
PHYSICAL REVIEW A VOLUME 51, NUMBER 4 APRIL 1995

Correlation of radiation-field ground-state fluctuations
in a dispersive and lossy dielectric
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The correlation of the quantum-mechanical ground-state Quctuations of the electric-6eld strength
in a dispersive and lossy linear dielectric are studied in terms of the symmetrized autocorrelation
function, with special emphasis on the optical frequency domain. Starting from the canonical
quantization scheme developed by Huttner and Barnett [Phys. Rev. A 46, 4306 (1992)], the

analysis is based on a quantization of the phenomenological Maxwell theory, the effect of the medium

being described by a frequency-dependent complex. permittivity. In this way, the spectrally resolved

ground-state autocorrelation function of the electric-field strength can be expressed in terms of the
real and imaginary parts of the refractive index. Both analytical and numerical results are presented
and the effects of dispersion and absorption including their dependence on the frequency interval

chosen are discussed. A comparison with the vacuum Huctuations in free space is given.

PACS number(s): 42.50.Ct, 42.50.Lc, 03.70.+k

I. INTRODUCTION

As is well known, the vacuum fluctuations (ground-
state Huctuations) of radiation fields play an impor-
tant role in both the basic theoretical concepts of quan-
tum electrodynamics [1] and the practical application of
quantum-optical schemes for generation, processing, and.
detection of nonclassical light. A typical example is the
spontaneous emission of light by an excited atom inter-
acting with the vacuum rad. iation Beld. In this process
vacuum fluctuations and self-reaction can be regarded as
essentially contributing to the dynamics of the optically
active electron [2,3]. In particular, using symmetrized
correlation functions, a physically well defined separa-
tion between the two contributions can be made which
from a statistical-mechanics point of view is consistent
with the usual physical pictures associated with vacuum
fluctuations and. self-reaction [3].

When (source) light together with the vacuuin passes
through passive optical instruments, the eKect of vacuum
fluctuations on the quantum statistics of the output light
requires a careful consideration. For example, dividing a
signal beam by a beam splitter into two output beams,
the vacuum Beld in the unused input channel introduces
additional noise in the output beams, which may be re-
duced by the use of a squeezed vacuum in place of the
ordinary vacuum in the unused input channel [4]. The
problem of additional noise introduced by vacuum fluc-
tuations is also observed in optical processing based on
active devices, such as quantum amplifiers [5,6].

The above beam-splitter example already shows that
it is necessary to take into account the presence of op-
tical instruments when considering the quantization of
radiation Belds. In principle, optical instruments could
be included as a part of the matter to which a radia-
tion Beld is coupled and treated Inicroscopically. How-
ever, there is a class of instruments whose action can be
included phenomenologically in the quantization proce-

dure, namely, passive macroscopic bodies that respond
linearly to the radiation field under study. Moreover, if
the dispersion and absorption can be disregarded, such
optical instruments can be regarded as dielectric bodies,
with a refractive index that may vary in space. The pres-
ence of optical instruments of this type can be taken into
consideration by quantizing the radiation embedded in
a dielectric with a space-dependent refractive index [7].
A canonical quantization scheme for radiation Belds in
linear dielectrics with a space-dependent refractive index
was developed by Knoll, Vogel, and Welsch [8] and later
by Glauber and Lewenstein [9] (for applications see, e.g. ,

[7,9-12]).
If the quantum statistical properties of short-pulse

light that propagates over long distances in a dielectric
are desired to be studied, the eKects of dispersion and
absorption must be taken into consideration. A typi-
cal example is the propagation of quantum solitons in
optical fibers [13]. In this context the question arises
of how to quantize radiation fields in dispersive and
lossy linear dielectrics to correctly describe their quan-
tum features including the vacuum fluctuations, that is,
the radiation-field fluctuations in the ground state of the
coupled light-matter system. There have been a num-
ber of approaches to this problem [14—20]. Using the
Hopfield model of a linear homogeneous dielectric [21]
and representing the medium by a collection of inter-
acting bosonic matter fields (a polarization field and a
continuum of reservoir fields), Huttner and Barnett [18]
presented. a canonical quantization scheme for the elec-
tromagnetic field in the dielectric (for applications see
[22,23]). It is worth noting that both the dispersion and
the absorption by the medium are taken into account in
a quantum-mechanically consistent way.

