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Micromaser as a maser without inversion
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We show that the micromaser, widely studied for its distinct quantum features, has one more
remarkable property: unlike conventional lasers and masers it works without population inversion.
We study the time-averaged inversion of a single atom passing through a cavity with a field in its
stationary state. The result is shown to hold also for the regularly pumped micromaser and for the
two-photon micromaser. It even remains partially valid for a semiclassical description of the field.

PACS number(s): 42.52.4+x
I. INTRODUCTION

In ordinary masers and lasers, lasing occurs only if
atoms have population inversion. However, many pa-
pers in past few years have been published, suggesting a
possibility of amplification without inversion and lasing
without inversion [1-3]. In fact, recently, a possibility
of lasing without inversion was confirmed exprimentally
[4]. Subtle quantum effects are at work in all proposed
schemes of amplification without inversion. It is clear
that these effects will be difficult to observe in standard
lasers or masers. Micromaser, on the other hand, is a
remarkable device, which is simple to analyze and which
has already shown many quantum effects [5,6]. Some ex-
amples include demonstration of quantum revivals of the
atomic inversion [7] and production of nonclassical states
of light [8]. The micromaser may also help to produce a
pure number state of electromagnetic field [9,10]. The
purpose of this paper is to show that the micromaser
has one more interesting property: In a stationary state
it works without population inversion. A more precise
meaning of this statement will be given below. We show
that this fact is independent of the pumping statistics
or the detailed properties of the atomic transition. This
is the general property of one- and two-photon micro-
masers.

We organize our paper as follows. In Sec. II, we
present results of analytical and numerical calculations
for the one-photon micromaser pumped by Poissonian
distributed atomic beam. In Sec. III, we show that in-
versionless lasing occurs also when micromaser is pumped
regularly. In Sec. IV, we extend our analysis to a two-
photon micromaser, and in Sec. V, we consider a semi-
classical model of the micromaser, in which an electro-
magnetic field is treated classically and atoms injected
into the cavity are described by the Bloch equations.

II. ONE-PHOTON MICROMASER

Following Filipowicz et al. [11], we consider a single-
mode cavity into which excited two-level atoms are in-
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jected at a rate low enough that at most one atom at
a time is inside the resonator. It means that t, > 7,
where ¢, is a time distance between two atoms arriving
in the resonator, and 7 is the atom-field interaction time.
In addition, we assume that 7 is much shorter than the
cavity damping time t.,, = k. Under these conditions
we may consider separately the cavity damping and the
pumping by interaction with passing atoms.

At time t; the ith atom enters the cavity. After the
interaction time 7 the atom exits the resonator, and the
field in the cavity evolves freely in the interval [t; +7,t;4.1]
damped at the rate x. This condition is realized in ex-
periments with quite good accuracy. At time ¢;,; the
density operator of the field is given by

ps(tiv1) = exp(Ltp) F(7)py(ts), (1)

where t, = t;11 —t; — 7 = t;y1 — t;, and L is the Liou-
vielle operator describing the damping of the field in the
cavity. The operator F(7) characterizing the atom-field
interaction is given by

(n|F(T)p(t:)|n) = pa(t: + )
= (1 = Brn+1)Pn(ts) + Brpn-1(t:), (2)

pn(t) = (nlps(t)|n), 3)

_ n§?
T A2+ nQ2

Bn sin?(1v/ A2 + nQ27), (4)

where 2 is the Rabi frequency and A = w — wp is atom-
field detuning [11]. The damping of the field in the cavity
is described by the standard equation [11,12]

Pn = ’i[(n + l)pn+1 - npn}' (5)

Since we assume in this section that the atoms enter the
cavity according to a Poisson process with mean spacing
1/R between events, we have to average the Eq. (1) over
the exponential distribution P(t,) = R exp(—Rt,) of the
intervals between atoms. We get the following equation:
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pf(ti+1) = (1 — L/R)"'F(1)ps(t:), (6)

where R is the atomic flux.

