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Elastic scattering of positrons off rare-gas atoms
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A simple potential model proposed for the elastic scattering of positrons off rare-gas atoms is used to
compute low-energy phase shifts and differential scattering cross sections o.(0) for positrons incident on
&ONe, »Ar, and 36Kr at energies 20, 3.4, and 6.67 eV, respectively. The calculated results for o(0) are in

good agreement with currently available experimental values and are as reliable as the numbers obtained
from much more elaborate calculations. It is pointed out that an important virtue of the present model
is its simplicity.

PACS number(s): 34.80.Bm, 03.65.Nk

I. INTRODUCTION

It is widely believed that positrons (e+ ) are very sensi-
tive probes for neutral atomic targets, and studies in e+-
atom scattering constitute an exciting field of investiga-
tion. With the exception of positronium formation [1],
all available computational methods for electronic sys-
tems can easily be adapted for positronic systems by re-
garding the positron as a distinguishable electron (e ) of
positive charge. As in the case of e -atom scattering,
studies in e+-atom scattering become increasingly
dificult as one moves along the periodic table and, practi-
cally, detailed variational and nonvariational calculations
[2] assume the status of a formidable task even for
currently available computer facilities. In contrast to
this, the approach based on model potentials is simple
enough to admit straightforward applications to large-Z
atoms. In the potential model approach, the scattering
interaction is assumed to consist of two parts having
different dynamical origins. The first part corresponds to
the so-called static potential and is taken care of by em-
ploying results from some ab initio calculation. The
second part gets a contribution from polarization of the
atomic target by the incident particle. The polarization
effects are incorporated by the use of simple functions
with adjustable parameters. The use of model potentials
in the study of e+-atom scattering has an old root in the
atomic literature. However a very significant contribu-
tion with respect to this has been made by Nakanishi and
Schrader (NS) [3], who clearly demonstrate that choosing
the adjustable parameter in the polarization potential
based on physically founded assumptions leads to poten-
tial models for simple and accurate calculations of e+-
atom elastic scattering.

In the model by NS, the leading term of the dipole po-
larization was bootstrapped with a short-range cutoff
function characterized by a disposable parameter, called
the effective radius, so as to account for other residual in-
teractions that may be associated with the atomic polari-
zability. Asymptotically, the cutoff function goes to uni-

ty giving the long-range behavior of the dipole term. The
effective radius for each atom was adjusted to reproduce
the well-known reference values, via solutions of the radi-
al Schrodinger equation. More recently, Jain [4] has con-
structed an approximate parameter-free polarization po-
tential, which he calls the correlation polarization poten-
tial (CPP). The CPP was determined from the correla-
tion energy of one positron in a homogeneous electron
gas. The present paper is an effort along the line of
thought initiated by NS and studied in more detail by
Jain [4] and by Baluja et al. [5]. We shall discuss the
e+-atom scattering problem within the framework of a
potential model, which from a physical and mathematical
point of view is intermediate in complexity between that
of NS and that of Jain.

We devote Sec. II to our choice of the model potential.
In particular, for the static part of the e+-atom interac-
tion we use an electrostatic potential constructed by Sal-
vat et al. [6] by means of an analytical fitting procedure
to Dirac-Hartree-Fock-Slater self-consistent data. The
reliability of this potential has been demonstrated by Sal-
vat [7] himself in the context of scattering of fast posi-
trons by atoms.

The Buckingham potential [8] appears to be the first
semiempirical polarization potential to be used in e
atom scattering calculations. Since then there have been
myriad attempts to search for more realistic models, and
the works of NS [3] and of Jain [4] constitute two such
independent attempts. Here we shall work with a form of
the polarization potential V~(r) [9], which accurately
represents the effect of both static and dynamic polariza-
bilities of the atomic target induced by the projectile.
Additional remarks on the form of V (r) will be present-
ed in due course. In particular, the free parameter
characterizing it will be determined by making use of an
argument given in Condon and Shortley [10] and by tak-
ing recourse to the so-called quantum defect theory
(QDT) [11]. For the present study we shall not
differentiate between the e+-atom and e -atom polariza-
tion potentials. This is not expected to affect the low-
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energy scattering data since the second-order perturba-
tion energy is independent of the sign of the projectile
charge.

In Sec. III we summarize our method for calculating
the scattering phase shift. Rather than solving the
Schrodinger equation, we work with the variable-phase
approach [12] to potential scattering because it is a direct
method for computing scattering phase shifts and has
certain distinct advantages over the traditional wave-
function method. Here one works with a first-order
equation, albeit a nonlinear one. This fact, on the one
hand, decreases the number of computations and, on the
other hand, makes it possible to use a number of known
results from the theory of differential equations. In Sec.
IV we present results for the differential cross sections for
scattering of positrons from &ONe, &8Ar, and 36Kr for
some selected values of projectile energy.