Starting from the Huttner-Barnett scheme, we will
show that the influence of the medium can entirely be
described in terms of the complex frequency-dependent
permittivity, so that this scheme should also be appli-
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cable to media other than the harmonic-oscillator media
considered in the derivation. In particular, introducing
frequency-dependent radiation-field operators and ex-
pressing their commutators in terms of the complex per-
mittivity, we may regard these commutation relations as
a general prescription of quantization of the phenomeno-
logical Maxwell theory of radiation in a dispersive and
lossy linear dielectric. To test the consistency of the
quantization scheme, we show that it yields the well-
known commutation relations of the field operators at
equal times and that in the case of vanishing dispersion
and absorption the familiar quantum theory of radiation
in a dielectric with constant refractive index is recog-
nized.

Clearly, dispersion and absorption may be expected to
essentially affect the quantum statistics of radiation in a
(linear) dielectric. In the present paper we analyze the
effect of dispersion and absorption on the correlation of
the ground-state Buctuations of the radiation field, with
special emphasis on optical frequencies. Both analytical
and numerical results are presented and a comparison
with the correlation of the vacuum fluctuations in free
space is given. Following the arguments given in Ref.
[3], the analysis is based on the symmetrized correlation
function of the electric-field strength, the properties of
which have been studied extensively for the cases of both
the free-space vacuum (for example, see [24]) and the
blackbody radiation [25].

The paper is organized as follows. In Sec. II the quan-
tization of the phenomenological Maxwell theory of ra-
diation in a dispersive and lossy linear dielectric is per-
formed. In Sec. III the theory is applied to the determi-
nation of the correlation of the ground-state Buctuations
of the electric-field strength. Finally, a summary and
some concluding remarks are given in Sec. IV.

II. QUANTIZATION OF THE
PHENOMENOLOGICAL MAX%'ELL THEORY

FOR A DISPERSIVE AND LOSSY DIELECTRIC

In the phenomenological classical Maxwell theory the
propagation of radiation in a dispersive and lossy linear
(homogeneous and isotropic) dielectric is frequently de-
scribed by the equations

is the frequency-dependent complex permittivity intro-
duced phenomenologically. Expressing the electric and
magnetic Gelds in terms of the vector potential,

E(r, (u) = ipdA(r, pd),

B(r, pd) = curlA(r, u),

the Maxwell equations (1) and (2) are satisfied when

(8)

To give a quantized version of this theory, let us start
from the Huttner-Barnett (HB) model of quantization.

A. The Huttner-Barnett quantization scheme

As mentioned, the HB quantization scheme [18] is
based on a microscopic model of Hopfield type [21]. To
describe the interaction between the electromagnetic field
and the dielectric medium, the latter is represented by a
collection of matter fields. The electromagnetic field is
coupled to a polarization Geld which for its part is cou-
pled to a reservoir to allow for absorption. Assuming
that the polarization Geld is a single-frequency harmonic-
oscillator field and the reservoir comprises a continuum
of harmonic oscillators, the Hamiltonian of the transverse
Gelds of the overall system can be diagonalized to obtain

H = ) f d k f dte kee Get(k, te)Ce(k, ~),
A=1,2 0

where the operators Cp(k, u) are linear combinations of
the bosonic destruction and creation operators of the
transverse medium excitations and the photon destruc-
tion and creation operators.

The elementary excitations described by the Hamilto-
nian (9) can be regarded as polaritons. Their creation

A

and destruction operators C& and Cp satisfy the familiar
boson commutation relations

Cp(k, pd), Ct, (k', pd') = hgp 8(k —k')h(~ —pd'), (10)
curl E = —B,
curlH = 0,

divB = 0,

divD = 0,

(1)
(2)

D(r, t) = ep E(r, t) + d~ y(v. )E(r, t —~), (3)

where B= ppH and the displacement field D(r, t) is re-
lated to the electric field E(r, t) as follows:

Cp (k, pd), Cg. (k', ur') = 0,

so that in the Heisenberg picture they evolve as

Cp(k, u), t) = Cg(k, ~, t') e (12)

which in the Fourier space reads as

D(r, pd) = ape((u)E(r, ~),
where

e(te) = 1+f dec' k(e)

The diagonalization implies that both the medium and
the electromagnetic (transverse) fields can be expressed
in terms of the elementary-excitation creation and de-

struction operators C& and t g, respectively. From in-

spection of the relations given in [18] one can prove that
the effect of the medium is entirely determined by the
&equency-dependent complex permittivity e(pd),
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e((d) = er (Cd) + Zei(Cd)

(e„=Re(e}, e; = Im(e)). In particular, the operators of
the vector potential and the electric- and magnetic-Geld
strengths of the radiation Geld may be represented as

1 (d
a r, u

7t C

x d k ) eg(k)
—k2

1 3A(r) =, d'k 5 ) e), (k)
7C6p

(d
Cg (k, cd )

e*"'+ H.c.

and

OO 2

f(r, tr) = f d k ) eq(k)Cq(k, ~)e'"', (lg)
%=1

Z

( ) —
(2 ),r,

2

) eg(k)
A=1

(14) where

r. ((d) = Im( Qe(cd) ),

q(cd) = Re(ge(cd) ),

(20)

(21)

~"( ) C, (k,.),"-H.
(d 2 e (cd ) k 2 c2

(15)

are suggested to be of special interest. Applying Eqs. (10)
and (11), a(r, cd) and at(r, cd) are found to satisfy the
commutation relations

a; r, ~,a,'. r', ~'

d k ) k x ep(k)
A=1

~v '*(~)
Cq(k, w)e'"' —H.c.

