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Rytlberg levels of lithium
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The electrostatic fine structure for singly excited lithium is accurately calculated using an effective po-
tential method that has proven to be very useful for helium. Relevant properties of the two-electron Li+
ionic core with finite nuclear mass are determined from variational wave functions. From these, non-
relativistic level shifts are obtained analytically, and the leading relativistic correction is applied. A
comparison with recent experimental results is made.

PACS number{s) 31.15.—p, 31.50.+w

I. INTRODUCTION

If we know enough about the long-range interactions
of an electron with the two-electron Li core, it is possi-
ble to calculate quite accurately the energy of any excited
level of atomic lithium for "high enough" values of X and
L using an effective potential formalism. The idea is that
in these high Rydberg states the valence electron is ex-
cluded from the region containing the core so that it can
be treated as distinguishable from the core electrons and
also that only the asymptotic form of the interaction
needs to be considered. The advantage of this technique
over a direct, three-electron variational calculation is
twofold: First, the two-electron core is much easier to
handle numerically, and second, once the required prop-
erties of the core have been evaluated, any singly excited
Rydberg state can be treated analytically. (We are essen-
tially replacing a four-body problem by a tractable three-
body problem plus a simple two-body problem. ) This
method builds on a history of similar calculations for ex-
cited helium

I 1], for which the one-electron core can be
treated analytically and exactly.

It is convenient to introduce coordinates p, and p2 that
measure the distance between each core electron and the
nucleus and x, the distance between the valence electron
and the center of mass of the core; these are

pi 2=m(r, 2
—rM),

r&+ r2+MrM
M+2

(2)

H= —V —V —KV V2 2 2Z
Pl P2 P] P2 P1

2Z 2

p~ Ipi
—

p~

(The coordinate of the center of mass of the whole system
has been dropped. ) We have defined two reduced masses:
m =M/(M + 1) is the reduced mass of one electron and
the nucleus, while m'=(M+2)/(M+3) is the reduced
mass of the valence electron and the core. We write the
Hamiltonian as the sum of three parts, H„H„, and V,

representing, respectively, the core, the valence electron,
and the interaction between them. These are

II. HAMILTONIAN OF THE SYSTEM H= — V'+ '
H, = —

q V+ (3)

We begin by writing the nonrelativistic Hamiltonian
for the system of three electrons of unit mass and a nu-
cleus of mass M and charge Z. (The charge of the nu-
cleus is written explicitly here, although applications will
be confined here to the case of Z =3. It is not hard to ex-
tend the present calculation to more general positive ions
with three electrons. ) We assume that electron 3 is the
valence electron and is much further from the nucleus
than the other two. (Since this electron does not
penetrate the core, exchange with the core electrons is
negligible, and it may be taken to be distinguishable from
them. ) Then (in rydbergs) the Hamiltonian is

H= —V —V —V — V2 2 2 1 2 2Z 2Z

2Z 2 2 2

V=2q +1 1

Ix fpi+gp2I —
I
x fp2+g piI—

Z (Z —2)
Ix+g(pi+ p2) I x

Here IC =2/(M+1), q =m'/m =1+K /2,f 2q/(2+%), q =Kf /2, and reduced rydberg units
(R =mR ) are being used.

As we mentioned above, only the long-range part of
the potential is to be retained. This involves the conven-
tional multipole expansion of V for large x, although
since we are not making the fixed-nucleus approximation
the expansion is somewhat more complex than usual.
The first three multipoles, the dipole, quadrupole, and oc-
tupole components, have the following forms:
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2q u1 2+(Z —1)E
2+ IF

2q 2
Pl 2(P1 X )+P2I 2(P2'X )

4E +ZIC
(2+If)

(4)

4 2+~ [P1 3(P1 x )+P2~3(P2'x )]2q 2 —E

where w =p1+p2.

4E 2' —ZE 3—
(2+K)3

III. THE EFFECTIVE POTENTIAL

In Ref. [1] the derivation of the effective potential has
been given in detail for the case of neutral helium. In the
present case, since the unperturbed Li+ core is spherical-

ly symmetric and sufficiently tightly bound, we can follow
that discussion essentially step by step, and we will not
repeat the details here. Let us just note that the method
begins with the adiabatic approximation that results in
the ordinary second-order polarization potentials as well
as third- and fourth-order potentials. But for consistency
it is necessary to include nonadiabatic terms as well.
These come from the effect of the kinetic-energy operator
of the valence electron interacting with the potential
terms in various orders. They represent the inability of
the core electrons to follow the motion of the outer elec-
tron exactly, and they correct the adiabatic approxima-
tion. We have previously reported [2] results which in-
cluded only the first two terms in the asymptotic effective
potential. We have now carried out the evaluation of all
the core coefficients needed to evaluate the potential up
to order 1/x . Of course, the required accuracy of these
higher terms is much less than for the dipole polarizabili-
ty, which contributes the leading 1/x contribution to
the effective potential.

