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Theory of 2a1f2-2psf2 transitions in highly ionized uranium
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Structure and +ED effects for 2sil2-2psl2 transitions in lithiumlike, berylliumlike, carbonlike,
Quorinelike, and neonlike uranium are calculated and compared with recent measurements. With
the exception of berylliumlike uranium, which has poor convergence properties, relatively good
agreement with experiment is found.

PACS number(s): 31.15.Ar, 31.25.—v, 31.30.Jv

I. INTRODUCTION

Recently, high-precision measurements of the 28iy2-

2p&(2 energy differences in lithiumlike U + through
neonlike U + were made at an electron-beam ion trap
(SuperEBIT) at Lawrence Livermore National Labora-
tory [1]. These measurements were compared with mul-
ticonfiguration Dirac-Fock (MCDF) calculations and dis-
crepancies ranging &om 2 eV to 8 eV were found. For
the case of lithiumlike uranium, much better agreement
was found with theoretical values obtained by combining
many-body perturbation theory (MBPT) calculations of
the atomic structure [2] with ab initio quantum electro-
dynamic (@ED) corrections [3]. Since MBPT is not as
flexible as MCDF calculations, it has not been applied
to the other ions studied in Ref. [1]. The purpose of this
paper is to extend the MBPT calculations from lithi-
umlike ions to berylliumlike, carbonlike, fluorinelike, and
neonlike ions. With the exception of berylliumlike ura-
nium, for which MBPT converges poorly, much better
agreement with experiment is obtained. For beryllium-
like uranium, an alternative approach such as relativistic
configuration interaction (CI) [4] is needed to solve the
many-body problem accurately.

The plan of this paper is as follows. In Sec. II we
present the MBPT formulas for energy levels of alkali-
metal-like, halogenlike, and particle-hole excitations of
closed-shell ions, along with the definition of the model
potentials used to start our calculations. In Sec. III we
discuss our treatment of @ED corrections. Finally, in
Sec. IV, the results of our calculations are presented and
compared with experiment and with other calculations.

particle-hole excitation of a closed shell (berylliumlike,
carbonlike, and neonlike). We discuss the MBPT formu-
las for each of these three cases in turn. It should be
noted that certain states of boronlike and nitrogenlike
ions could also be treated as one-electron states but, in
the experiments we are considering, a second core elec-
tron is also excited.

A. One-particle MBPT

While MBPT has been applied previously to alkali-
metal-like systems [5] starting from a Hartree-Fock po-
tential, in the present calculation we start from a lo-
cal model potential U(r). Therefore, we briefly reprise
MBPT for this case. A lowest-order valence state vector
~0„) is given by

(2.1)

where ~0,) is the state vector for the filled core. Here,v:—(n„,e„,m„) designates the quantum numbers of the
valence state. The lowest-order energy for the valence
electron is

(2 2)

h(r) p, (r) = e; (o;(r), (2.3)

In the present discussion, we suppress the energy of the
core since it cancels in the 28iy2-2p3y2 energy difference.
The quantity e„ in Eq. (2.2) is the valence eigenvalue of
the Dirac equation

II. FORMALISM

One disadvantage of MBPT as compared with MCDF
calculations is that each distinct electronic configuration
must be treated separately. In the present work, we con-
sider three cases: one electron outside a closed shell (lithi-
umlike), one hole in a closed shell (fluorinelike), and a

where the Dirac Hamiltonian h(r) includes the inter-
action of the electron with both the nuclear potential
V„„,(r) and the model potential U(r),

h(r) = c n . p + (P —1)c + V„„,(r) + U(r). (2.4)

The first-order correction to the valence energy is [6]

(2.5)
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where L;~ represents the frequently occurring combina-
tion

@(2) ) ~ gvamngmnav

6m+ t~ 6a Evamn
) gabmv gmvah

&m + &v &a —&babm

&;, = (VHF —U) V = (V *l&HF —UIV, ). (2.6)

Here, VHF is the Hartree-Fock potential, which is defined
by its matrix elements:

) & +amgmvav

&m &aam
+ c.c.

i v( V
E'' —6

(2.10)

def
(&»)v = ).[g'-2- —g'-2] (2 7)

CL Pid F2
g;~b~ —— p,. (rq) pb (rq) p~ (r2) pt (r2). (2.8)

ry —r2

Its antisymmetrized form is denoted by

gijkl = gijkl —gijlk. (2.9)

The second-order energy El l is given by [6]

where the sum extends over occupied core orbitals a. The
quantity g;~.b~ in Eq. (2.7) is a Coulomb matrix element:

The indices a and b in the above sums refer to core or-
bitals, the indices n and m refer to virtual orbitals, and
the index i refers to both core and virtual orbitals. The
sums over virtual states n and. m include excited bound
states and continuum states. Virtual positron states are
not included in the sums. In Eq. (2.10), the symbol c.c.
denotes the complex conjugate of the preceding expres-
sion in the square bracket.