= h((d —(d')Z;,

(d
exp ——K((d) 4r

sin —i1(cd)Ar,—g(Cd) b,r zC
C

(22)

and the displacement field reads as

(16) [a; (r, cd ), a~ (r', (d') ] = 0.

Here the abbreviation

(23)

2~ '&2

2

) ep(k)
A=1

( cd 2 Qe, (cd)x dcd epe((d) 2 2 2
—eP)(/ei(cd)

cd e cd —k c

b, r = /r —r'[ (24)

Z; S'(r) = f d r'b; (r —r')S'(r'), (25)

is used and the action of A,~ on an arbitrary function of
space E(r) is defined by

x Cq(k, cd)
e*"' —H.c. .

Note that there is no dispersion relation. In principle,
for each value of u excitations of arbitrary wave-number
vectors k contribute to the fields. Clearly, the main con-
tributions to the radiation Geld result from excitations
whose ~k~ values are in the vicinity of (cd/c)+e []k~—
(cd/c)~e, as can be seen from inspection of Eqs. (14)—
(16).

where

b, .(r) = d k
i

h. . — ' '
i

e'"'
(2~)' (,

" k' ) (26)

is the transverse bfunction. The commutation relation
(22) is closely related to the correlation of the ground-
state fluctuations of the radiation field in a dispersive and
lossy dielectric [Eq. (59) in Sec. III]. Using Eq. (19) and
the commutation relations (10) and (11),we deduce that,
on recalling Eq. (25), the operators f(r, (d ) and ft (r, cd )
satisfy the commutation relations

B. Prequency-dependent Beld operators

To introduce (with regard to the Maxwell equations in
Fourier space) frequency-dependent field operators, from

inspection of Eqs. (14) —(16) the non-Hermitian opera-
tors

f;(r, cd), ft(r', cd') = b(cd —cd') A, ~. b (r —r')

= b(cd —cd')b, , (r —r'),

f; (r, (d), fq (r', cd') = 0.

(27)

(28)
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Finally, the commutation relations between a(r, ur) and

f(r, cu), ft(r, cu) are found from Eqs. (18) and (19) to-
gether with Eqs. (10), (ll), and (25):

a;(r', (u'), f,t(r, cu)

(d . (d
b (~ ~') K(~) Q; . exp i Qe(~—) b, r

27f'c 'Lr c

(29)

a, (r', (u'), f~(r, (u) = 0. (30)

The Beld commutators considered above re8ect the prop-
erties of the medium only through the real and imaginary
parts of the permittivity e(u). Hence, for an arbitrary di-
electric [with e(~) being given phenomenologically] the
commutation relations (22), (23), and (27) —(30) may
be regarded as the definitions of the operators a(r, ~),
[at(r, ~)) and f(r, ~) [ft(r, ~)].

Applying Eq. (25), straightforward calculation yields
the commutation relations in the following explicit forms:

(p cos pAr + p sin pAr
p'+ ~'

1, ~„sin PAr 1
a;(r, u), a (r', ~') = —b(~ —v')e ~ "

b „+,
(p2 —P ) sinPb, r + 2pP(cos PAr —e~ ") )

+ +r (p2 + ~2) 2

Ar Ar sin PAr 3 P cos PAr + p sin PAr+(Ar)' Ar (&r)' ( p'+ p'

(p2 —P2) sin Phr + 2pP (cos P&r —e~ ")l
+ r(p2 + p2)2

(31)

[a, (r', ~'), ft(r, w)] = — —b((u —(u') exp[i(p+ ip)Ar][(p —p + 2ipp)(Ar) ]

((p —p + 2ipp) (Ar) + 1(p + ip) &r + exp[ —'(p + '&)+r] 1)

'((P'-~'+2'W)(& )'+3'(P+'~)& +3( p[-'(P+'~)& ]
—1))

(b,r)'

where the quantities where

p = —rI((u),
27l C EpC

n(~). (38)

p = —v(ur)c (34)

C. Phenomenological Beld quantization

are introduced. Note that in the limit Ar —+ 0 the com-
mutator [a;(r, w), a.(r', w')] tends to (2/3)b, ih(cu —w').

