
PHYSICAL REVIEW A VOLUME 51, NUMBER 4 APRIL 1995

a-wave positron-hydrogen scattering via Faddeev equations:
Elastic scattering and positronium formation
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s-wave scattering of positrons on atomic hydrogen is treated by solving the Faddeev equations.
Elastic phase shifts below the Ps(n = 1) excitation threshold and the K-matrix elements within the
ore gap between the Ps(n = 1) and H(n = 2) thresholds are calculated as well as the zero-energy
2p annihilation rate of the e+ e pair.

PACS number(s): 34.80.Bm, 11.80.Jy, 36.10.Dr, 03.65.Nk

I. INTRODUCTION

This paper deals with the 8-wave scattering of positron
on atomic hydrogen below the first excitation threshold
(n = 2) of hydrogen. In this case the possible reactions
are

+ e+ + H elastic scattering
e +Hm Ps + p positronium formation.

Positronium formation occurs when the energy of the
incident positron is in the ore gap, i.e., between the
Ps(n = 1) and H(n = 2) thresholds. The general inter-
est in studying the positron-atom collisions is due to ex-
perimental activity in this field that has been developed
in recent years with the advent of low-energy positron
beams and the possibility of measuring simple systems
[1—3]. The e++H system provides the simplest example
of this kind and is an ideal test point for various theoret-
ical methods solving scattering problems.

In addition, it is worth studying for its own sake due
to features that distinguish it from the classical problem
of e -H scattering. This is a full three-particle Coulomb
problem where all particles are distinct so that there are
no exchange effects, rearrangement of the target (positro-
nium formation) is possible, the role of long-range po-
larization force in the channel Ps+p is quite essential
near the positronium formation threshold, etc. Another
feature of interest, with no counterpart in electron-atom
collisions, is the annihilation of the e+ e pair.

Previously, the low-energy e -H scattering has been
calculated by means of the Kohn variational principle
[4—7]. The corresponding results are the most accurate
and reliable among many other approximative estimates.
The elastic phase shifts now seem to be firmily estab-
lished. However, some uncertainties remain, especially
regarding the positronium formation cross section for
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which sensibly different results were obtained. We refer
to [8,9] for an up to date review.

Most of the methods used are based on variational
principles. To our knowledge only one work [10] ob-
tained a direct solution of the e -H scattering problem,
still limited to the elastic region (0.1 & k & 0.70). Be-
cause of great interest this reaction attracts in positro-
nium physics, and in view of recent reports of possible
experimental measures of the Ps formation cross sections
[2,3], we find it worthwhile to solve the problem via a
completely different technique that provides a direct so-
lution of three-body dynamical equations. Namely, we
present here a solution of the Faddeev equations in con-
figuration space, in a continuing effort [11,12] to develop
the Faddeev approach in atomic physics.

The Faddeev approach has been widely used in nuclear
physics problems, but it has been applied only very re-
cently to atomic three-body scattering problems [12,13]
on the basis of the so-called modified Faddeev equations
due to Merkuriev [14]. There are two different ways to
solve these equations numerically. One of them, exploited
in Ref. [12] for the e -Ps scattering problem, uses a bipo-
lar expansion [17] of the Faddeev amplitude. Another
method, developed in Ref. [13], is based on the total-
angular-momentum representation [18] and consists of
a direct solution of the corresponding three-dimensional
equations. In this paper we adopt the bipolar expansion
method of Ref. [12] with considerable improvements in
the numerical part.

II. FADDEEV EQUATIONS

A. Kinematics

The particles of the e+ + (pe ) system are numerated
by the label n=1,2,3: (e+, p, e ) = (1,2, 3). We shall use
the atomic units (a.u. ) h = ez = m, = 1, so that the
length unit is the Bohr radius ao.

