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High-order harmonic generation and above-threshold ionization in H:
Calculations using expansions over field-free state-specific wave functions
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We have computed the above-threshold ionization and the emitted harmonic spectra of H interacting
with short laser pulses, with photon energies ranging from 1.16 to 5.44 eV and with peak intensities
ranging from 6X10" to 7X10' W/cm, by solving the time-dependent Schrodinger equation (TDSE).
The method of solution involves the expansion of the time-dependent wave function 4'(r, t ) over the ex-
act wave functions of the discrete and the continuous spectrum, computed numerically, and the subse-

quent integration of the resulting coupled first-order differentia1 equations by a Taylor series expansion
technique. This state-specific approach (SSA) to the solution of the TDSE allows systematic understand-

ing of convergence as a function of the number and type of the field-free states for each value of the laser
frequency (co) and peak intensity (Io). For example, the method allows practical numerical study of the
degree of participation of high (n, l) (l =0, 1, . . . , n —1) Rydberg, as well as of high-energy scattering
states for each partial wave. For the harmonic spectra, comparisons are made between the results ob-
tained by the SSA and those obtained in recent years by a number of researchers from the application of
finite-difference grid methods. As regards economy, a general observation is that in the SSA the neces-
sary number of partial waves is smaller than that required in the grid methods. Predictions are made for
the case of Ace=2 eV, Io =2X10' W/cm, in the context of a study of the effect of the pulse shape on
the harmonic-generation spectrum. It is shown that the number of harmonics and the appearance of the
plateau depend on the duration of the peak intensity.

PACS number(s): 42.50.Hz, 32.80.Rm

I. INTRODUCTION
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The quantity d(co) is the Fourier transform of the in-
duced time-dependent dipole d (t), determined by

The operator d may have a number of forms. The usual
ones are the length, velocity, and acceleration, with ap-
propriate frequency factors multiplying expression (1).
Based on a number of arguments and results on one-
electron atoms [4,6,7,9,10] and on models [11], the au-
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There is growing interest in the nonperturbative calcu-
lation of the spectrum of high-order harmonic generation
(HOHCx) occurring during the interaction of an atom
with a short laser pulse of high intensity [1—10]. In order
to deal with this problem rigorously, one must solve the
time-dependent Schrodinger equation (TDSE) for the sys-
tem "atom plus laser pulse, " and then use the solution
4'(r, t) for the calculation of the harmonic spectrum,
which is proportional to [1—3]

thors of these papers suggest the superiority of the ac-
celeration form.

The existing calculations on HOHG of real atoms have
applied the so-called "grid method, " whereby the TDSE
is integrated directly on a grid of space-time points, for
the computation of the wave function of only one elec-
tron moving either in a purely Coulomb potential (hydro-
gen atom), or in a mean-field local potential (closed-shell
noble gases) [1—10]. In conjunction with the use of
supercomputers, this approach has already produced
much information on the phenomenon of HOHG and on
other properties resulting from the nonlinear response of
atoms to strong laser pulses. However, it is still not pos-
sible for the grid method to go beyond the single-electron
approximation or to deal efficiently with multideter-
minantal zeroth-order states. Furthermore, even for the
hydrogen atom, convergence difficulties appear as the in-
tensity increases or the photon energy decreases. For ex-
ample, in a systematic study and analysis, Krause,
Schafer, and Kulander [6] computed the HOHCx for H
interacting with laser pulses of wavelength 1064 nm and
of peak intensities ranging from 2X10' —1 X 10' W/cm .
For the latter case, "converged results become extremely
difficult to obtain, " in spite of the impressive capacity of
the vectorized code. The causes and the implications of
this limitation were discussed by the authors [6].

It is the purpose of this paper to present results on the
above-threshold ionization (ATI) spectra and on HOHG
for the hydrogen atom for a number of cases, from an ap-
proach that brings in the characteristics of the real
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discrete and continuous spectrum via the use of state-
specific wave functions. One advantage of this approach
to the solution of the TDSE, demonstrated here, is
efficiency, good convergence, and an immediate under-
standing as to the significance of the discrete and scatter-
ing states that are included in the calculation in a modu-
lar way. A more general advantage, demonstrated else-
where [12] where the details of the method are presented,
is that it allows the quantitative treatment of polyelect-
ronic atoms regardless of their structure and the charac-
ter of their field-free spectrum.