We seek the field in a steady state. It means that the
elements of density matrix have to satisfy the following
condition:

(1 = L/R)ps,st = F(T)l—’f,st- (7)

The analytic expression for the solution of the steady-
state equation for the occupation number probability is
given by

m=c Il ("), ®

where C is the normalization constant, and Nex = R/k
is the average number of atoms that traverse the cavity
during the lifetime of the field [11]. Unfortunately, this
expression is not useful for further analytic calculations.
The average photon number, dispersion, and atomic in-
version will be calculated numerically. The final atomic
inversion is given by the following expression:

w(r) = |ex (1) = leo(T)|?
= prllean()]? = leno(n)?]; (9)

where ¢, (0,1)(7) are amplitudes of conditional probabil-
ity to find the atom in the ground and excited states
under the condition that the electromagnetic field was in
the n-photon state. A relation |ca,0(7)|% + |cn,1(T)|2 =1
is fulfilled for all n € N, thus we may rewrite Eq. (9) in
the form,

w(r) =Y prll = 2leno(r)’] = Y prwa(r),  (10)

wa () =1 = 2Jeno(7)|?

1o Y AT T DA (1)
A% a0z L2 '

We will assume from this point to the end of the paper
that A = 0. For easier comparison of our results with
others, presented in early papers, we introduce a dimen-
sionless “time” 6 = 0(7) defined as

6(r) = 1Qy/Nexr.

For zero detuning and by using different variables,
Eq. (11) becomes

(12)

wﬁ:l—Zsinz( n+10)v.

vNex

Atoms leave the cavity with the final inversion w®. How-
ever, we may also trace the time dependence of the in-
version while the atom is inside the cavity w(8(t)) =
S o Pown(0(t)) for all moments between 0 and 6(7).
The probability p® depends on 6§ only parametrically and
is time t independent. We define a mean inversion as a
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time average of the time dependent inversion:

1 [}
@® = -é/ w(0')do’

0

Il

1 - 9/0 / /
- Doy wn (6')dé
07;) | wn(®)

oo . n+1
0 sin(2 i/% 0)

oo e AU

This is the most important quantity in this paper. We
will show that for most values of parameter 6, the mean
inversion is negative. Unfortunately, it is not possible
to get an effective analytical expressions for both wg and
w(0), because the expression for photon number distribu-
tion is too complicated, numerical calculations, however,
are rather simple.

A. Approximate description by Fokker-Planck
equation

Before we present results of our numerical calculations,
we consider an approximate approach to our problem in
terms of a Fokker-Planck equation. In this approach, we
follow Ref. [11] closely.

This procedure is correct only if we assume that the
pumping is strong, cf. when N > 1. We consider
the evolution of the photon number in the cavity over
a time T, long compared to the interaction time 7, yet
so short that the occupation number of the field does not
change too much. During the time T', a random number
of excited atoms with a Poissonian distribution of mean
N = RT traverse the cavity. For precisely N atoms, the
average change in photon number (n(NV)), and the aver-

age of the square of this change (n?(N)) g» are
(n(N))y = PN, and (n®(N)), = (P — P*)N + P?N?,
(14)

respectively. Here P is the probability of adding one pho-
ton to the field by every atom that traverses the cavity.

P = sin® (\/‘{\%9)

After averaging Eqgs. (14) over Poissonian distribution of
the arrival times of the atoms we get

(15)

(n(N))g = PN, and (n*(N)), = PN + P2N%. (16)

The average changes of photon number and of its square
due to cavity damping over the time T are

(n(N))a = —Tkn, and (n?(N))q = Tkn. (17)

The changes in (n) and (n?) can be added, due to our
assumption that gain and decay act independently. In
the lowest order in T' these quantities are given as

(n) = (n)g + (n)a = TQ(n),
(An)? = (n?)g — (n)] + (n*)a — (n)§ = TG(n),

and
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Q(n) =« [Nex sin® (%0) - n] , (18)

G(n) =k [Nex sin? ( \/‘]/V_’_:_xa) + n] . (19)

We replace the discrete distribution p,, by a continuous
function p(n), which fulfills the Fokker-Planck equation:

n 2
(00) _ _ 2 (Q(m)p(rn, )] + § o (G (m)p(n, )

(20)

and correctly describes the photon number for large n.
This approximation is given by the extrapolation of re-
sults (14)—(20), which are true for short times. The sta-
tionary solution of the Fokker-Planck Eq. (20) is

G(ln) exp (2 Mdn) , (21)

G(n)

where C is a normalization constant.