Further, from Eqs. (17) and (19) we see that the displace-

ment field D(r) can be expressed in terms of a(r, u) and

f(r, ~) as

D(r) = i du u) epe(w) A(~) a(r, ~)
0

We now express the operators of the vector poten-
tial and the electric-field strength in terms of the oper-
ators a(r, w) and a" (r, w). For this purpose we combine
Eqs. (14) —(16) and (18) to obtain

where

X((u) = 2c K((u) A((u).

—ep&((d)f(1, La)) + H.c., (39)

A(r) = dku A(cu)a(r, ~) + H.c.,
0

E(r) = i d(u~A((u)a(r, ~) + H.c.,
0

(35)

(36)

Recalling Eq. (12), from Eqs. (18) and (19) w'e easily

see that in the Heisenberg picture a(r, ur, t) and f(r, w, t)
evolve as

(41)

B(r) = curl A(r), (37) f(r, ~, t) = f(r, cu, t') e (42)
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Hence, complementing in Eq. (35) a(r, w) and at(r, pd) by
exp( —iwt) and exp(ipdt), respectively, we obtain a Fourier
representation of the (Heisenberg) operator of the vector
potential A(r, t):

of a given e(w) the relation

Cd
dhu w exp — r—(w) Ar sin q—(pd) Ar = —c vr6'(b, r)

C C

where

A(r, t) = f de e ' A(r, te),
(52)

can be proved (see the Appendix), the familiar equal-
time commutation relations can easily be derived. In
particular, we obtain

A(r, (u) = A(~)a(r, (u) (44)
A, (r, t), E, (r', t) = ——tI,, (Ar).

Cp

[note that A(r, —Dd) = A (r, a))]. Equation (44) reveals
that [apart from A((t))] a(r, (t)) corresponds to the Fourier
transform of the operator of the vector potential A(r, t).
Similarly, the Heisenberg operators of the electric- and
magnetic-field strengths can be represented as, according
to Eqs. (36) and (37),

Another test of the consistency of the theory is the
behavior in the limit e(u) ~ 1 [e„(pd) -+ 1, e;(~) ~ 0]. In
this limit, from Eq. (22) the operators

K(r, t) = f dtee ' K(r, e), ap(k) = 2 7r
d~ Q~k~cug(~)

K(r, (u) = i~A(r, ~) = i~A(~) a(r, ~), (46)
1

(2vr) s d re *"'ep(k) a(r, ~) (54)

and
are found to satisfy the photonic commutation relations

B(r, t) = dere ' B(r, pd), (47)
ap(k), at (k) = bye b(k —k') (55)

B(r, (d) = curl A(r, ~) = A(pd) curl a(r, Dd).

Finally, Eq. (39) implies that

(48) and the vector potential A, Eq. (35), takes the familiar
form

D (r, t) = f dte e * D (r, te), (49)

1

%=1

x ag(k)e'"' + H.c. . (56)

D(r, pd) = epe(pd)E(r, pd) —epX(pd)f(r, pd). (50)

Substituting in the phenomenological Maxwell equations
(1) and (2) for the fields E(r, pd), B(r, pd), and D(r, pd)

the results of Eqs. (46), (48), and (50), respectively, we
find that

Ea(r, pd) + —e(pd)a(r, pd) = 4vr r(pd) f(r, pd), (51)
C2 27l t"

which is of course consistent with the definitions of
a(r, ~), Eq. (18), and f(r, pd), Eq. (19).

Equations (43) —(51) together with the commutation
relations (22), (23) and (27), (28) may be regarded
as the quantum-theoretical version of the classical phe-
nomenological field theory [Eqs. (4) —(8)]. The micro-
scopic model primarily used does not explicitly enter
into the equations and the effect of the medium is fully
taken into account by the real and imaginary parts of
the frequency-dependent permittivity e(w) satisfying the
Kramers-Kronig relation.

The quantized theory must of course be consistent with
the canonical commutation relations of the fields at equal
times. Indeed, noting that from the analytic properties

It is worth noting that there is an essential difference
between the classical and quantum-theoretical descrip-
tions. Comparing Eq. (50) with Eq. (4), we see that
in the quantum constitutive equation (50) an additional
term oc gr((td) f(r, ct)) appears which gives rise to the in-
homogeneous wave equation (51) in place of the homo-
geneous equation (8). This term is obviously required to
correctly describe the additional (quantum) noise intro-
duced by the absorption of light by the medium. Only in
the case when the losses are disregarded [r ((dd) =0] can the
classical constitutive equation be directly transferred to
quantum theory. Clearly, in this case a(r, (d) and at(r, ~)
can be regarded as basic-field operators. They satisfy the
homogeneous wave equation [Eq. (51) with K(pd) =0] and
their commutation relations are given by Eqs. (22) and
(23).