II. MODEL POTENTIAL

—a,.r
V, (r)=z—g A;e (2)

where Z stands for the atomic number of the target and z
is the projectile charge. Obviously, for the positron,
z=+1. As noted earlier, the values of strength and
screening parameters 3, and cz; were obtained through a
suitable fit to the numerical potentials obtained from
self-consistent calculations. The number of Yukawa
terms in Eq. (2) varies from atom to atom. The analyti-
cal screening functions presented here improve on other
alternatives used previously for the static field. On a very
general ground one knows that the mean static interac-
tion for atoms other than hydrogen has a long-range
Coulomb tail. This poses typical difficulties in the com-
putation of scattering phase shifts. Since V, (r) in Eq. (2)
involves only Yukawaian terms, the Coulomb difficulties
will no longer complicate the computational procedure.

As for the polarization potential V(r») we shall work
with [9]

CXd („i„)6 aq —6 —(rZr ]

(3)

where ad and cx are static dipole and quadrupole polari-
zabilities of the core, and P is the nonadiabatic electric-
dipole core polarizability. The term core used here refers
to the following.

In an alkali-metal atom, the core is composed of the
inner groups of electrons and has an inert structure. The
core is polarized by the field of the outer electron so that
the valence electron's motion is perturbed by the polar-
ization potential [10]. For low-energy e+ —rare-gas-atom

We write the scattering potential V(r) for e+-atom
scattering in the form

V(r) = V, (r)+ V~»(r) .

The static potential V, (r) used by us is taken from Sal-
vat et al. [6] and is written as

scattering, we postulate that a slow incident positron po-
larizes the atomic target in the same way as a valence elec-
tron does for the alkali me-tal atom core. This is not a
drastic approximation as long as we agree to remain
within the accuracy of the second-order perturbation
theory, which fortunately is good enough for low-energy
scattering. An important virtue of V~,&(r) in Eq. (3) is
that it is regular at the origin and has only one open pa-
rameter r„ the outer cutoff radius. For alkali-metal
atoms, r, is a function of the orbital angular momentum l
of the outer electron. The leading terms of V „(r) are ob-
tained for values of r &&r, . The choice of r, in the case
of e+-atom scattering is an involved problem. However,
we shall follow the above viewpoint to compute numeri-
cal results for r, . We defer details with respect to this
(particularly, the rationale of QDT) until we come to the
discussion of our results. Throughout this paper we shall
work in Hartree atomic units (A'=m =e = 1).

III. DIFFERENTIAL CROSS SECTION

If a positron of incident energy E =k /2 is elastically
scattered by an atomic target through an angle 0, the
differential cross section a (8) is given by

max
2

1 i61(k)
o (0)= g (2l+ 1)e ' sin51(k)PI(cos9), (4)

I=O

(5)

where the prime denotes differentiation with respect to r
and j&(kr) and g&(kr) stand for the Riccati-Bessel and
Neumann functions, respectively. The function 5&(k, r) is
called the phase function and Eq. (5) is subject to the ini-
tial condition, 5&(k, 0)=0. The scattering phase shift is
defined by

5&(k)= lim 5&(k, r) .
P~ QO

(6)

It appears that Eqs. (5) and (6) have also been used by
Baluja et al. [5] to compute the scattering phase shift. In
this context we note the following.

For scattering on a relatively long-range interaction
like that in Eq. (1), a large number of partial waves con-
tribute to the differential cross section. In higher
partial-wave phase-shift calculations, generation of the

where Pt(cosO) is a Legendre polynomial of order I. The
scattering phase shift 5&(k) in Eq. (4) is generally ob-
tained by integrating the radial Schrodinger equation for
the potential in Eq. (1) from the origin to the asymptotic
region and then comparing the phase of the wave func-
tion with that of an appropriate circular function. But
we have already remarked in the Introduction that we
shall work with a direct method for computating 5&(k).
In the literature, this is referred to as the variable-phase
approach [12] or phase-function method (PFM) [13]. The
determination of 5I(k) by the PFM consists in solving a
first-order, nonlinear differential equation written as

5t(k, r ) = —
[j&(kr)cos5&(k, r) —g&(kr)sin5&(k, r)]V(r)
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numerical values for j&(kr) and re(kr) for kr « I poses
several problems originating from undertow and
overtlow, respectively. Klozenberg [14] has tried to deal
with the situation by implementing the algorithms of
Carbato and Uretsky [15] as well as generating the func-
tion rl&(kr) T. his is, however, quite a job. Thus we have
tried to circumvent them by working with a generalized
phase equation [12]

yI(k, r)= ——
2

+ V(r) sin2( kr +y i( k, r)),1 l(1 +1)
r

Atom

lpNe

l8Ar
36K.r

2.67
11.1
16.8

9.0
72.9

113.9

1.27
8.33

14.5

TABLE I. Parameters in the long-range part [ V „(r)] of the
effective potential in Eq. (1).