The configuration space of the system is described by
three sets of the mass-scaled Jacobi vectors {x,y ),
which are related to the position vectors of the particles
r by
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- 1/2 where V stand for the Coulomb potentials
(2)

2mp my

mp + mp - 1/2
zp zp 2mp mp

x~ mp+m~2m (mp + m~) ~ (
M

mprp + m&r& l
mp+m~ ) zp are the particle charges, and the indices (nPp) are re-

lated as in Eqs. (2) and (3). The kinetic-energy operator
Ho is given by

Ho ———x 0 x 8 —y O„yB„+i + —ily.')
(9)

(10)xp = cpaxcx + sp~gn& gp — spcxx~ + cpa+a ~ P = —8„.(1 —u') 0„..

where triplets (nfl) are cyclic permutations of (123), m
are particle masses, and M is the total mass. The 3acobi
vectors with diferent o. 's are related by an orthogonal
transform

Here the coefFicients are expressed through the masses of
the particles

mpm~
(M —mp) (M —m )

- 1/2

1
yi —- V2 (r,+ —r„), y2 - 2 r„——(r,+ + r. )P 2

and the coefficients of (4) are simplified to

1
C12 C21 —S12 — S21

2

Although we shall not use the approximation m, /m„=
0, it is useful to keep in mind the approximative relations
(5) of the Jacobi coordinates with physical distances in
the system.

The three-body dynamics at fixed total angular mo-
mentum L is constrained onto a three-dimensional inter-
nal space [18]. For local coordinates on the internal space
we use

x =~x ~, y =~y ~, u =(x,y),
where x = x/~x~. Due to Eqs. (2) and (3), these coordi-
nates are related by

2 2 2 2 - 1/2
xp —— cp x +sp y +2cp sp x y u

2 2 2 2 - 1/2
'gp = Isp x + cp~y~ —2cp~sp~x~y~u~

2 2 2 2Xxp yp up = (cp —sp ) x~ y~ u~ —cp~ sp~ (x —'g )
(7)

B. Modified Faddeev equations

The s wave (L=O) Hamiltonian -of the three-body
Coulomb system is of the form [18]

—
(—1)P sgn(n —P) (1 —cp )

and satisfy cp2 + sp —— 1. Note that in the limit
m /m M 0 (mi/m2 ——ms/m2 m 0) the scaled Jacobi
vectors (2) with n=l, 2 become

x, = ~2(r, —r„), x2 - (r,+ —r,-),

by means of a cutoff' function ( that vanishes asymp-
totically in the so-called three-body region (where x
y ~ oo) and tends to one in the corresponding two-body
region (where x « y -+ oo). We exploit the same form
of the cutofF as in the previous works [12,13]:

(e, yj = 2 (1 + exp
(x/xo)
y/yp + 1

with the same set of the cutoK parameters v=2.3, xp=2,
yp=10. In general, one should take v ) 2 and the other
parameters are rather arbitrary.

In terms of the screened potentials (11) the modified
Faddeev equations read

H..+ V.(') —E e. = —V.('~ ep, (12)

where the operator H, incorporates the long-pange
parts of the Coulomb potentials

H., = H, +) V.~'l

and the total wave function is the sum of the Faddeev
components

The set (12) involves three equations. As shown in [13],
one can reduce this number to two by choosing (s = 0
for the cutofF function in the channel o. = 3, involving
the repulsive pair e+ p. From that follows 43 ——0 and
one is left with a set of two equations for the components

Ho+ V (x) + Vs (xs ) + Vp (xp, yp ) —F

The modified Faddeev equations for the Hamiltonian
(8) are built up along a cutofF procedure due to Merkuriev
[14]. Namely, Coulomb potentials are decomposed into
short- and long-range parts

vol(. , „.) =V. (*.)(.(*., y.),

H=Hp+) V (x ), (8)
x 4' (x, y, u) = —V~'l (x, y) 4p (xp, yp, up ) (13)
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where n, P=1,2 and P g n; zp, yp, and up stand
for the coordinates xp, yp, and up expressed through
x = x, y = y, and u = u according to (7).