It is possible, when working with a local potential, to
account for the first-order Coulomb correction E( ~, the
instantaneous Breit interaction B( ~, and the &equency
dependent corrections to the Breit interaction AB~~l(k)
by working in Feynman gauge [7]. This is done by re-
placing the Coulomb matrix element in Eq. (2.8) with

(2.ii)

where

k= Ci —Ck C2
—

CL

hc hc
(2.12)

formulas enters with the opposite sign. We use the one-
hole formalism to calculate the structure of Quorinelike
uranium.

The three corrections, taken together, are denoted by
y (i) C. Particle-hole MBPT

E" = E"+ B"+ AB"(k) = ) g„.„.(k) —U„„.

(2.13)

The final correction considered in the present MBPT
calculation is the correlation correction to the Breit in-
teraction B( ~. This correction is obtained by replacing

gijkl + gijkl + ~igkl

in E( ~, where b;~kl is the matrix element of the instan-
taneous Breit interaction, and linearizing the resulting
expression in 6;~ bt [5]. .

B. One-hole MBPT

The formalism for one-hole systems is almost identical
to the one-particle case. In the one-hole case, the lowest-
order state vector for a state with quantum numbers a' =
(n, K, —m ) is given by

The remaining states considered can all be described
as particle-hole excitations of a closed-shell ion in which
a core electron a is raised to an excited state v, coupled
(in the jj scheme) to give an eigenstate of total angular
momentum

~
JM) „=)j j„,JM):

]JM) „= ) (—l)~ (j —m j„m„~JM)a at~0, )
mama:—F „a at~ 0,). (2.i5)

E = Ev —Ca,(o) (2.16)

and the first-order energy is given by

The phase and the minus sign in &ont of m in the 3-j
symbol are required because a is a hole state. In Ref. [8],
MBPT for particle-hole states has been treated through
third order for the case in which the starting potential is
a Hartree-Fock potential. In the present case, where U(r)
is an arbitrary local potential, the lowest-order energy is
given by

lo. ) = (—1)'----a.~o.), (2.14) +VV +aa + +av+bmgamvb ~
(i) (2.17)

with a = (n, K, m ). The factor (—1)~ is needed to
make a into a proper tensor operator. The only di6'er-
ence between the formulas in this case and those for the
one-particle case is that v ~ a and each of the previous

The operator I"b divers from E „only in that the sum
over m m is replaced by a sum over mbm . The ex-
pression for the second-order energy is relatively lengthy,
so we break it into parts:
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E(2) ~ ~ g ~ ~ gcdvmgmmcd
av bm ab g

Cm + Cv Cc Cd
mcd

E(2) ~ ~ ~ ~ gammngmnbv
av 4o g Cm+ Cn Ca Cvmn

(2.18)

(2.19)

Zi'~=F F ~ ).~-~-
~ ).~- '

Cv —Ci Ci Ca
Z

& +mcgcamb+ ovm g
Cm —CCmc

E(2) + + ~ y & gmcmngmnvc
av bm ab 7 Cm+ Cn, Cv Ccmnc

(2.20) ")- -'-'
Cc Cmmc

(2.28)

E(2) + + ~ ~ gmacv gmcbm
av bm g )

Ca + Cm —Cc —Cvmc

E(2) + F ~ ~ gcdvbgmacd
E — av bm g

cd
Ca + Cv —CC Cd

z„(2) z, z, ~ ~ gcavmgmmbc—~av~bm g Cm+ Cv Camc

E(2) + + ~ g gcdbmgmacd
av bm vm

Cm + Ca —Cc —Cd
mcd

E(2) F I ~ ~ ~ gcamngmncb
av bu) vm

Cm+ Cn Ca Ccmnc

E(2) F + ~ ~ &ai gmivb
av bm

Ci Ca
t

) mi9aise

Ci Cv

E(2) + + ~ ~ gcmmv gmacb
F — av bm g + c.c. )

Cm Ccmc

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
I

A number of features of E( ) are worth noting. First,
the terms involving b b are easily shown to be identical
to the expression for the second-order energy for a one-
particle state. Second, the terms involving b„reproduce
the second-order energy for a one-hole state. Further-
more, the terms ED E~ EG E~i are random-phase(2) (2) (2) (2)

approximation corrections to the energy. The Breit inter-
action is calculated just as it was in the one-particle case;
the resulting expression for the correlation correction to
the Breit interaction is very lengthy. The particle-hole
formalism will be applied to berylliumlike, carbonlike,
and neonlike ions.