Polarizabilities (a.u. )

(7)

with the initial condition y(k, O)=0 supplemented by
y'i(k, O)= —kl/(1 +1). Here the scattering phase shift
5i(k) is given by

5I(k)=yi(k, ao )+ lm

2
(8)

IV. RESULTS AND DISCUSSION

The values of the parameters for the potential in Eq. (2)
for &ONe, ,8Ar, and 36Kr have been given in Salvat et al.
[6]. The results used by us for the polarizabilities ad, a,
and P occurring in Eq. (3) are given in Table I. All num-
bers in this table except the result for e of 36Kr are given
in Bransden [18]. This result was generated by making
judicious use of Eq. (5-63b) in Ref. [18]. In addition to
the polarizabilities, the polarization potential involves a
free parameter r, . As advocated in Sec. II, for the values
of r, we shall work with the core radii of alkali-metal
atoms. The spectra of alkali-metal atoms can often be de-
scribed quite accurately in terms of simple physical mod-
els and the QDT [11] serves a useful purpose in this
respect. Here the energy eigenspectrum is still described
by a hydrogenic formula, with the principal quantum
number n being replaced by an effective quantum number
n *,and the quantum defect 6 is written as

(10)

While the significance of Eqs. (7) and (8) was thoroughly
discussed by Calogero [12], it appears that the difFerential
equation (7) was never used to compute scattering phase
shifts, presumably because it is rather tricky to incorpo-
rate the tangent condition y&(k, O)= —kl/(I +1), which
plays a crucial role in the uniqueness of the desired solu-
tion [16]. To take care of this, we introduce the value of
the phase function yi(k, r) at the next adjacent point of
zero by [17]

y, (k, h ) —y, (k, O)
y', (k, o) = lim

h~O h

Given the result in Eqs. (7)—(9), the higher partial-wave
scattering phase shifts can be computed without generat-
ing the values for Riccati-Bessel functions at every in-
tegration step. But the price we pay for this is that it is
now necessary to integrate Eq. (7) from the origin to a
large distance even for short-range potentials because of
the slow asymptotic vanishing of the centrifugal term.

a'(r) =v(r) [r —a (r) ]

with a(0)=0 to compute the s-wave scattering length
defined as

a = lim a(r) . (12)

The computed values of a for different targets is also ex-
pressed in atomic units. For, oNe we obtained
a = —0.5213. This value is in excellent agreement with
the experimental result [ —(0.53+0.15)] of Tsai, Lebow,
and Paul [21] and is somewhat improved over the corre-
sponding theoretical result —0.7283 obtained by NS [3].
Our result a = —6.0812 for &8Ar may appear a little
disappointing since it is lower than the experimental
value [ —(4.4+0.5)] of Lee and Jones [22]. In this con-
text we note that McEachran, Ryman, and Stauffer [23]
obtained a = —5.30 from a polarized orbital method cal-
culation. Ho~ever, we shall see that the results for
differential scattering cross section computed by the use
of the above quoted r, value for &8Ar are in good agree-
ment with the recently calculated values of Jain [24].
The scattering length for 36Kr was found to be —2. 6801
and could not be compared with earlier results for want
of data.

In Table II we present our results for the phase shift.
The projectile energy (E) for each of the atomic targets
was chosen in such a way as to permit comparison with

The quantity 6 is almost constant in a particular series
(constant l and varying n) of terms and is obtained tradi-
tionally by 6tting the experimental binding energy. Re-
cently, we have derived a method for computation of the
values for b without resorting to the use of experimental
data [19]. As an added advantage, we have found that
this theory simultaneously yields values for r, . This was
achieved by making use of the Thomas-Fermi model [20]
of the atom and demanding that 6 be stationary with
respect to variation in the values of inert atomic core ra-
dii. In the atomic unit of length (ao= 1), the numbers
computed by us for r, to be associated with &ONe, &8Ar,
and 36Kr are found to be 1.8310, 2.1469, and 2.5237, re-
spectively.