4irao2 C K
k2 pl —iK) (20)

C. Asymptotics

1
@1(x,y, u) ]„~~ —pH(z) [sin qiy + tan 8 cos qiy],

Xy

42 (x, y, u) ~„~ 0, (14)

Equations (13) are the starting point of our approach.
For scattering problems, they should be supplemented
with appropriate asymptotic boundary conditions. Be-
low the Ps(n = 1) threshold only the elastic channel is
open and the asymptotics of the Faddeev components are

As seen from Eqs. (16)—(18), outgoing waves with dif-
ferent clusterization of particles are distributed among
difFerent Faddeev components, so that each component
contains only one two-body bound state. This allows
one to set up asymptotic boundary conditions for the
components using the corresponding set of Jacobi coor-
dinates perfectly designed for this purpose. This is one of
the principal merits of the Faddeev approach. Note that
asymptotic decoupling of channels is due to the cutofF in
the short-range potentials V ' on the right-hand side of
Eq. (13): The terms V ' iII @ vanish sufIiciently fast in the
three-body region due to the structure of the cutofF (11).

where pH(z) is the hydrogen ground-state radial wave
function, b is the phase shift, and q~ is the momentum of
incident positron conjugate to coordinate yq.

In the ore gap, i.e. , between the Ps(n = 1) and H(n =
2) thresholds, two asymptotic channels are open. In this
case we make use of the K-matrix setting. Namely, we
look for two independent solutions of (13) correspond-
ing to difFerent initial states of the system: (i) The first
solution

1
4'1(x, y, u) ~y~~ —(pH(x) [sin qiy + Kii cos qiy),

Xy

D. Positron-electron annihilation

Annihilation of the e+ e pair in the e++H scattering
is either for two or three photons, depending on the spin
of the pair. Here we are interested in the singlet 2p an-
nihilation that yields a dominant contribution into the
overall rate and under certain assumptions [8] may be
written as A = vrr0CZ, ff, where r0 is the classical radius
of electron, c is the speed of light,

~4(r, + = r, ; r„)[ p dp

1 gy
@2(xl y, u) ~y-woo @ps(z) K21 cos q2yl

Xy

where pp, is the positronium ground-state radial wave
function. (ii) The second solution

is the effective electron density near the positron, and p
is the proton distance to the e+e center of mass. Ex-
pressed in terms of the Faddeev components, normalized
according to (14) below Ps(n=1) threshold, it takes the
foI m

(17)
1

@1(x,y, u) ~v
- —pH(z) —K12 cos qiy,

Xy gy

1
112(z, y, u) ~v~~ —

+ps (z) [siil q2y + K22 cos q2y]
Xy

- 3/2

X Cy2 [~i + ~2]' ~.,=0 y.' dy2

m, M
eff=2

(m2 + mi) (m2 + ms)

(21)

where q are corresponding mass-scaled momenta

1 2= 1 2E = ——+ q, = ——+ q2 (a.u. )2 4

(18)
The factor in front of the integral comes from relations (2)
and (3) between Jacobi coordinates and position vectors
of the particles.

related to the physical momenta A: in the system accord-
ing to Eq. (3)

k =q 2m 1—,o. =12,
M (19)

so that A:~ and k2 are the momenta of the positron and
positronium atom, respectively. The atomic wave func-
tions in Eqs. (16)—(18) are normalized by

f pH(x)dx = pp. (x)dx = 1.
0 0

III. BIPOLAR EXPANSION
AND NUMERICAL METHOD

To solve Eqs. (13) numerically, the Faddeev com-
ponents are decomposed into the bipolar basis. This
method has been extensively exploited in the trinucleon
problem [17—19], in the Coulomb three-body bound-state
problem [20], and in our previous work on e -Ps scat-
tering [12]. In the case of I = 0, the corresponding
bases are the normalized I egendre polynomials P~(u) =
gl + 1/2'(u), eigenfunctions of the operator (10):

The 8-wave cross section for scattering between channels
n and P is expressed in terms of the K-matrix elements
as

ill (x, y, u) = —) E,~ (x, y)Pi (u) .
Xy

(22)
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Substituting this into (13) yields an infinite set of two-
dimensional integrodifkrential equations for the partial
Faddeev components:

Consider the eff'ective density (21) of the 2p annihilation
of the e+ e pair. In terms of the partial Faddeev com-
ponents it is written as

(-S,.+V. —Z)F,l '+) W,',I F,I-'
E'

