increasingly
significant as 47. —+ 0.

Finally, although we have presented equations of mo-
tion for the field in both the positive-P and Wigner repre-
sentations, we have not solved these equations for general
input fields (such as solitons) except by direct numerical
simulation of the relevant stochastic equations. However,
it should be possible to reformulate the problem in terms
of the equations of motion for the correlation functions
themselves. In this manner one might expect that the
analytic methods of inverse scattering could be applied
profitably to the solution of the phase-space equations.
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term ~~~ is replaced by ordinary difFerential operators.
This is demonstrated here for an arbitrary function which
we denote as u~ in the case of finite cell size, i.e., u~ ——

u(z = lAz). In order to show how the second derivative
is related to the finite difference terms encountered when
we express the fields as local functions of space, we start
with the following well-known calculus definition:

0 u . ui+i+ui i —2ui
lim 2Bz b, -+o (+z)laz

(A1)

We suppose that the local field u~ can be written as a
discrete Fourier relation in the usual way as

1 inAk l&z

/2N+ 1
(A2a)

1 —inAk L&z

/2N+. 1,
(A2b)

The numerator in terms of the Fourier components is

u&+i + u& —i —2ut

0 u z( ) (~k)2 I ) 2 i in& bk, z

Bz2 N +oo /2N + 1-
2(+k) 2 inlrzkEzllm n eN~~ 2N+ 1

—inl'Akd zx g .ul'e )

lf

(A4)

or

8'u(z) . . (Ak)
'

Bz2 iv~~) (2N+ 1)

in&k&z(l —i') (A5)

In the same way we can also show that the relation for
the first derivative is given by

~inAk /3 z)-une inakAz + —inAkAz

J

Expanding out the terms in the large brackets gives the
negative factor n2(AkAz) —+ O(n4). Since Akb, z
2m /(2N + 1) we can obviously neglect the higher-order
terms if un drops off sufBciently rapidly with increasing
~n~, which we will assume is the case (and would only have
to be reconsidered in the circumstance that the function
u was extremely well localized in space, so that it was
b-function-like). Putting these pieces together, we can
rewrite the second derivative term as

APPENDIX A- CONTINUUM LIMIT OF hatt~

In this section we demonstrate how the wave equation
is developed in the continuum limit, i.e., we show how the

Bu(z) . . ( +k ~ ~ in&k&z(l —&')
lim i u) ne

gz iv-+~ (2N + 1)

(A6)
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When we put these last two results together and use the
definition for ~)), which is

((d'(nak) + (d"(nak)'/2), „~„(, , )~,
2N+ 1n= —N

so called "white noise" correlations

(dW;(t) dW, (t')) = 0 (t g t'),
(dW, (t) dW, (t)) = 8;, dt,

(dW, (t)) = 0.

(B3a)
(B3b)
(B3c)

+L4) 6~~~, (A7)

we 6nd that the action of u~~ on an arbitrary function
u~ in the limit as the cell size Lz ~ 0 is

11

~EI,I ALII M ACO —LM —— u(z).
Il

(A8)

This is true whether we choose u~ to be of the form o.~,
which are the basic Hamiltonian variables that we chose
to begin our derivation of the NLS equation, or u~ is of
the form Pi, which are the scaled macroscopic fields.

Note that these conditions imply that the dR'z are dif-
ferentials of order ~dt and that they are highly irregular
functions, being completely independent at every point
in time.

Some care needs to be taken in the manipulation of
quantities based on the stochastic differential (B2). In
fact, the ordinary rules of calculus applied to this expres-
sion do not in general give the correct results for funda-
mental operations like changes of variable [i.e. , what is
the differential of y given y = f (m, t)] and integration by
parts. The reason for this is that the stochastic integral

f B(x, s)dW(s), defined as the limit of the partial sums

APPENDIX B: STOCHASTIC EQUATIONS:
ITO AND STRATONOVICH

Suppose we have a system of c-number variables a (a
vector) for which the statistical behavior is known to be
governed by a genuine (i.e. , positive-definite) probabil-
ity distribution P(m). Instead of dealing with P(m) and
its time development, can we deal with n directly? In
other words, can we write down an equation for m which
generates the same moments as determined by P(a)? In
some instances the answer is yes. In particular, for dis-
tribution functions P(a) which satisfy a Fokker-Planck
equation for the time development, i.e. ,

Lim ) B[x(r;),7;] [W(t;) —W(t, i)]
i=1

(B4)

**(t) = ~'(to) +
t t

A;(m, s) ds+ ) B;~(~,s) dW, (s)
0 tp

for(to & ti & t2 « ~ ~ t i & t)and(t,
t;), does not converge (as b = max[t, —t; i] ~ 0) to a
unique integral independent of the value of the midpoints
w; at which the integrand B is evaluated. The integral
expression of (B2) is