Before computing results for scattering phases on the
basis of Eqs. (1)—(3) and (7)—(9), one would like to exam-
ine the effectiveness of our semiempirical potential in Eq.
(3) to produce experimentally determined positron-atom
scattering lengths that exhibit a marked sensitivity to the
target polarization. To deal with this we have made use
of the interpolating equation
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TABLE II. Partial-wave phase shifts for positrons elastically scattered from Ne, Ar, and Kr at energies 20 eV, 3.4 eV, and 6.67 eV,
respectively. The numbers in parentheses are from Ref. [3] {for Ne and Ar) and Ref. [25] (for Kr).

Phase shifts 5I(k) (rad) for values of l

Target atom

loNe

l8Ar

E (eV)

20.0

3.4

6.67

—0.6621
( —0.5526)
—0.0043

(
—0.0730)
—0.4417

( —0.4427)

—0.0452
( —0.0148)

0.2696
(0.2121)
0.2208

(0.2200)

0.0552
(0.0644)
0.0887

(0.0778)
0.2054
(0.2170)

0.0353
(0.0342)
0.0305

(0.0278)
0.0949

(0.0970)

0.0186
(0.0172)
0.0130
(0.0126)
0.0420
(0.0429)

0.0110

0.0089

0.0250
(0.0219)

0.0070

0.0069

0.0130
(0.0127)

relevant theoretical and experimental data. The numbers
in parentheses for, oNe and &sAr are from NS [3] and
those for 36Kr are from McEachran, Stauffer, and Camp-
bell [25]. As for, oNe we note that our phase-shift results
are slightly lower than the corresponding numbers of NS
for I ~2. For I )2, this trend becomes the opposite.
However, we have clearly demonstrated the convergence
of 61(k) at higher partial waves. In the case of, sAr, the
values of our phase shifts are always augmented com-
pared to those of NS. The maximum discrepancy is 9%
and occurs in the s-wave case. The discrepancy con-
sistently diminishes as we go to higher partial waves. It
is of interest to note that the two sets of phase shifts for
36Kr are in good agreement This indicates that the re-
sult for the associated scattering length computed by us
may also be in good agreement with the data to be ob-
tained from forthcoming experiments.

In Figs. 1 —3 we plot the values of the differential cross
section o (0) as a function of the scattering angle 8 for
e+-Ne at E =20 eV, e+-Ar at E =3.4 eV, and e+-Kr at
E =6.67 eV. We represent the variation of our results by

solid curves. The appropriate experimental results are
shown by hollow triangles. We use dashed curves to ex-
hibit 0 dependence of earlier theoretical results. As for
,ONe, the earlier theoretical results are due to NS [3].
Looking into Fig. 1, we see that at all scattering angles
our values of o (0) are slightly augmented compared to
those of NS and therefore in better agreement with the
experiment of Kauppila et al. [26]. Although in Table II
we have quoted the phase-shift values of NS [3] for, sAr,
we have compared in Fig. 2 our results for o(0) with
those of Jain [24], presumably because Jain's results are
more recent and appeared to be somewhat improved over
the corresponding results by NS. The two sets of results
do not differ appreciably and each of the sets are only in
reasonable agreement with the experimental points of
Coleman and McNutt [27). In Fig. 3, our results for 36Kr
are not discernible from those of McEachran, Stauffer,
and Campbell [25], at least for the logarithmic scale used
by us. Thus our potential model in this case exactly
reproduces the polarized orbital data. But, unfortunate-
ly, the recent experimental results of Dou et al. [28] are
only in qualitative agreement with the theoretical values.

From the discussion presented above, it is clear that
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FIG. 1. Di8'erential cross section (DCS) for positrons elasti-
cally scattered from &oNe as a function of scattering angle at an
incident energy 20 eV.
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FIG. 2. DCS for e+-Ar elastic scattering at 3.4 eV.
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still improve on the results by working with the polariza-
tion potential of Valone, Truhlar, and Thirumalai [29].
In this work the expression for Vp(r) was constructed by
using a low-energy approximation to the second-order
optical potential and subsequently modeling it in terms of
imaginary-frequency susceptibilities of the target due to a
point charge. In contrast to the expression in Eq. (3), the
model potential of Ref. [29] is free from any cutoff' pa-
rameter and is physically more appealing because of its
association with a position-dependent frequency. The
usefulness of the potential has already been tested for
e —rare-gas-atom scattering [30] to get encouraging re-
sults and, admittedly, the next logical step will be to en-
visage a similar study for the e+-atom scattering.

O, OI
I

60
I

90 I20 150 Iso

Scattering ogle ( deg ) ACKNOWLEDGMENTS

FIG. 3. DCS for e+-Kr elastic scattering at 6.67 eV.

the potential model used by us for the study of e —rare-
gas-atom scattering is quite realistic and reproduces num-
bers for o.(8) that are comparable in accuracy with those
obtained from more detailed calculations. But one can
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