Formally, this result is incorrect because p(n) is not nor-
malizable in the interval [0, c0]—the Fokker-Planck ap-
proach breaks down at n <« 1—but it is not important
in our considerations. The maximum of the probability
distribution p(n) corresponds to the global minimum of
the effective potential

p(n)=C

A - [ sin( D) ~

G(n) sinz(féﬁ:e) + Tv@;

V(n)=-2

(22)

and it is obtained as a solution of the algebraic equation:

0=V'(no) = —ZEZZ; <> sin® ( ‘/_7%0) = ;eox.

(23)

Because ng > 1, we can replace v/no + 1 with /ng and
calculate the final inversion for ng corresponding to a
maximum of the photon number distribution:

*‘V;?N_HQ ~1-22%,  (24)

The inversion in this expression depends on parameter 6
by condition ng = no(#). The mean inversion is given by

o sin( V\Z"V}XIG) cos( V;ﬁ,—:lé’) - V11— % (25)

W, = - )

o Mno+10 0
V/Nex

Wno (T) = 1 — 25sin? (

where sign “—” was chosen in order that this result is

in agreement with the exact graphical solution of the
Eq. (23). When the distribution p® is narrowly con-
centrated around the maximum of the probability ng,
then the dominant contribution to the mean inversion
w? = EZ‘;O p2w?, comes from pﬁowgo term. It is easy to
see that the mean inversion shall be negative. This result
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is in very good agreement with the exact numerical cal-
culations, presented in the next section. Of course, this
is true for not too large 6, when the potential V(n) has
only a few minima.

B. Numerical results

Now we present the results of numerical calculations.
First, we show in Fig. 1 the function w(t) for Nex = 200,
# = 200 and in an inset for N, = 200, 0 = 2.91. The
second graph looks like a sine function and it is obvious
that for these values of arguments, integral in the defi-
nition of the mean inversion is negative, but for the first
figure the negative mean inversion may seem surprising.
Modulated oscillations suggest that the sign of the mean
inversion may be arbitrary, but it is negative too. This
result is exact, because we have done the integration an-
alytically. As we will see later, this simple picture breaks
down, because of strongly nonclassical properties of the
probability of the photon number distribution. In Figs. 2
and 3 we show the final and mean inversion as a function
of 6 for Nex = 20 and 200. If we compare pictures pre-
sented in the Ref. [11], an anticorrelation between average
number of photons and final inversion shall be evident.
This feature is characteristic for the micromaser and has
a simple physical reason. The maximum of the photon
number coincides with the minimal value of the final in-
version. The field in the cavity increases, when consec-
utive atoms, after depositing its energy to the field will
be leaving the cavity in a state close to the lower state.
Moreover, for some values of interaction time 7 or in
other words pumping parameter 6, mean inversion is very
close to one. This is a characteristic for trapping states.
In this case, atoms interact with the electromagnetic field
leaving the cavity excited. These effects are known and
agree with our expectations. The next result is more in-
teresting. After averaging, a complicated dependence of
final inversion upon @ practically vanishes, except for a
quite deep minimum — corresponding to lasing without
inversion — and very small peaks for Ny = 20, which
represent trapping states. Except in a perturbative re-
gion corresponding to a very short interaction time, mean
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FIG. 1. One-photon micromaser. Time evolution of the
atomic inversion w(0(t)) for Nex = 200, and a pumping pa-
rameter § = 200. In the inset, w(6(t)) for Nex = 200 and