ZeE dyz ~(y2),

=-V.( l) hP; S P', (23)
Lp

where o., P = 1, 2 and P g n; (—A~) are the partial com-
ponents of the kinetic-energy operator (10):

—Ki = —8 —0 + l(t+ 1) —+—2 2 1 1
'JJ +2 y2

1

W I, l (z, y) = duP) (u) P) {u)
—1

x Vs (xs ) + Vp (xp, yp )
(1)

P g n. (24)

The operator 6& &
provides integral coupling of the par-

tial components

1

hfdf F (x, y) = du Pi. (u)PI, ~ (up~)
&pcxypn

xF(zp, yp ) (25)

where xp (x, y, u), yp (x, y, u), and up (x, y, u) are
functions defined by Eqs. (7) with x = x, y = y, and
&n =&.

Equations (23) are subject to the regular boundary
conditions

F,'-'( = o, y) = F,'-'(*, y = o) = o

F (z = oo y) = 0
CX

(26)

(27)

and the asymptotic conditions at y ~ oo which follow
from (14) or (16)—(18).

Let us consider, for instance, the scattering within the
ore gap. Then Eqs. (16)—(18) in terms of the partial
Faddeev components become (i) the first solution

(x, y ~ oo) - bl pVH(*) [»nqiy+ ~» sqlg]
(1)

(28)

The coupling through the functions R'&&, is due to long

range potentials Vs and Vp of Eqs. (13),(E)

with the density distribution

- 3/2m2M 3~(y) =
(m2 + mi) (m2 + ms)

) .V'21i + 1&i', ' (Is» I y tc» I y)
Si2C12 y l1 —0

+8 5', o(x = 0, y) ) (32)

Our numerical method in solving Eqs. (23) makes use
of a spline expansion of the partial Faddeev components

2N 2&y

F&'. '(*,y) = ):) f'.' is-(x)s-(y)
m=1 n=1

where s; are the cubic Hermite polynomial splines [21].
The number of splines is twice the number of subinter-
vals on which one divides the domain of corresponding
variables. Upon substituting the spline expansion into
Eqs. (23), the problem is discretized by means of orthog-
onal collocation procedure [22].

The potentials (24) and the integral terms (25) are cal-
culated by the Gauss quadrature formula with N~ and
Ng points, respectively. The resulting algebraic equa-
tion for the coefficients of Eqs. (33) is solved by a di-
rect matrix inversion with dimension 4N N N„, where
N, = %i+%2 is the number of partial channels (li), (l2)
of Eqs. (23) taken into account.

We made use of rectangular nonuniform grids G
G x G„, where G~ = (qp, qi, . . . , q~) is a set of %+1
nonequidistant knots. They are defined by means of the
accelerator A&

——q, +1 —q, so that the grid step increases
by A~ when passing to next subinterval. A grid G~-
is thus characterized by the triplet (1V; A~; q

The zero boundary conditions (26) and (27) and the
asymptotic boundary conditions (28)—(31) are implied for
x = x „and y = y „,respectively, with z and y
large enough. Let us explain in more detail the asymp-
totic boundary conditions when two open channels are
taken into account. Instead of implying the conditions
(28)—(31), we look for two solutions to the Faddeev equa-
tions (23) iE& and 2E& subject to the conditions

P& (x, g M oo) ~ b~ p (pps(z} —K2i cos qzy,
(2) q1

q2
(29) 'F, (xy = y „)= b i bi p(pH(x), n = 12 (34)

and (ii) the second solution

F&, (x, y ~ oo) - A, p pH(z) gq2/ql Ii 12 cos qiy, (3o)
(1)

E~ (x, y ~ oo) b~ p tpp (x) [sinq2y + Kz2 cosqzy]
(2)

(31)

F,( (x, y = y „)= b 2b), p(pp, {x), n = 1, 2 . (35)

Clearly, the physical solutions are linear combinations of
these solutions. Let Fi l = (F&( ) be the vector com-
posed of the partial Faddeev components of the physical
solution (28) and Fl l be that corresponding to (31). Let
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'F = ('F&~ l j be similar vectors composed of solutions