D. Model potentials

We use two difI'erent model potentials to start our
MBPT calculations. The corresponding difI'erence in en-
ergy at a given level of approximation is a measure of
the convergence of our calculations. The first potential
U~(r) is taken to be the direct part of the Hartree-Fock
potential for a closed-shell atom except for lithiumlike
ions, where it is taken to be the monopole part of the
entire HF potential. Specifically, U~ is defined by

' 2vp(ls, r) + vp(2s, r), for Li-like ions,
2vp(ls, r) + 2vp(2s, r), for Be-like ions,
2vp(ls, r) + 2vp(2s, r)+'
2vp(2pi(2, r), for C-like ions,
2vp(ls, r) + 2vp(2s, r)+

, 2vp(2pzy2, r) + 4vp(2p&~2, r), for F- and Ne-like ions,

(2.29)

where

vp(a, r) = — [G (r') + F (r')]dr'
0

d,p
[G.'( ') + F.'( ')],, (2.30)

' vp(ls, r), for Li-like ions,
vp (2s, r), for Be-like ions,
vp (2p] /2 & r), for C-like ions,
vp(2pzy2, r), for F- and Ne-like ions.

(2.31)

Since vp(n, r) ~ 1/r for large r, the eB'ective charge at

Here, G (r) and F (r) are the large and small compo-
nents of the radial Dirac function for state a. The po-
tential U~(r) was used in Ref. [9] for calculations of the
Lamb shift. The second potential U~ (r) is a Hartree-type
potential, defined by

I

large distances is Z —N for the potential U~(r) and
Z —N + 1 for U~(r). Here, N is the number of elec-
trons included in the potential U~, i.e. , 3, 4, 6, 10, and
10 for lithiumlike, berylliumlike, carbonlike, fIuorinelike,
and neonlike ions, respectively. The potentials U~ ~(r)
and the corresponding core orbitals are calculated self-
consistently.

There are, of course, any number of model potentials
that could be used. As long as MBPT converges, how-
ever, the choice of potential is, in principle, immaterial.
However, because we do not go beyond second order in
perturbation theory here, we obtain slightly difFerent en-
ergies starting from difI'erent potentials. We use the dif-
ference in calculated energies as a measure of the conver-
gence of our MBPT calculations.

III. QUANTUM ELECTRODYNAMIC
CORRECTIONS

At high nuclear charge, @ED corrections are known to
contribute a substantial fraction to the energy levels so
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TABLE I. MBPT and QED contributions to the 2szgz-2psg2 transition energy for lithiumlike,
berylliumlike, carbonlike, Buorinelike, and neonlike uranium evaluated starting from the potential
U~. units in a.u.

Term
@(o)
~(~)
@(2)
gg(2)