In Sec. II we give the essential equations used in the
calculations of the state-specific approach (SSA). Since
the functions representing the discrete and the scattering
states are calculated numerically, the bottleneck as to the
on-shell singularity for the continuum-continuum dipole
matrix elements had to be solved. The solution is given
in Ref. [12]. In Sec. III we present a series of results for
intensities in the range 6X10' —7X10' W/cm and for
photon energies in the range 1.16—5.44 eV. These are
compared with the available results from grid methods
[4—7].

processes in terms of state-specific wave functions, in-
stead of functions that are produced by diagonalization of
the Hamiltonian over a single large basis set, offers im-
portant conceptual and computational advantages, since
the function space for each wave function is optimized
separately and since the free-electron function is obtained
numerically in the field of the term-dependent core. In
this way, the resulting wave functions are compact yet
accurate, have a one-to-one correspondence with real
states, no information-loosing discretization of the elec-
tronic continuum is necessary, and the inclusion selec-
tively of electron correlation and of multiply excited
states in the discrete or the continuous spectrum is
straightforward.

For the present problem involving hydrogen, the
state-specific discrete and scattering functions are ob-
tained exactly from the numerical solution of the hydro-
genic Schrodinger equation. In this way, the convergence
of the method and the physics of the phenomenon under
study can be understood, given the laser characteristics,
as a function of the number and the type of the field-free
states entering Eq. (3).

II. METHOD: EXPANSION BASED ON
STATE-SPECIFIC WAVE FUNCTIONS

The approach which we chose for solving the TDSE
starts with the textbook case of expanding %(r, t) over
the field-free stationary states of the spectrum under
study with time-dependent coefficients:

%(r, t)=g a;(n, t)4„;++J b;(E, t)@z;dE . (3)

Form of the dipole operator for the calculation of 1( t )

In order to compute d (t) of Eq. (2) for linearly polar-
ized light, we chose the acceleration form

d( ( dz(( )=(4(=(r, )Ea(f(((sin(rat( — 4(r, t)))r

(6)

H„,=H„+iA (t) V, (4)

where, for reasons of computational convenience in deal-
ing with the continuum-continuum dipole matrix ele-
ments using numerical functions, the velocity form of the
interaction has been ado'pted [12]. The vector potential
A (t) is related to the electric-field amplitude by

E(t)= — A (t) =E,f (t)singlet,
dt

where f (t) is the function for the shape of the pulse. In
our calculations the light is linearly polarized and the
magnetic quantum number is set to zero for all channels.

The features that distinguish the SSA and make it gen-
eral as well as efficient are that the wave functions @„
and @E are state specific and that the free-orbital func-
tions are obtained numerically for each partial wave. As
has been argued before (e.g., [13],and references therein),
implementing theories of a variety of atomic or molecular

are the bound states and 4z; are the energy-
normalized scattering wave functions. The index i
signifies the orbital angular momentum channel. Substi-
tuting Eq. (3) into the TDSE results in a system of cou-
pled first-order differential equations whose solution pro-
duces the coefficients a; and b, . Knowledge of o.; and b;
allows immediately the calculation of a variety of observ-
ables.

The total Hamiltonian is taken in the form

This choice was made for reasons of convenience in the
calculation of the continuum-continuum matrix elements
with numerical functions, and of direct comparison with
the existing results from the grid approach.

We take this opportunity to comment on the choice of
the appropriate form in general, i.e., in the case of
polyelectronic atoms. In the one-electron case, the use of
the acceleration form for the computation of the harmon-
ic spectrum has the following advantage: By weighting
the inner part of the wave function, this form excludes to
a good degree possible errors in 4'(r, t) coming from the
outer region when the atom is ionized. When the grid
method is applied, its results have shown that this leads
to the reduction of background in the spectrum [6,7,11].

On the other hand, for multielectron atoms the choice
of the appropriate form is less obvious. As is well known,
it is rarely possible to calculate oscillator strengths for
transitions in multielectron systems with all three forms
of the dipole operator and obtain good agreement among
them and with experiment [14]. Furthermore, the ac-
celeration form is considered to be the least reliable for
processes involving the valence electrons since it em-
phasizes the small-r values of a numerical multielectron
wave function, and the value of the corresponding ap-
proximate transition matrix element deviates from the ac-
curate one significantly.