'e

+—) [B(~,t) H (~, t)],, P(~, t),
1 ~ 8

where A is a vector and H a matrix, an equivalent process
in terms of the behavior of individual trajectories of the
vector m can be defined when the diagonal elements of
the matrix H - H are positive definite. Such a process
is given by the stochastic difFerential of the components
of this vector,

dx;(t) = A, (~, t) dt + ) B,~(a, t) dW, (t), (B2)

the interpretation of which was first spelt out by Ito
[26]. The first term on the right-hand side of (82) is
a purely deterministic, or drift, term governing the evo-
lution of m, as in a classically defined trajectory. The
second term, involving the increments dW~ (t), represents
the indeterminacy responsible for the diffusive nature of
the Fokker-Planck equation (Bl). This term can be used
to model the intrinsic unpredictability associated with
quantum outcomes (which manifests itself as a kind of
noise). The increments dW~(t) are taken to be indepen-
dent real Gaussian-distributed random variables with the

where the erst integral can be considered as an ordinary
Riemann-Stieltjes integral independent of the midpoint
values w;, while the second is of the stochastic integral
form (B4). Ito's choice of midpoint was to take r, = t,
so that the integrand is evaluated at the beginning of each
of the time intervals occurring in the partial sum expres-
sion. The appropriate rules for variable manipulation
based on this choice are known as Ito calculus. These
rules ensure that the difFusion process governed by the
Fokker-Planck equation (Bl) is reproduced in moments
by (B2), or equivalently (B5), interpreted in the Ito sense.

The motivation for Ito s definition of the stochastic in-
tegral (based on r; = t; i) is largely that it renders per-
turbative expansions in mathematical proofs much sim-
pler than would be the case with any other choice of 7;.
Another choice would be to take r; = (t; +t, i)/2. This
possibility was considered by Stratonovich [27] who was
motivated by a desire for a definition of the stochastic in-
tegral which d~d formally obey the usual rules of calculus.
However, diKculties arise in proving convergence of the
resulting stochastic integral with this symmetric choice
for ~, . Nevertheless, Stratonovich did succeed in formu-
lating a definition of the stochastic integral (given below)
which does allow one to use all the usual rules of calcu-
lus, such as integration by parts, and so on. Thus the two
most commonly considered definitions of the stochastic
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integral are the limiting forms

and

t n

B(x, s) dW(s)—:lim ) B[x(t; i), t; i] [W(t, ) —W(t; i)] (Ito)h„~o
0 i=1

t n

B(x, s) dW(s) = lim ) B[(x(t; i) + x(t, ))/2, t,. i] [W(t;) —W(t, i) ] (Stratonovich).
t 8„—+0

0 i=1

(86a)

(86b)

In general there is no relationship connecting the two
limits, so that the stochastic integral equation (85) gives
rise to two diferent types of random process, depend-
ing on the sense in which the stochastic integral on the
far right of the equation is interpreted. If, however,
we ask the question "What is the stochastic difFeren-
tial (or integral) equation which, when interpreted in the
Stratonovich sense, gives rise to the same process as does
(82), namely,

dx(t) = A.(x, t) dt + B(x, t) dt's(t), (87)

dx;(t) = 2;(x, t) dt+ ) B;,-(x, t) dW, (t), (88)

interpreted in the Ito sense, is also a solution to the equa-
tion

interpreted in the Ito sense?" then we can relate the
Ito and Stratonovich forms. Relegating the proof to ei-
ther Gardiner's Handbook of Stochastic Methods [28] or
Arnold's Stochastic Differentia/ Equations [29], we make
the following assertion.

The solution x, (t) to the stochastic equation

I

Wi(t). If we solve for x;(t) and then allow the colored
noise sources (z(t) to approach the white noise form (~ (t),
so that Ci(t) + h(t), one finds that x;(t) converges to
the same solution arrived at by solving the white noise
equation (89) directly interpreted in the Stratonovich
sense. Applying the same (Stratonovich) limiting proce-
dure to the Ito equation (88) does not of course lead to
the same result, since that equation must necessarily be
interpreted in the Ito sense for it to be equivalent to the
Stratonovich form (89).

Thus, in general, a stochastic differential equation de-
rived as the "white noise" (or wideband) limit of a physi-
cal process with a realizable (i.e., nonwhite) noise source
should be interpreted in the Stratonovich sense and a
transformation to the Ito form is required if we are to
select out the drift and diffusion coefBcients necessary to
construct the equivalent Fokker-Planck equation corre-
sponding to (88) or (89)—i.e. , (81). Our approach is the
reverse of this procedure. We begin with a Pokker-Planck
equation and ask what is the equivalent Stratonovich
stochastic differential equation which corresponds to this.
Ordinarily this necessitates the construction of Ito cor-
rections to the drift term as in (89). However, in our
case it can be seen that these corrections (which scale
inversely with the photon number n) are tiny and we
neglect them in comparison to the large Ito drift term.

+) B;,(x, t) dW, (t), - (89) APPENDIX C: GENERATING THE POSITIVE-P
NOISE SOURCES NUMERICALLY

when interpreted in the Stratonovich sense. Thus it is
not necessary to learn the unfamiliar rules of Ito calculus.
As long as we make the appropriate change to the drift
vector we may utilize all the familiar rules of ordinary
calculus when dealing with our (Stratonovich) stochastic
equations.