= 2.91.
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INVERSION

FIG. 2. One-photon micromaser. Final inversion w® and

mean inversion @w° as a function of pumping parameter 6 for
Nex = 20.

inversion is negative for almost all values of parameter
0, and tends asymptotically to zero for 6 going to large
values. When 6 crosses some critical value, a sign of the
mean inversion becomes erratic, and g oscillates around
zero. We can explain this effect in the following way. The
probability distributions of the photon number has many
peaks even for relatively weak pumping, when 6 is very
large. In this case, the distance between two neighboring
paeks becomes smaller than their width, and they over-
lap. It means, that n-photon states with relatively large
probability may correspond not only to minima of the
V (n) potential, but maxima too. In this case, the poten-
tial does not determine correctly positions of maxima of
the photon number probability distribution. The mean
inversion may be positive for these states.

Position and shape of the minimum of mean inver-
sion is independent on pumping parameter Ny in 6
parametrization. This scaling law is one more interest-
ing feature of the micromaser. On the other hand, the
minimum of mean inversion wy ~ —0.21 for § ~ 2.91 is
specially interesting because, as we show below it occurs
in all considered cases. The negative value of the mean
inversion suggests that emission is more probable than
absorption during the flight of atoms across the cavity.
This is the consequence of destructive interference be-
tween probability amplitudes of photon emission for dif-

INVERSION

FIG. 3. One-photon micromaser. Final inversion w® and

mean inversion %° as a function of pumping parameter 6 for
Nex = 200.
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ferent Fock-states of the field in the cavity. This effect in
unexpected and does not occur in ordinary masers. The
agreement between both exact numerical and approxi-
mate analytical results is very good.

III. REGULARLY PUMPED ONE-PHOTON
MICROMASER

An interesting question is, how general is this feature?
Now we present similar analysis, in the case when mi-
cromaser is pumped regularly. In this model, two-levels
atoms are injected in a regular way, with a rate r = %,
and leave the cavity after time 7. The population changes
after the passage of one atom was found by Guerra et al.
[13] and is given by

palt+tp) == 30 R =) (), (26)
k=0 '

where

Fn = (1 - ;Bn+1)pn + ,Bnpn—ls a = (27)

1
Nex '
The resulting expression is not useful for analytical cal-
culations. In order to use this expression for numeri-
cal calculation [13], we suppose that for some sufficiently
large photon number ng, p,, = 0. Under this condi-
tion, it is possible to calculate probability distribution
for 0 < n < ng — 1. After proper normalization, we are
obtaining a very good approximation of photon number
probability distribution, because for a sufficiently large
n, pn is equal to zero with a good numerical precision.
To find the final and mean inversion, we insert p,’s into
Eq. (26). For the most part, these results resemble the
ones for Poissonian statistics. Only for strong pumping
it is possible to notice quantitative but not qualitative
differences.

It shows that the micromaser works without inversion,
not only in a special case of pumping by the atomic beam
with the Poissonian distribution. This feature occur in
the regular pumping case as well and we think that it is
independent of the statistics of atomic beam.

IV. TWO-PHOTON MICROMASER

Until now we have carried out calculations for one-
photon transitions. Now we are going to the two-photon
transition model of the micromaser. The system consid-
ered is a three-level cascade, coupled to a single mode of
the electromagnetic field of frequency w = (we — wy)/2;
that is, exact two-photon resonance is assumed through-
out. The detuning of the intermediate level |i) from exact
one-photon resonance is

0 =w — (we — wy),

where hwg, hw;, fw. are energies of ground, interme-
diate and excited levels, respectively. We suppose for
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simplicity that one-photon coupling constants are equal
Qig = Qei = Q2. This model describes the true two-
photon micromaser, when we put detuning § much larger
than the coupling €, like it was presented in Ref. [14]. We
assume that no more than one atom is present in the cav-
ity at the same time. All atoms are injected in the upper
state |e), and during the time 7 interact with the elec-
tromagnetic field. The Hamiltonian in the interaction
picture is