In other words, consider the matrix element (2) and
write d (t) as
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g g (ak(t)@k ~d ~Ia (t)@ ) =d (t),
k m

(7) computes 0'(r, t) using grid methods [4—7]. The +Tl
spectra were obtained by computing

where the indices k and m run over the complete set of
discrete and scattering stationary states. It is obvious
that one factor determining the value of each term is the
magnitude of the time-dependent coefficients, and this de-
pends on the ionization probability for the laser pulse of
interest. The other major factor is the accuracy of each
matrix element. For example, suppose that we consider
high-order transitions to the ground state %0 only. The
corresponding matrix elements are

pa*(t)a (t)(@ ldl@ ), (8)

where the @ represent continuum states. For a po-
lyelectronic atom where the laser pulse has excited one or
more valence electrons, the results of the computation of
the )I)'-electron integrals in Eq. (8) will be less reliable
when the acceleration form is used than when the length
or the velocity form are used, unless very accurate wave
functions for 4o and @ are used [14].

III. RESULTS AND COMPARISON
WITH PREVIOUS WORK

We now turn to the discussion of specific results ob-
tained for H, the common testing ground of each new ap-
proach. Except for the case of Ac@=2 eV, Io =2 X 10'
%'/cm, these results were obtained with a pulse shape
f (t) of the form [5,6]

t/T„, O~t~T„
1, T„~t~Tf,

where T„ is the rise time of the pulse and Tf is the time at
which the constant intensity part ends. This form is par-
ticularly convenient for the Taylor series expansion
method, which we introduced [12] for the solution of the
TDSE. It should be kept in mind that the details of the
pulse shape will not afI'ect significantly the qualitative
characteristics of the harmonic spectra.

The above shape covers the cases of relatively long
pulses. On the other hand, in order to check the possibil-
ity of producing higher harmonics with very short pulses,
we also did a case (A'co=, 2 eV, Io =2X 10' W/cm ) where
d(t) was evaluated for the full duration of the pulse (see
case 6).

The Fourier transform, [Eq. (1)] of the time-dependent
dipole [Eq. (6)] was performed with a standard fast-
Fourier-transform (FFT) routine [15]. We used as input
the values of d (t) during the last 4—8 cycles of the pulse.
In most cases presented here, the rise time was T, = 5 T
and the pulse ended at Tf =20T. In this way the sampled
values of the dipole are not aA'ected by transient efFects
due to the rise of the pulse intensity.

%'(r, t) and d(t) [Eq. (6)] were calculated at intervals
ranging from T/800 to T/2048 to ensure that even the
highest harmonics produced could be resolved.

A number of cases were examined in order to check the
convergence properties of the SSA, to explore trends, and
to compare with available results from the approach that

dP, (t)
dc (10)

Case A. A'c0 = 1.16 e V, (A, =10640 A), 10= 1 X 10 )V/cm
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FIG. 1. Harmonic response (1 g, ~od(re&)~ [Eq. (1) from Eq.
(6) divided by co ]), of H versus harmonic order. The field fre-
quency is Ace= 1.16 eV (X= 10640 A) and the peak intensity is
I0=1X10' W/cm . The number of partial waves in the con-
tinuum goes up to l =20. In this as well as in all figures, the
base of the logarithm is 10.

We start with this case because it has been used as a
stringent test of the accuracy and economy of the SSA.
As we already mentioned in the Introduction, Krause,
Schafer, and Kulander [6] have recently reported calcula-
tions of HOHG showing that convergence is extremely
difBcult to obtain. In fact, they estimated that the ac-
celeration spectra —which were identified as the most
reliable —have converged only to within an order of mag-
nitude (Ref. [6], p. 5008).

Our results are shown in Figs. 1 —4, where HG as well
as ATI spectra are shown. Convergence was tested by in-
creasing systematically the number of hydrogenic bound
states (n and I) and of the scattering states (E and I).
Figures 1 —4 correspond to calculations where the re-
quired number of bound states has stabilized at n =20,
I = 14, and the continuum extends to E =70 eV in steps
of 0.054 eV. Thus what we show rejects the convergence
as a function of the number of partial waves in the con-
tinuum. Figs. 1 and 3 correspond to I=20 and Figs. 2
and 4, our final results, to I =30. In the former case, the
number of coupled equations is 27411 and in the latter
40 371. In either case, the numerical algorithm [12] was
very stable. It is clear that the spectra from the two cal-
culations (I =20 and 1=30) are essentially the same, sig-
nifying that convergence has already been obtained at
I =20.