The Stratonovich interpretation may also be consid-
ered as the white noise limit of the case in which a physi-
cal process dx; (t) is driven by noise sources g~. (t)dt which,
instead of being b-correlated "white noises, " as in (88),
have finite correlation times. In this case (~ is said to be
colored and to obey a relationship of the form

(~'(t) C (t )) = b*. &.(t —t )

where the C~ (t) are supposed to be regular functions [un-
like the singular white noise b-function correlations b(t)].
On the basis of the continuity of the (i we may apply
the classical rules of calculus to the differential relation
in (89) with dW~ (t) replaced by (~ (t)dt so that (~ (t) is
regarded as the derivative of the regular noise increment

The correlation functions for the positive-P noise
sources I'„,I"~ are not those of the white noise vari-
ety. Nevertheless, an arbitrary noise source can be con-
structed in the time domain if its spectrum is known. We
consider here the more complicated case of constructing
the noise sources appropriate to numerical simulations of
the positive-P equations. The Wigner procedure is, of
course, somewhat simpler. Suppose we have the follow-

ing correlations:

(Cla)
(Clb)
(Clc)

For the purposes of this paper, we shall take U(t0) to
be complex valued and symmetric and Z(~) & 0 real
and asymmetric. The results can then be used to model
I', I'+.

We wish to present one way in which this might be
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done; it is not necessarily the most efficient one, but it
illustrates the idea.

To begin, we discretize the problem for numerical anal-
ysis. The continuous &equency variable u is replaced by
one of fixed increments Lu and the Dirac b function be-
comes a Kronecker b. Thus for j = 1, . . . , N = 2

(rj rk) = (+j+N+1—j + BjBN+1 j)—~k, N+i

(rjr~) = B,'~i. , N+i
(r+ r„+) = (x;.x*„, , + B,BN+, , ) a„N„,.

Hence we may define the real coefficients Bj by

(C6a)

(C6b)

(C6c)

ldj = —Ld~44x + (2 —1) E(d, Ald
2+max

N —1' (C2a) Z
& 0. (C7)

~(~j+~~) ~
L(d

r(-, ) ~ i, .

In this way the correlations look like
U

(r, r, ) =

Zj(r, r+) =

(r+r+) =

(C2b)

(C3a)

(C3c)

U
A~ AN+j. j + Bj BN+g

LQJ
(C8)

Note that the coefficients Z, in our case are asymmetric
in frequency (the index j) so the Bj are as well. The
form of the coefficients of the autocorrelation functions
is already symmetric, as is required if it is to represent
the symmetric coefficients Uj. If we let AN+q
then we can find the A~ from the Kronecker b condition

(C4a)

(C4b)

We are now in a position to construct sequences for I'j
and r& . Suppose we try linear sequences of the form (for
2 = 1, . . . , N/2)

r,
I N+1 —j

p+N+1 —j

Aju + Bjz,
A1v+ 1 jQ'p' + BN+ 1 j zg

A*-u+ + BN+g jzj,
AN+~ -u+ + Bjz*..

(C5a)

(C5b)

(C5c)

(C5d)

What then are the complex coefFicients A, and real coef-
ficients B; necessary to give the appropriate correlations' ?

To begin with (for j = 1, . . . , N) we find for the correla-
tion functions of (C3)

We require a sequence of random numbers which will rep-
resent the statistics of these noise sources. To accomplish
this we will work with three independent complex Gauss-
ian processes u, u+, and z defined on the half-range
j = 1, . . . , N/2. We will construct linear combinations
of these three sequences such that u and u+ will only
contribute to the autocorrelations and z to the cross
correlation. We take these complex random sequences to
have unit variance for the modulus of each:

2 1
A, = Uj — QZjZN+i (c9)

Prom this specification of the coefficients Aj and Bj it
clearly follows also that (r+ r&+) = h& N+i . U*. /b, w.
Thus the noise sources on the full frequency range (j =
1, . . . , N) can be constructed from three complex random
sequences defined on the half-range (j = 1, . . . , N/2).

The resulting sequences of random numbers (r, r+)
then satisfy the original correlations in frequency and by
Fourier transforming them to the time domain we gener-
ate the noise sources required for the stochastic nonlinear
Schrodinger equation by an appropriate choice of the co-
efficients Uj and Zj.

To evaluate these coefficients in the positive-P treat-
ment for a given form of n(A) it can be seen from (83a)
that we need to perform the integral

dA = /2m h'(u).n(o) 0
0

(C10)

This quantity is given by (73a) since both the GAWBS
and the Raman gain can be modeled using the form of
n(O) given by (71). Hence, using both (71) and (73a),
the coefficients we seek for U(ur) and Z(ur) can be seen
from (83a) and (86) to be given explicitly in the inhomo-
geneous gain model by

4
" " 44, (44, I~II"~4(l~l) +'/2I —4)44,'+",' —~'I)

U(u) =-
n = [A2 —0~ + u2] + [2AjOj]

(Cl la)

[n (l~l)+O( —~)]Z Cif 2'n [A2 —02+i)2] + [2AjQj]
(C11b)

where the hj, Aj, Aj are specified in Ref. [4].
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