Vi = Q{[e*ale)(i| + e al i) (e]]
+[e*ali)(g| + e**a’|g)(all}, (28)

where a, a' are photon annihilation and creation opera-
tors. From the Schrédinger equation for a state vector

[¥n(t)) = Cen(t)le,n) + Cinta(t)]é,n + 1)
+Cyn+2(t)lg,n + 2), (29)
we get the following system of equations:

Cen(t) = —iQe /0 + 1C; 1, (30)

Cini1(t) = —iQet/n + 1C. , — Qe V/n + 2Cy ny2,
(31)

Cynt2(t) = —iQe /0 + 2C; ny1. (32)

We restrict our considerations to a case, when 95—2,@ <1
This condition is fulfilled for large detuning and weak
pumping. In this limit the amplitude C; ,, is much smaller
than remaining amplitudes, and may by omitted. This
means that the probability to find atom in the intermedi-
ate state is neglected, and we have effectively a two-level
atom case, described by the following equations:

n+1 6 ;2n4s
Cenlto+7) =1+ 53— (e Fex 1 — 1), (33)
vVin+1)(n+2), ;2nts
Cg,n+2(t0 + 7-) = _—(7,'%3—2(61 Nex 1 — 1), (34)

where in analogy to # we have introduced the parameter
n = 3Q%Nex7/5. The equation describing the evolution
of the reduced density matrix for the field obtained by
tracing over the atomic states has the form

[p (to + T)]nm = [p7 (to)lnm Ce,n(to + 7)C2 n(to +7)
+[pf(t0)]n—2,m—20 ,n(to + T)
X G2 (to + 7). (35)

Like in standard laser theory, we work out from Eq. (35)
a differential equation for pf,,

pf — pim (t + T) _ p{tm(t)

where 6pf,. = pf_(t +7) — pf .(t), and 7, = 1/At is
the rate of injection. The total rate of change of the field

= ratsp,flm, (36)

density matrix is given by adding the terms describing
the cavity losses

p'{tm = a’ﬂ’mpim + bﬂ—zym—2p£—2,m—2

+En+1,m+1p£+1,m+1' (37)
In this equation, we introduced the following notation:
Gnm = Ta(CenCe,, — 1) — n%(n + m),
I;nm = 7'an,7:+2 ;,n+2’ (38)
Cnm = Ky/nm,

and k is the cavity-loss rate. We assume moreover, that
the average number of photons in thermal equilibrium
is equal to zero. At the steady state, the probability
Pn = pnn to find n photons in the cavity satisfies the
equation:

@nPn + bp_2Pn—2 + Cn41Pnt1 =0, (39)
where
Anm = Nex(CenCop — 1) — %(n + m),
bum = NexCgn+2C; ny2s (40)
Cnm = VM

Solution of this equation may by written as a product of
continued fractions, like it was done in Ref. [14]:

(an = ann, and so forth).

n

Pn—“—PoHai

k=1 "

This recursive relation is very simple for numerical cal-
culations. We insert evaluated values of probability into
functions for final and mean inversions. In Fig. 4 we
show the final inversion and in the inset the mean in-
version for an arbitrarily chosen value of the parameter
Neyx = 200. Three characteristics are important in this
case: a periodicity of the function, the anticorrelation
between the average photon number, and the final inver-
sion described earlier, and the trapping states, typical for
the micromaser in general. We see that for two-photon
micromaser the mean inversion has the same features as
for the one-photon micromaser. The periodic structure
of the interaction time dependence is not visible after
averaging, except for the position of the trapping states,
which are not so evident but are present, for large . The
mean inversion is negative for almost all values of the in-
teraction time. It is interesting that these properties of
the two-photon micromaser are insensitive to the change
of detuning, as long as we fulfill conditions, which must
be fulfilled for validity of this model. As before the mean
inversion is non negative in the perturbative regime of
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FIG. 4. Two-photon micromaser. Final inversion w® as a
function of pumping parameter 7 for Nex = 200, and detuning
§ = 50. In the inset, mean inversion for this same value of
the parameter.

very short interaction time and in the vicinity of trap-
ping states.