(34) and (35). Then

E' = Ay,. E+A2, E (36)

with (i, j = 1, 2)

&ij = (sin piymax + &ii cos piymax) &ij

q~+ (1 ~ij ) +ij cos rriymax
qi

The derivatives of the solutions (34) and (35) satisfy

By Fi (&) yrnax) '41 (ll ~lro pH(&)
(~)

+42(2i ~i.o v p. (~)

By Fi (xy yrnax): ~rrl (12 ~lro pH( )
(~)

+& 2 (22 ~i, o v p.(*),
where the coeKcients (,j are constants, independent of
x. Taking the y derivative of Eqs. (36) and (28)—(31) one
gets a linear system for the K-matrix elements in terms
of the coefficients (,j.

variational methods [4,6] and provides a severe test for
the Faddeev calculations. It provides also a direct check
of the reliability of the wave function due to fact that in
our approach the scattering parameters are directly ex-
tracted from the wave function without using any integral
formula [23].

Table I presents the convergence of the e+-H scat-
tering length and the zero-energy efFective density (21)
of 2p annihilation with an increasing number of bipo-
lar harmonics N, = Nq + N2 included in decompositions
(22). The convergence is slow and nonmonotonous, as
expected from the geometric asymmetry of the prob-
lem. A fully converged four digit quantity is obtained
for %, = 14 (7 + 7). Grid parameters for the y vari-
able are G„= (10,1.25, 40), enlarged by six equidistant
points up to y „=130. The integrals (24) and (25) are,
respectively, calculated with N~ ——20 and N~ = 24.

These results are obtained with y = 130, but we
have observed a sensible y dependence in the interval
40—250 ~ This is due to the hydrogen polarizability effects.
As is well known, they generate an effective long range
interaction which in the adiabatic approximation results
in a potential

IV. RESULTS

1 0!
V(r) = ———,2r4 ' (37)

When solving numerically the Faddeev equations (23),
the y-grid. parameters must be properly adjusted for dif-
ferent energy regimes. At low energies, asymptotic os-
cillations in y of the Faddeev components are slow, so
that the y grid should be dense at small distances and.
can be more sparse at large y. When the energy of the
incident positron increases, the period of asymptotic os-
cillations decreases and the region of large y needs to be
covered with a more dense grid. Also, at large energies
Faddeev components reach their corresponding asymp-
totic limits at smaller y than for low energies, due to
the essential role of long-range polarization potential at
small energies. This remark concerns the parameter y
of Eqs. (34) and (35): It should be large enough at low
energies and can be decreased with an increase of energy.

The x grid was Axed once by ensuring a good descrip-
tion of the asymtotic states yH and pp, . Its parameters
are G = (N = 12, A = 1.25, x „=20).

To fix an adequate y grid, we solved the problem by
taking into account four partial channels (lr, t2 ——0, 1)
and varying all grid parameters until a stability of the
results within 0.1% is achieved. A typical grid for low
energies (kr ( O. lao ) consists of Ny ——18 points with
the acceleration factors A& ——1.25 and y~~x = 130. For
larger energies, G. lao & A:~ & 0.2ao, a typical y grid
is Gy ——(Ky = 20, A„= 1.22, y „=70) and for ki )
0 2ao Gy: (20 1 015 40)

A. Scattering length

Our first result concerns the scattering length. This
quantity has been calculated very accurately by using

with o. = 4.5 and r ~ the relative distance between
the positron and the center of mass of the polarized H
[see Eq. (5)]. This potential was included in the preced-
ing variational calculations and its effects are indeed not
negligible [4,6]. The value of n, well defined only in the
framework of the adiabatic approximation, was consid-
ered as a free variational parameter and moved up to 4.8
in [6].