RM+MP
MBPT
SE
UP
WK+HO
QED
Total

Li-like

163.9406
1.3960

-0.0150
0.0081

-0.0017
165.3280

-1.9871
0.5698

-0.0278
-1.4450

163.8830

Be-like

163.9885
2.4276
0.4412
0.0576

-0.0020
166.9129

-1.9730
0.5654

-0.0276
-1.4352

165.4777

C-like

164.7607
3.8185

-0.0277
0.0096

-0.0019
168~ 5592

-1.9358
0.5537

-0.0270
-1.4091

167.1501

F-like

165.9570
4.3211

-0.0683
0.0006

-0.0017
170.2087

-1.8812
0.5366

-0.0262
-1.3709

168.8378

Ne-like

165.9570
5.7267

-0.0579
0.0011

-0.0019
171.6250

-1.8812
0.5366

-0.0262
-1.3709

170.2541

it is important to treat these corrections in a consistent
manner. One of the advantages of using MBPT based on
local model potentials is that it is possible to understand.
the origin of the formulas of MBPT from the S-matrix
approach to QED, and that this same approach leads to
QED formulas. The QED corrections are dominated by
the one-loop I amb shift evaluated in whatever external
potential is used. It is now straightforward to carry out
such calculations [3,9,10]. Since the two model potentials
used in this work have asymptotic charges that differ by
unity, one can see qualitatively that the two calculations
of the Lamb shift will lead to different results. This is
because the Lamb shift scales as Z so that a difference
of a factor of 4/Z is expected. For uranium ions, these
differences are several percent of the Lamb shift. Thus
to obtain highly accurate values, correlation corrections
to the Lamb shift must also be considered [3]. Since we
ignore such corrections here, we expect our QED correc-
tions to be accurate to a few percent only.

IV. CALCULATIONS

In this work, the following 2s-2p3y2 transitions are con-
sidered:

Li-like: 2s —2@3/2,

Be-like: 2s (j = 0) —2s2ps~2 (j = 1),

C-like: 2s 2pq(2 (j = 0) —2s2pq(22psy2 (j = 1),

F-like: 2s 2p&~22ps~2 (j = 3/2)

—2s2p', g, 2p, (2 (j= 1/2),

Ne-like: 2s 2p~~22psy23s (j = )

-2s2p, ],2p', (,3 (j = )

These are transitions identified in the EBIT spectrum
[1]. The self-consistent determination of the potentials
U~ ~(r), the core orbitals p (r), and the valence orbital
p„(r) was carried out using Bnite difference methods.
The effect of finite nuclear size was built into all of the
orbitals by choosing V„„,(r) to be the potential of a 6-
nite charge distribution. The distribution was assumed
to have a quadrupole shape, with parameters determined
&om muonic atom studies [11].The MBPT calculations
were carried out using a B-spline basis set for electrons
confined to a cavity of finite radius B = 1 a.u. as de-
scribed in Ref. [12]. Since only single and double sum-
mations over excited states are encountered, a relatively
large basis set was employed, with 50 basis functions for
each angular momentum state up to 8 = 9. A fine ra-
dial grid with 500 points was used, and extrapolation
methods were used to carry out partial wave expansions
completely. We do not quote numerical errors for our
MBPT calculations, since such errors are much smaller
than the errors resulting from uncalculated terms (domi-
nated by Ei l). We calculate QED corrections using the
same potentials used in the MBPT calculations. The
method of calculation has been described previously in
Ref. [9]. Higher-order QED corrections are taken from
the tables of Johnson and Soff [13].

In Tables I and II, we present the results of our cal-
culations starting from potentials U~ and U~, respec-
tively, for the five ions under consideration. The con-
tributions E~ ~, F~ ), E~ &, and B~ ~ are evaluated us-
ing the formulas written out in the preceding section.
The contribution listed in the row RM+MP is the sum
of the reduced-mass and mass-polarization corrections.
Since we include the reduced-mass correction explicitly,
we must use the infinite-mass Rydberg constant to con-
vert our theoretical values from atomic units to eV. The
five contributions to ionic structure are summed to give
the values listed in the row MBPT. The row labeled SE
contains values of the electron self-energy evaluated in
the potential V„„,(r) + U~ ~(r), and the row UP gives
the corresponding Uehling potential contribution to the
vacuum-polarization energy. The row labeled WK+HO
gives the sum of the Wichmann-Kroll (WK) and higher-
order (HO) corrections taken &om Ref. [13]. Hydrogenic
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TABLE II. MBPT and QED contributions to the 2sqy2-2psg2 transition energy for lithiumlike,
berylliumlike, carbonlike, Quorinelike, and neonlike uranium evaluated starting from the potential
U~. units in a.u.

Term
@(o)
y(~)
@(2)
gg(~)

RM+MP
MBPT
SE
UP
WK+HO
QED
Total

Li-like

163.8866
1.4505

-0.0182
0.0082

-0.0017
165.3254

-2.0018
0.5744

-0.0280
-1.4554

163.8700

Be-like

163.9406
2.4790
0.4912
0.0655

-0.0020
166.9?43

-1.9871
0.5698

-0.0278
-1.4450

165.5293

C-like

164.3856
4.2032

-0.0395
0.0092

-0.0019
168.5566

-1.9547
0.5595

-0.0273
-1.4224

167.1342

F-like

165.6826
4.6008

-0.0698
-0.0051
-0.0017

170.2068
-1.8943
0.5408

-0.0264
-1.3799

168.8269

Ne-like

165.6826
6.0237

-0.0708
-0.0053
-0.0019

171.6283
-1.8943
0.5408

-0.0264
-1.3799

170.2484

values of the WK and HO corrections from this refer-
ence are scaled by the ratio of the present value of the
Uehling potential correction to its hydrogenic value. The
sum of the three QED corrections is given in the row la-
beled QED. Finally, the MBPT and QED contributions
are summed to give the theoretical energy intervals in the
row labeled "Total."