As regards the harmonic spectra, when comparison is
made between the SSA and the grid results (Fig. 16 of
Ref. [6]), similarities as well as differences are observed.
The forms of the spectra from the two types of calcula-
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FIG. 2. As in Fig. 1 with partial waves in the continuum up
to 1=30.

FIG. 4. As in Fig. 3 with partial waves in the continuum up
to 1=30.

tion are similar (acceleration formulas). Such similarities
are observed for the appearance of the position of the
cutoff, the intensity of the peaks, and the role of the back-
ground (compare Fig. 16(a) of Ref. [6] with our Fig. 2).

Case 8. A're=5. 44 eV, (A, =2280 A),
I&=1.75X10 4 S'/cm

This is the case treated by DeVries [5]. His results
show the appearance of harmonic generation through the
23rd harmonic. Our results (Fig. 5) show an emitted ra-
diation only up to the 7th harmonic, with no plateau or
cutoff.

Case C. A'co=5. .0 eV, (A, =2480 A), Io=7X10 ~ W/cm~

For this case the expansion (3) consisted of 195 discrete
hydrogen functions (up to n =20, i=14) and 13608

scattering functions (648 energies per l channel and up to
21 1 channels) with an energy spacing 0.004 a.u. , thus
covering energies up to 2.59 a.u. above the ionization
threshold. The results plotted in Fig. 6 show appreciable
amplitudes for harmonics up to the 9th, which however
are many orders of magnitude weaker than the funda-
mental. No sign of a plateau is present despite the high
intensity of the pulse. This is in accord with all the ex-
perimental evidence accumulated so far, clearly support-
ing the conclusion that longer wavelengths are more
efficient in the generation of high-order harmonics [16].
However, our results are at least partly in conflict with
recently published results [7] that show that for 5-eV
photons and with Ic=7 X 10' W/cm, a long plateau ex-
tending from the 9th to the 25th harmonic is formed

10
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10

—4.0—

K

Q —6.0—

10 -'=

0.0 0.5 1.0 1.5
energy (c.u. )

2.0

—10.0

FIG. 3. ATI spectrum {dP,(t)/ds [Eq. (10)] in logarithmic
scale) of H as a function of photoelectron energy (in a.u. ). The
field frequency and the peak intensity are as those of Fig. I. The
number of partial waves in the continuum goes up to 1=20.

12 15 18 P, i 84 27
harmonic order

FICx. 5. Harmonic response (in logarithmic scale) of H versus
harmonic order with Ago=5. 44 eV and Io =1.75X 10' %'/cm .
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—13
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I
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FIG. 10. As in Fig. 9 but for Io=2X10' W/cm . FIG. 12. As in Fig. 11 but for IO=8X10' W/cm .

sive orders of harmonics tend to converge to a band of
only two orders of magnitude, a precursor of plateau for-
mation.

Case I'. Rr0=2 eV, (A, =6078 2),
I0 =6X 10 8'/cm

8& g0 $P/cm g. 2Q g0 ~ Q'/cm

In order to exhibit the nonperturbative response of the
atomic system under long-wavelength, high-intensity ex-
citation, we have further reduced the pump frequency to
co=0.075 a.u. (Ace=2 eV). This photon energy lies in the
range produced by state of the art laser systems (like the
Ti-sapphire type) that can deliver very high intensities in

very short pulses (less than 100 fsec). It is therefore ex-
pected that interesting experimental results will keep on
coming at this photon energy.

In Fig. 11, results are shown for Io =6X 10' W/cm .
At this intensity, relatively low for H, the harmonic spec-
trum already exhibits significant departure from the per-
turbative response encountered in Figs. 6 and 9. The
strength of the 3rd and 5th harmonics is comparable.
The same holds true for a second group of harmonics,
from the 7th to the 13th, which seem to form a short
"plateau" region. By further increasing the intensity to
Io=8X10' W/cm (Fig. 12), the plateau formation cov-
ers the range from the 5th to the 15th harmonic. The
perturbative behavior is now limited only to the 3rd har-
monic. The final set of results obtained with
ID=1.2X10' W/cm (Fig. 13) does not show any appre-

CI —g-

0 —g-

I

10 15 20 25 30

harmonic order

FICx. 11. Harmonic spectrum [~d(co)~ divided by co ] for H
at %co =2.0 eV and Io =6 X 10' W/cm .