To obtain the scat tering length corresponding to
y „=oo we first fit its dependence on y x and extrap-
olate. Results are presented. in Fig. 1. The extrapolation
has been done by assuming a law of the form

A(y.„)=A + ' +,' +
ymax ymax

(38)

This assumption is supported by the numerical results

N
4
5
6
7
8
10
12
14
15
16

{l&)
01
01

012
012

0123
01234

012345
0123456

01234567
01234567

{l2)
01

012
012

0123
0123

01234
012345

0123456
0123456

01234567

A
-1.770
-2.111
-2 ~ 105
-2.176
-2.148
-2.081
-2.071
-2.059
-2.059
-2.059

Zeff
8.43
9.30
9.08
9.34
9.13
8.94
8.93
8.91
8.91
8.92

TABLE I. Convergence of the s-wave e+-H scat tering
length A and Z,s at zero energy; {lr) and {l2) are sets of par-
tial angular momenta for the components 4q and 42 taken
into account.
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FIG. 1. Convergence of the e+-H scattering length as a
function of . The extrapolated value corresponding toJJmax

y = oo is A = —2.108.

displayed in Fig. 1 and justified by a pure —, long range
polarization potential.

By taking only the bi term we get bq —— 6.9 and
the value A = —2.109. By adding the quadratic
term b2 these results are only slightly modified, giving
A = —2.108 close to the values —2.1036 + 0.0004 given
in [4] or —2.103+0.001 in [6]. The coefficients of (38) in
the quadratic interpolation are bg

——6.6 and b2 ——0.0016.
Apart from the methodological di8'erence, the calcula-

tions of [4,6] assumed an infinitely heavy proton whereas
our results are obtained by the normal proton mass. This
finite mass eQect is responsible for the small difFerence
between both approaches. For N, = 4 it gives a cor-
rection of 0.004, leading to a full agreement with the
most accurate variational calculations. Our final result

is then A = —2.108+0.001 for a finite mass proton and
A = —2.104 + 0.001 in the limit m„~ oc.

A final comment on that point could be of some in-
terest. Let us first remark that in our approach no two-
body polarization interactions are included. Our input
is limited to the Coulomb potentials between diferent
pairs and potential (37) was only considered as a guide
in understanding the y „dependence of the scattering
length. The polarization eKects are automatically gen-
erated by the dynamics of the Faddeev equations and
contained in the b, coeficients of expansion (38). Further-
more, in the asymptotic region, as far as the system is
driven by a two-body potential such as (37), one has the
identity bi = ~2ct. Thus the knowledge of bi, obtained
by directly solving the scattering Faddeev equations, pro-
vides an independent and direct evaluation of the atomic
polarizability. The value we have found for this coef-
ficient, bi ——6.6 + 0.1, corresponds to a polarizability
o, = 4.66+0.1, in close agreement with its standard value
o. = 4.5. The difference of a few percent between these
two values falls inside the numerical uncertainties in the
extraction of bi and cannot confidently be attributed to
the proton finite mass effects.

A similar study provides us with the zero-energy eH'ec-

tive density value Z,ir = 8.91 +0.01, compatible with [6].
Figure 2 shows the density distribution (32) as function
of the distance of the proton from the e+ e pair p 2 y2
[see Eq. (5)]. It is seen that the main contribution into
the 2p annihilation rate comes from the domain around
p = 1.9ao.

B. Elastic phase shifts

Our next results concern the e+-H elastic phase shifts
below the Ps(n = 1) threshold, i.e. , in the momentum

0. 8

O. 6

0. 4

FIG. 2. Zero-energy density
distribution (32) for the 2p an-
nihilation of the e+ e pair.

0. 2

p (ap units)
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TABLE II. Phase shifts (in rad) of the s-wave e+-H elastic
scattering; ki is the momentum (19) of the incident positron.

TABLE III. Convergence of the K-matrix elements for
k~ ——0.71a, '.

k, (a, ')
0.1
0.2
0.3
0.4
0.5

Present work
0.149
0.188
0.166
0.120
0.060

Ref. [S]
0.1483
0.1877
0.1677
0.1201
0.0624

Ref. [10]
0.152
0.188
0.166
0.118
0.061

N,
8
10
12
14
16

(Ii j
0123

01234
012345
0123456

01234567

0123
01234

012345
0123456

01234567

Kg(
-0.062
-0.060
-0.058
-0.057
-0.058

K)2
-0.037
-0.029
-0.026
-0.024
-0.024

K22
0.294
0.317
0.320
0.325
0.327

region 0 & kq &
2 ao: 0 7071ao The results

are summarized in Table II. They have been obtained by
taking into account the N = 10 bipolar partial chan-
nels (li ——0, 1, . . . , 4 and l2 ——0, 1, . . . , 4). Their con-
vergence as a function of N is faster than for zero en-
ergy. No polarization effects have been observed in the
energies considered and we can simply conclude, in fair
agreement with the variational results of Ref. [5] as well
as with those of a more recent calculation [10], that the
Schrodinger equation has been solved via a finite-element
expansion.