We find that the MBPT values of the energies ob-
tained in the two difFerent potentials agree to the level of
0.01 a.u. (0.3 eV) except for the poorly converged case of
berylliumlike uranium, where the difFerence is about 0.06
a.u. (1.6 eV). These differences could be reduced by con-
sidering third- and higher-ord. er MBPT corrections. The
corresponding difference between the QED contributions
calculated in the two potentials is also about 0.01 a.u.
for all of the ions considered. To reduce the QED dif-
ferences, one must account for correlation corrections to
self-energy and vacuum polarization. Such corrections
are expected to contribute values that are roughly I/Z
of the Lamb shift, (-0.01 a.u. or 0.3 eV). Additionally,
we ignore corrections to the energy interval from nuclear
polarizability which are estimated to be 0.2 eV [14].
All of the omitted corrections contribute at the level of
the experimental uncertainty.

In Table III, we compare our calculations in the two
potentials with results of MCDF calculations and exper-
imental values given in Ref. [1]. The values listed under
LU~, LU~ and AMCDF are the difFerences between the
respective theoretical values and experiment. With the
exception of the cases of berylliumlike and neonlike ura-
nium, the difFerences LU~ and AU~ range from 0.1 to
0.5 eV, reducing the discrepancy of MCDF calculations

with experiment, LMCDF, by an order of magnitude.
For berylliumlike uranium, a large-scale relativistic CI

calculation has been carried out [15] giving the value
4539.89 eV (166.838 a.u. ) for the structure contribution
and —38.25 eV (—1.406 a.u. ) for the QED correction,
leading to a theoretical prediction of 4501.64 eV (165.432
a.u. ) for the 2ps~2-2s~~2 energy interval. This CI value
differs from experiment by 0.08 eV. The QED values used
in the CI calculation are values obtained in potential U~
weighted by the CI expansion coefBcients.

Because neonlike uranium has relatively good conver-
gence properties, the discrepancy with experiment of al-
most 2 eV is puzzling, particularly since the neighboring
Quorinelike ion agrees fairly well with experiment. We
consider the explanation of this situation an important
challenge.

In conclusion, we have found that second-order MBPT
calculations of atomic structure combined with ab ini-
tio calculations of the one-loop QED corrections suffices
to determine the energies of lithiumlike, carbonlike, and
fiuorinelike uranium at the 0.5 eV level of accuracy. For
berylliumlike uranium, the convergence of the MBPT is
poor so this level of accuracy is not obtained. However,
for berylliumlike uranium, a relativistic CI calculation
leads to results in close agreement with experiment. To
improve the comparison for the remaining ions, partic-
ularly neonlike uranium, it will be necessary to include
third- and higher-order MBPT corrections, correlation
corrections to the Lamb shift, and corrections for nu-
clear polarization. Each of these interesting corrections
contributes at the level of the error in the present ex-
periment. Therefore, to make more refined calculations

TABLE III. Comparison of MBPT and MCDF calculations of the 2szg2-2p3y2 transition energy
for lithiumlike, berylliumlike, carbonlike, Quorinelike, and neonlike uranium with experiment: units
in eV.

Li-like
Be-like
C-like
F-like

Ne-like

4459.49
4502.88
4548.39
4594.31
4632.85

Ug
4459.13
4504.28
4547.96
4594.02
4632.70

MCDF
4461.7
4505.3
4552.3
4599.8
4638.9

Expt.
4459.37 + 0.27
4501.72 + 0.21
4548.32 + 0.16
4593.83 + 0.12
4630.93 + 0.26

AU~
0.12
1.16
0.07
0.48
1.92

AUg
-0.24
2.56

-0.36
0.19
1.77

AMCDF
2.3
3.6
4.0
6.0
8.0



302 W. R. JOHNSON, J. SAPIRSTEIN, AND K. T. CHENG

worthwhile, we strongly encourage more accurate mea-
surements of transitions in uranium and other heavy ions.
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