In the general case of dispersion and absorption (re-
lated to each other by the Kramers-Kronig relation) both
the operators a(r, w) and f(r, pd) appear. It should be
pointed out that a(r, u) and f(r, w) are not independent
of each other. Regarding Eq. (51) as the spatial-evolution
equation for a(r, u) and the term oc gt)c(ur) f(r, pd) as the
source field, we easily see that Eq. (51) is solved by
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a(r, ur) =—

&(r', ~) exp ~ —4e(~) Ir' —r
CL X' C

/r' —r/

(57)

Although this a(r, u) looks like a particular solution of
Eq. (51), we are not free to add a solution of the homo-
geneous equation. Recalling the commutation relations
for the f(r, u) and ft(r, ~) [Eqs. (27) and (28)], one can
prove that Eq. (57) yields the correct commutation rela-
tions (22) and (23) for a(r, ~) and at (r, u) as well as the
correct mixed commutation relations (29) and (30). Note
that Eq. (57) is in agreement with Eqs. (18) and (19). Ex-
pressing, according to Eq. (19), the operators Cp(k, ~) in

terms of f(r, u) and inserting the result in Eq. (18), we

just obtain the representation of a(r, u) given in Eq. (57).
We see that in the general case of a dispersive and lossy

dielectric being considered f(r, u) and f (r, ~) [in place of
a(r, ~) and at(r, u)] may be regarded as basic-field oper-
ators whose commutation relations are given by Eqs. (27)
and (28). All the other fields, such as the vector poten-
tial and the electric field, can uniquely be obtained from

f(r, ur) and f"(r, u). It is worth noting that in this quan-
tization scheme f(r, ~) is not a Langevin (white-)noise
operator, frequently introduced in a (Markovian) relax-
ational treatment of losses. In particular, the average
of f(r, u) cannot be zero in general because, according
to Eq. (57), this average determines quantities, such as
the average of the electric-field strength, that essentially
depend on the coherence properties of the light.

III. SYMMETRIC GROUND-STATE
CORRELATION FUNCTION OF THE

ELECTRIC-FIELD STRENGTH

A. Basic equations

Following the approach frequently used in quantum
electrodynamics [24,26], let us consider the symmetric
correlation function of the electric-field strength,

K „(Ar, r) = 2(0 E (r, t+r)E„(r+Ar, t)

+E„(r+ Ar, t)E (r, t + r) 0). (58)

Using Eqs. (45) and (46) and recalling that (0~at(r, ~) =
O=a(r, cu) ~0), we may rewrite Eq. (58) as

K „(br,r)

OO

I(d
2

d(u'A(cu) A((u') ~(u'

x( a (r, ~), at(r+ Ar, ~') e '~ ~'+ l

+ a„(r+ Kr ~') a (r, ~) e*~ ~'+ l (59)

Applying the commutation relation (31) yields

Applying the results of Sec. II, we now turn to the
study of the correlation of the radiation-field ground-
state Huctuations in a dispersive and lossy linear die-
lectric characterized by a frequency-dependent complex
permit tivity.

(p —P ) sin PAr + 2pP (cos P&r —e~ '))
+ +r(P2 + ~2)2

K (Ar, 7) = — des e ~ cosmr
47C C 60 ~7 0

sin PAr 1 P cos PAr + p sin PAr
Ar (Ar)2 ( P'+p2

Ar Ar„sinPAr 3 f PcosPAr + psinPAr
(Ar)2 Ar (&r)2 ( p'+ p2

(p2 —P2) sin PAr + 2pP (cos PAr —e~ "))+
)+r(P2 + ~2)2

(60)

So far, Eq. (60) is exact. To perform the u integral,
knowledge of the dependence on frequency of the permit-
tivity of the medium actually considered is required. In
general, the calculation of this integral is hardly expected
to yield a closed solution.

(dp —L(d Q & ( 4)0 + LLd& (61)

Eq. (60) approximately. Restricting attention to optical
frequencies within an interval of width 24cu,

B. Optical region
&( &,

(dp
(62)

To illustrate the inhuence of a dielectric on the motion
of the vacuum fluctuations, we perform the (d integral in

where up is an appropriately chosen center frequency, and
assuming that dispersion and absorption are small on a
length scale of P and a time scale of u i, we may let
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(P Ar)

(w7) « 1. (63b)

slowly varying in w and may therefore be removed from
the w integral in Eq. (69). Further, replacing d2/d&2 by

u—
p (note that Ace/(up « 1), we obtain

K „(Er,7) = —k „(2r)
~o+

X
d7

due ~ "cosmic sinPAr,

Hence, in Eq. (60) in each set of large square brackets we
may keep only the first term to obtain