C. Inelastic phase shifts

The most interesting results concern scattering within
the ore gap 0.7071ao & k& & 0.8660ao . Many calcula-
tions have been done in the past without any conclusive
agreement [9]. The more firmly established results seems
to be those of [7]. However, sensible disagreement was
found in a recent calculation [15] and even in [16] for
near threshold energies.

Table III shows the convergence of the near threshold

(ki ——0.7lao ) IC-matrix elements with an increasing
number of bipolar harmonics. The convergence is quite
regular, but a bit slower than for the scattering length.

The energy dependence and cross sections have been
calculated with N, = 16. Results for kq in the interval
0.71ao —0.85ao are given in Table IV. Except for the
value kq ——0.85ao, to be discussed later, these values
are in pretty good agreement with those of variational
calculations [7].

A few percent disagreement for some values of the K-
matrix elements can be attributed both to the contri-
bution of higher partial channels in our calculations as
well as to inaccuracies of the variational calculations [7]
where the convergence of the nondiagonal element Kq2 is
not quite achieved; Of course, discrepancies are magni-
fied in the positronium formation cross section o.q2, but
they remain at the 1% level in the region ki ( 0.80ao

In the interval 0.80ao & kq & 0.8660ao we observed
for the positronium formation cross section the behavior
displayed in Fig. 3. It corresponds to a sharp (note the
logarithmic scale in Fig. 3) and narrow (I' 0.2 eV)
resonance just below the n=2 hydrogen threshold. The
existence of such a resonance was first found in [24] by

TABLE IV. K-matrix elements and elastic and positronium formation cross sections (20) (in
units of mao).

kg

0.71
Reference
this work

[7]
[15]

Kgg
—0.059
—0.057

Kgg
—0.024
—0.024

K22
+0.33
+0.363

0.027
0.026
0.033

012
0.0041
0.0041
0.0034

this work

[7]
[is]
[16]

—0.085
—0.078

—0.078

—0.029
—0.028

—0.023

—0.54
—0.532

0.050
0.043
0.050

0.0045
0.0044
0.0038

0.80 this work

[7]
[is]
[i6]

—0.109
—0.104

—0.169

—0.052
—0.051

—0.052

—1.52
—1.513

0.071
0.065
0.076

0.0050
0.0049
0.0043

0.85 this work

[is]
[16]

—0.169
—0.130

—0.277

—0.425
—0.126

—0.115

—6.40
—3.735

0.108
0.086
0.100

0.0232
0.0058
0.0049
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10 e.g. , position and width, would require one to carefully
scan the region covered in Fig. 3 with a very Bne energy
step. This is now beyond our computational availability.

CO

C)

30
I)

I

I

I

I

/

I

I

I

io
0.5 0.55 0.6 0.65 0.7 0.75

FIG. 3. Positronium formation cross section (in units of
vrao) below the n=2 hydrogen threshold.

V. CONCLUSION

We have presented a method to solve directly the e+-H
scattering problem without making use of any interme-
diate approximations. We have shown the reliability of
the Faddeev approach in solving the Coulomb three-body
problem. The method, based on a direct solution of the
Schrodinger equation, provides accurate results and al-
lows the study of long range polarization eKects a well
as near threshold resonances. The results look rather en-
couraging in view of possible applications of the method
to study other Coulomb three-body processes with sev-
eral open channels.

using the coordinate rotation method and discussed later
hy many authors (see [15] and references therein). Our
calculations con6rm its existence in a direct solution of
the Schrodinger equation. However, its precise structure,
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