I I I

10 15 20
harmonic ord. er

25 30

FIG. 13. As in Fig. 11 but for I0=1.2X10' W/cm .
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FIG. 14. Temporal pulse shape used in case G [curve (1)].
The solid-line curve (1) consists of a rising time (as well as a fall
time) composed of two linear portions (with a duration of 7 and
13 cycles, respectively) and of a part of a constant peak intensity
with a duration of 2 cycles. The dashed-line curve (3) corre-
sponds to a Gaussian temporal pulse shape with full width at
half maximum 18 cycles=40 fsec. The curve (2) indicates a
pulse where the part of constant peak intensity is longer.

FIG. 16. As in Fig. 15 but for a longer part of peak intensity
[curve (2) in Fig. 14].

suits has converged to below an order of magnitude at the
positions of the harmonic peaks and the background.

Case G. A're=2 eV, Q =&78 &),
Iz =2X 10 W/cm

ciable increase in the extent of the plateau. This could
probably be due to the increase in ionization as the peak
intensity increases. As a result, electrons are quickly re-
moved from the vicinity of the nucleus, and the harmonic
emission is not enhanced appreciably despite the consid-
erable increase of the driving power. This last set of re-

0—

In this case we tested the efficiency of producing high-
order harmonics in very short intense pulses. %'e used
the full duration of the pulse for the calculation of d(t)
[Eq. (6)]. The shape of the pulse used in this case as well
as a Gaussian-type pulse of the same full width at half
maximum (18 cycles = 40 fsec) are shown in Fig. 14.
The results of Fig. 15 show clearly only three harmonics
with a tendency toward the formation of a plateau and a
cutoiK Evidently, the system feels the peak intensity only
for a very short time and cannot respond in terms of
many harmonics.

10

10

—14 I

10 20 30 40 50 60
harmonic order

70 80 90
10

FIG. 15. Harmonic response (in logarithmic scale) of H
versus harmonic order with fico=2 eV and I0=2X 10' W/cm .
This spectrum was obtained from the full duration of the pulse
[curve {1)in Fig. 14].

10
0.0

I

2.5
I I ( (

0.5 1.0 1.5 2.0
energy (a.u. )

FIG. 17. ATI spectrum (in logarithmic scale) of H for
%co=2.0 eV and I0=2X10' W/cm . This spectrum was ob-
tained at the end of the pulse [curve (1) in Fig. 14].
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By extending the duration of the peak intensity [see
curve (2) in Fig. 14], harmonics up to the 19th are ob-
served (Fig. 16). In this spectrum one can detect a pla-
teau between the 7th and the 17th harmonics. Also, a
cutoff appears at the energy of 3.17 U +I [18], where
U is the ponderomotive potential and I is the ionization
potential. The ATI spectrum is given in Fig. 17. Here,
there is no previous theoretical or experimental informa-
tion with which to compare.

IV. CONCLUSION

In order to compute the ATI spectra [via Eq. (10)] and
the high harmonics via the Fourier transform of the
time-dependent dipole moment [Eqs. (1) and (2)] of real
atoms, an alternative approach to the grid methods
[1—10] for the calculation of %(t) has been applied. The
reported results refer to the H atom excited by a variety
of strong laser pulses. The method converged well for
the most difftcult case reported in the literature [6], i.e.,
for X=1064 nm and Io=1X10' %/cm, while con-
sistently showing efficient convergence for a number of
other cases.

The present results suggest that the strategy of solving
the TDSE via the use of the state-specific expansion of

Eq. (3), where the stationary wave functions are obtained
by an advanced method allowing for a faithful represen-
tation of the unperturbed states of the discrete and the
continuous spectrum, is suitable for the treatment of a
number of problems (see also Refs. [12,17]). For po-
lyelectronic systems, the rate of convergence and the de-
gree of transparency from the viewpoint of physics will
depend on the quality of the wave functions 4„and Nz
and on the number of states entering Eq. (3). The
present application to the hydrogen atom o6'ered the op-
portunity of using the optimal 4„and @z, i.e., the exact
functions. We found that as regards convergence, the
contribution to %(t) comes mainly from the continuous
spectrum. Since the high-lying discrete states of a po-
lyelectronic atom are hydrogenlike, it follows that, apart
from special situations of valence-Rydberg interactions,
the level of accuracy in the calculation of %(t) for a po-
lyelectronic atom will depend mainly on how accurately
the contribution of the free-electron spectrum has been
accounted for.
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