K' „(Ar, ~) = —.~ok „(Ar)

r ~.
x expl — ~o~o

l
exp(i~o'ri) I(Ar, ~)

c )
+c.c.,

where

where the abbreviation

(64)
1(sr, ~) = —,

' (d Ar
des exp i

l
~%2+ 'gi

l
(74)

~ (dp c )

k „(Ar) = 1
47l c 6p Lr

Lr Lr„
(Ar)' (65)

Introducing the (slowly varying) amplitude

is used.
For a transparent medium, such as a fiber, it may fur-

ther be justified to approximate (in the frequency interval
chosen) the refractive index and absorption coefficients
i1(&u) and K(u), respectively, as follows:

K „(Ar, ~) = (uok „(Ar)

x exp
I

~oKo
I
II(+" 'r)

Ic j (75)

Eq. (73) may be rewritten as

K' „(Ar, 7.) = K „(Ar, ~) sin[(do'Ti + pI(Ap, T)], (76)
g(cu) = gp+ qi —,

(dp

K 4J ~K Mp =Kp.

(66)

(67)

where pI (Ar, 7) is the phase of I(Ar, w).
For the sake of transparency it may be convenient to

introduce the real phase and group velocities v~h(w) and
vs, (w), respectively,

Substituting in Eqs. (33) and (34) for i1(ur) and K(ur) the
(approximate) expressions (66) and (67), respectively,
Eq. (64) may be written as, on changing the integration
variable,

CO

vvi, (ur) =
(d

27O + '/y-
ap

(77)

K (Ar, 7) = K (Ar, 7) + K (4r 7")—(68) d(d
vs~ (cd) (78)

d2K' „(Ar, ~) = —
2 k „(Ar) d72

dw exp
Lr

Kp ((dp + td )

Cd AT I
x sinl ~o&i + ~&2 + qi-

l Ctfp C ) (69)

where

Ar
~i = (go+pi)

C
(70)

Ar
~2 ——(qo + 2@i)

C
(71)

Kp ~~ @0+$1~ (72)

In general, Eqs. (66) and (67) imply that (in the fre-
quency interval chosen) small losses are observed, so that

gp+ 2qy-
(dp

Lr
T)

v h(&o)
(79)

[cf. Eqs. (33) and (66)]. It should be noted that in
classical optics complex wave numbers k = P+ip =
(w/c) [g(cu)+i+(u)] are frequently introduced and complex
phase and group velocities w/k and dw/dk are defined.
As long as the dependence on frequency of the (small) ab-
sorption coefficient may be neglected [cf. Eqs. (67) and
(72)], the real part of k essentially reflects the medium
dispersion [cf. Eq. (66)]. In this case the efFect on light
propagation of the real part of the complex wave num-
ber P can well be distinguished from the efFect of the
imaginary part of the wave number p and a description
in terms of the real phase and group velocities (77) and
(78) and the (real) absorption coefficient may be more
illustrative than the use of complex quantities.

Recalling Eqs. (70) and (71), we see that

In this case one can go on to simplify Eq. (69). Recalling
the conditions (72), (63a), (63b), and (62), we easily see
that, compared with sin[cdp7i + cdT2 + gi(w /wp) (Ar/c)],
the exponential function exp[ —(b,r/c)r p(uo + ltd)] is and Eq. (74) reads as

Ar —'T

Vg1- Cd P
(80)
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+Ace

I(Ar, ~) =— (
daexp i~ (d

~ "( +l )

(81)

(v', Bur)/vs, « 1, which means that qq(A~/~o) && 1 [cf.
Eq. (74)]. In this case we may let vs, (no+ 2 4~) =&s, (uo)
and Eq. (81) simply reduces to

From inspection of Eq. (76) together with Eqs. (75) and
(81) we see that (under the assumptions made) the di-
electric affects the slowly varying part of the correlation
function through the absorption coeKcient and the group
velocity including its dispersion, whereas the effect of the
medium on the rapidly varying part is given by the phase
velocity and a (space-time dependent) phase shift owing
to the group-velocity dispersion.