V. SEMICLASSICAL MODEL OF THE
MICROMASER

In previous sections, we have worked with the quan-
tum model of the micromaser, but it is of course also
possible to give a semiclassical description of this device.
It is interesting and instructive, because comparison of
these two approaches may show which mechanisms are
responsible for the lasing without inversion. Like before,
we assume that excited two-level atoms are injected into
the cavity. The flight time of the atoms across the in-
teraction region 7 is much less than the repetition time
T, which is constant and equal for all atoms. It means
that we consider now the regular pumping case only, but
extensions to Poissonian pumping case is immediate. In-
stead of describing the atom-field interaction by density
operator, we use the coupled Maxwell-Bloch equations
neglecting atomic relaxations

W _
7 = X

dw

&Y -y, 42
T XV (42)
dx

T = Xt

where g is a coupling constant, v, w are the atomic dipole
moment and the population inversion, x is the Rabi fre-
quency. We assume that 7 is much less than the cavity
damping time t.,, = k™! so we omit a decay term in
the third equation while the atom is in the cavity. When
atoms are absent the field decays exponentially:

dx
dt

=—rx = x(T)=e"Tx. (43)

Moreover, we eliminate constant g. We define the scaled
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time variable t — t/,/g, and x — ,/gx. First, we solve
equations (42) approximately. If we assume that the Rabi
frequency changes slowly and is constant while the atom
is in the cavity, the two Bloch equations have very simple
solutions:

v(t) = sin(xt),
w(t) = cos(xt), (44)

which is valid for times 0 < t < 7. The differential
amplification due to the passage of a single atom is given
simply by the integral of the equation x = v so when we
add a losses factor we have a map describing one step in
the time evolution of the field

1-—
Xnt1 =€ "T (7‘2 —7?;5()(”) + Xn> . (45)

If the field is almost equal to zero we can expand the
cosine function and find a threshold condition for the
amplification:

Xn+1 = exp(—&T) (372 + 1)xn

= exp(—cT) (372 +1) > 1, (46)
and
2
exp(—kT) = L

It is possible to find a steady-state solution of Eq. (45)
and to give stability conditions for this solution but it is
not too interesting because we can solve Egs. (42) exactly.
When we substitute

v(t) = sin (4(t)),
w(t) = cos (¢(t)), (47)

we have the equation for x as a equation of a mathemati-
cal pendulum: % = sin (¢(t)). Solution of this equation
is known very well and is expressed by elliptic functions.
Instead of giving these solutions in the apparent form,
we show results of numerical computations. In Fig. 5 we
show the Rabi frequency and the mean inversion as a

‘ T T 1.2
12r exp(-xT)=0.99 ]|
i PeeT) 4 0.8
S {04 =
X i —
4 b [ 1 T N
0 P -0.4
T
FIG. 5. Semiclassical model. Rabi frequency 7 and

mean inversion w® as a function of time interaction 7 for
exp(—«T) = 0.99.
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function of the interaction time 7 for exp(—«T) = 0.99.
For small 7 we have excellent agreement with results ob-
tained in previous sections. For larger 7 the mean inver-
sion becomes positive, that means that our semiclassical
model is not valid in this region. The conclusion is that
the field quantization, although important is not the ma-
jor factor in the inversionless action of the micromaser.
Much more important may by the neglect of the atomic
losses, which can begin to be significative when the active
atoms speed is reduced.

VI. CONCLUSIONS

In our paper, we have shown that micromaser is a
maser working without mean inversion (defined as time
average inversion over the interaction time). We have

shown that this effect does not depend on pumping statis-
tics, and of a kind of atomic transition (single or two
photon). We have also shown that field quantization al-
though important is not a decisive factor in our analysis.
So we think, that the inversionless lasing is a general
and interesting property of the micromaser that may be
observed in future experiments. Some of the effects pre-
sented could be seen in other kinds of lasers where the
active atoms cross the interaction region very fast.
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