In particular, Eq. (81) reveals that with an increasing
value of L~ the effect of the dispersion of the group veloc-
ity needs a careful consideration. It may be disregarded
when the frequency interval is sufBciently small, so that

Ar
I(Ar, ~) =

Vgz' (dp
sin

[

Vgz' &p

(82)

Clearly, for any Gnite value of L~ the dispersion of
the group velocity becomes observable when the dis-
tance Ar is sufficiently large (and the absorption is small
enough). The exact values of I(b,r, w) may be found
by expressing the integral in Eq. (74) in terms of Fres-
nel integrals S(z) = (2/+2vr) f' dx sinx and C(z)
(2//2vr) f' dx cosx2:

I(Ar, ~) = /27l (doc ( . T2 c(dp l 1 ldpc
exp i—

4 gqAr i 4gqA(up (2 g~Ar

,. (—C — ~2 —2g1 —iS
(2 'gyAT ( &p c ) ) (2

( ~~~r)l . &1 u c t

72 + 2/1 + iS — w2+ 2g1
c ~~ ~2 qqArL ~o c

idoc ~ Ald Er l l
72 —291

'gyQT ( Qfp c ) j
(83)

where 72 is given in Eq. (80) [or Eq. (71)]. Note that

L(u Ar
2 + 2rll

(dp C

Lr
vs~((do + Ald)

(84)

Typical examples of the correlation of (optical)
radiation-Geld ground-state fluctuations are shown in
Figs. 1 —3. Whereas in the vacuum (q = 1, K = 0) the
fluctuations are strongly correlated to each other at the
space-time points on the light cone Ar/c- +w (Fig. 1), in
the case of a dispersive medium the range of strong cor-
relation is shifted towards the space-time points linked

I

by the group velocity vs, (uo), i.e., Ar/v, (wo)
(Figs. 2 and 3). In a dispersive and lossy dielectric an
additional spatial exponential decay of the correlation of
the Geld fluctuations is observed, the characteristic length
c/(eowo) being in agreement with the classical absorption
length (Fig. 3). Similar to the case of classical light prop-
agation, a radiation-field ground-state fluctuation that
has been created randomly at time t and space r and

K/Qw

0. 5

0. 5

(Draw)/c

(Arau)) /c

FIG. 1. The slowly varying amplitude of the symmetrized
ground-state autocorrelation function of the electric-field
strength K(&r, r) = K „(Ar, r)/[cook (Ar)] of the radia-
tion field in free space is shown for a frequency interval of
relative width Aw/ms =0.3.

FIG. 2. The slowly varying amplitude of the symmetrized
ground-state autocorrelation function of the electric-field

strength K(Ar, 7) = K (Ar, r)/[cook „(Ar)] of the ra-

diation field in a dispersive dielectric is shown for a fre-

quency interval of relative width Au/ceo ——0.3. The val-

ues of the refractive index and the absorption coefficient are

q(&uo) = qo + qq = 1.46 (qo = 1.1, qq
——0.36) and Ko ——0,

respectively.
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0. 5

ArQ~) /c

FIG. 3. The slowly varying amplitude of the symmetrized

ground-state autocorrelation function of the electric-field

strength K(Ar, 7 ) = K (Ar, r)/[ceo k (Ar)] of the radia-

tion field in a dispersive and lossy dielectric is shown for a
frequency interval of relative width Ear/uo = 0.3. The val-

ues of the refractive index and the absorption coeKcient are

q(ceo) = qo + qi ——1.46 (qo ——1.1, gi = 0.36) and ro ——0.04,
respectively.

propagates through the dielectric [Ar/v, (~o) +r] can
be destroyed by absorption by the medium, the prob-
ability being increased with distance Ar. Clearly, the
absorption does not "remove" the Huctuations from the
Geld, which are a consequence of Heisenberg's uncertainty
principle, but it destroys the correlation of the Huctua-
tions at different space-time points. Two contrary ten-
dencies in the behavior of the correlation of the field Huc-
tuations are observed when the value of Ace is increased.
First, the range of correlation is more restricted to the
vicinity of space-time points that satisfy the condition
Ar/vs, (iso) = +r (which in vacuum corresponds to the
light-cone condition). Second, the effect of group-velocity
dispersion implies that the range of strong correlation is
broadened with increasing distance (Fig.2).

jV. SUMMARY AND CQNCLUSIONS

Starting from the HB quantization scheme for a micro-
scopic (Hopfield) model of a dispersive and lossy linear
dielectric, we have represented the radiation field opera-
tors in terms of frequency-dependent basic-field operators
whose commutators at diferent space-frequency points
depend on the medium only through the complex per-
mittivity e(iv). This representation may therefore be re-
garded as a general prescription of quantization of the
phenomenological Maxwell theory for a dispersive and
lossy linear dielectric. In particular, in the limit when
e(ur) ~ 1 the familiar quantum theory of radiation in free
space ls iecognlzed.

It is worth noting that the quantization requires an op-
erator constitutive equation (in Fourier space) that dif-
fers from the classical one in an additional term propor-
tional to the square root of the imaginary part of the
permittivity describing the losses. This term is required

to correctly describe the additional noise introduced by
absorption. In consequence of the modified constitutive
equation the operator of the vector potential satisfies an
inhomogeneous wave equation (in Fourier space) in place
of the familiar homogeneous equation in classical theory.
The inhomogeneous term oc Jim[a(w)] f(r, cv) only dis-
appears when the losses are ignored.

Although the inhomogeneous term looks like a
Langevin random noise operator, this resemblance is
a formal one because the solution of the inhomoge-
neous wave equation that satisfies the correct commuta-
tion relations is fully determined by f(r, ur). It should
be pointed out that in the limit of vanishing losses
(Im[e(iv)] -+ 0) this solution satisfies the homogeneous
wave equation, with e(w) real. Since all field operators
can uniquely be obtained from f(r, w), this field may be
regarded as a basic field in the general case of a disper-
sive and lossy linear dielectric being considered. Clearly,
the average of f(r, ur) cannot vanish in general.

The commutation relations of the radiation-field oper-
ators are closely related to the field Huctuations in the
ground state, which in the case of free space are the fa-
miliar vacuum Huctuations. Using the commutation rela-
tions valid in the case when the radiation field is embed-
ded in a dispersive and lossy linear dielectric, we have cal-
culated the symmetrized autocorrelation function of the
ground-state electric-field strength, with special empha-
sis on the optical region. Restricting attention to a trans-
parent medium, we have studied the influence of absorp-
tion, phase and group velocities, and group-velocity dis-
persion on the dynamics of the field Huctuations within
a frequency interval small compared with the center fre-
quency.

As expected, the absorption is responsible for a spatial
decay of the correlation of the field Huctuations. Fur-
ther, the light cone of strong correlation, which in empty
space is determined by the velocity of light in vacuum, is
now given by the group velocity in the medium, provided
that the spatial distance is not too large. With increas-
ing distance the range of strong correlation is smoothed
owing to the dispersion of the group velocity. Compared
with the case of free space, the eKect of the dielectric on
the rapidly varying part of the correlation function can
be described by substituting for the velocity of light in
vacuum the phase velocity in the medium.

We finally mention that the theory may be extended
to describe the quantum noise associated with the prop-
agation of arbitrary light pulses in dispersive and lossy
linear dielectrics.

APPENDIX: PROOF QF EQ. (52)

To prove the relation

Cd
dew exp — ic(u)Ar sin q(w—)Ar = —c—orb'(Ar),

c C

we first recall some properties of the dielectric function
s(iv) = e" (—cu), given in [27]. It is an analytical function
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of the complex frequency 0 in the upper complex half
plane without zeros and e(O) m 1 for 0-+ oo. In this half
plane the imaginary part of e(A) is positive (negative)
for the positive (negative) real part of O. Further, along
the imaginary frequency axis e(O) is real, where its lower
bond is given by unity. These properties imply that for
positive real values of k and c the equation

Since

sgn(e;(0)) = sgn(O„), sgn(O;j = 1,

Eq. (A4) reveals that

sgn(e~(O) ) = —sgn(B —0 }.

(A5)

(A6)

0 e(A) —k c =0 (A2)

(0„—0; ) e„(O) —2A, O;e; (0) —k c = 0, (A3)

cannot be satis6ed when 0 is in the upper half plane. To
show this, we decompose 0 and e in real (0„, e, ) and
imaginary (0;, e, ) parts:

Hence the expression on the left-hand side in Eq. (A3)
cannot be zero. Note that this result is also valid for the
real and imaginary axes and the axis 0„=02.

Using the integral relation

2 —1

dsg eik Ar e(~) Q2
C2

27C
exp i — e(w)Dr c

(0„—0;) e;(0) + 20,0;e„(A) = 0. (A4)
1

we may write

Ca)

d~ ~ exp — K(~)Ar s—in —rl(w) Dr
C C

(
deuce ]-

21 0 2712 j
To evaluate the integral

Cd .Ca)

dw — exp I —ge(w)Er —c.c.)2'E

- —1—e(~) —lc'
C2 (AS)

1

2i

2 —1
2d(d (d —e((d) —k

C2

—1

d~ Cd —e(ld) —A:

'

Cd 2
C2 (A9)

we recall that O[(02/c )e(O) —k ] has no poles in the upper complex half plane, so that

OO
12

d~u —e(cu) —k = ——.lim c2l C 2z R—+oo

Combining Eqs. (AS) and (A10), we finally obtain

7r

ido 1 2
+2e 2i 8p( Qei s ) lc 2 c2 2 (A10)

24rdw ur exp — Ic(u)Ar sin ——rl(tu)b, r = c
0 C C 4' d ke' ' ' = c (27r) 8(Er) = c ~ = c7r8'(Ar)—4'

(A11)
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