The effective potential in which the valence electron
moves is the following (up to order 1/x ):

a1 6qP, —a2 5+16q y, /5 —a3+15qP2 —E+a,P, 72q y—,[1+L(L+1)/10]
X4 X6 X7 x'

The core coefficients a, P, . . . are defined below.

(olv, ln)&n v, lo&
k ' ~2i+2

(E„Eo)"— (6)

IV. COMPUTATION OF THE CORE PARAMETERS

To evaluate the core parameters defined above we use
the method of pseudostate summation. This has been

I

(Here a;=S, ;, P;=S2;, and y;=S3;). The third-order
polarizability has the following form:

(E„—Eo )(E —Eo )n, m

(The values that (ij k) can take are all the permutations of
I 112].) Finally, the fourth-order hyperpolarizability in-
volving only dipole terms has the following form:

&olv, ln &&nlv, lm &&mlv, lP &&plv, lo&

(E„Eo)(E —Eo )(E —Eo)—n, m, p

widely used in the past, and we have employed it to
evaluate the polarizabilities of helium and the hydrogen
ion [3] as well as in a less thorough treatment of two-
electron positive ions [2], and a treatment of two-photon
transitions in hydrogen [4]. For the present application,
we calculate the ground state of the two-electron ionic
system using a Hylleraas type of correlated variational
trial function. This function has angular momentum
I. =0 and the form

0 .P1P2P12+[1 ~2],
l, m, n =0

where 0 is an integer called the Pekeris number. Our
best value of the energy was obtained for a =4.8 with
372 terms retained (0=14). The pseudostate-summation
technique uses a set of normalizable functions to approxi-
rnate the complete sets of intermediate states in Eqs.
(6)—(8). These have the Hylleraas form too, but with
L =1—3. The L =1 and 2 states were shown in Ref. [2],
and the I. =3 F states are composed of two types of
terms, VF =4,f +4 d, which are defined as follows:

%f=(f+f ) 3/5cos
12 — ~12

2)3+ —&3cos 2)3+ + (f f ) 3/3sin — 2)3 —&5sin
3012

2 3 (10)

12 3 ~12 ~12
%'~d = (g+g ) &15cos 2)3 —cos (1+2cos8,2)2)3 —(g —g ) &15sin g)3

+sin
12

(1—2 cos(8,2)2)3
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TABLE I. Best values of the core parameters used in con-
structing the effective potential. The upper entry in each case is

for Li and the lower one is for Li.

a&

0.192490 771 0.035 286 879 0.006 806 377 0.113825 934
0.192 485 410 0.035 286 017 0.006 806 227 0.11.3 834 685

corresponding multipolarity. Our best values of the core
parameters are shown in Table I.

V. OTHER CONTRIBUTIONS TO THE KNKRGY
AND RESULTS

From the core parameters of Table I the effective po-
tential of Eq. (5) can be constructed explicitly. Numeri-
cally, this potential is

0.016670 328 0.168 351 237 0.121 337 559 0.027 039 600
0.016671 511 0.168 362 339 0.121 345 411 0.027 038 073 U(x) =—0. 192 485 40 0.097 881 0. 143 125

x4 + x6 +
x7

0.428 584+0.049 005 L (L + 1)
x' (13)

where

3 612f (r„r2, r,2)=r2 g C1 „r,r2 r, 2exp
I, m, n

2 I m n Af) PP2g(r1, r2, r12)=r1r2 QD1 „r1r2r12exP
Imn

f(rl 2 12) f( 2 1 r12)

1 2 r12) g( 2 1 r12)

(12)

(As in [2] the rotational harmonics 2) appearing here are
those defined by Bhatia and Temkin [5].) The nonlinear
parameters in the P, D, and F functions are determined
by maximizing the second-order polarizabilities of the

for the case of Li.
The expansion of the effective potential is at best

asymptotic, so we use the following conservative expres-
sion for the energy shift b, (NL) away from the unper-
turbed energy —R /N:

b (NL ) =R I ( U~ + U6+ —,
' [ U7 + U8 ] )+—,

'
( U7 + Us )],

(14)

where the reduced rydberg R =3.289 584 678 X 10 MHz
for Li, and where Uk is the expectation value of that
term in U(x) which goes like x ". Since the unper-
turbed wave function of the outer electron is purely hy-
dro genic, these expectation values can be evaluated

TABLE II. Level shifts (in MHz} for Li due to the effective potential terms Uk. The total and the
error are obtained as described in Eq. (14}.

5
6
7
8
9

10

L U4

—3216.239
—2068.055
—1380.858
—959.211
—690.125
—511.674

U,

8.723
7.303
5.491
4.077
3.058
2.332

U7+ U8

—0.399
—0.501
—0.446
—0.363
—0.288
—0.229

Total

—3207.716
—2061.003
—1375.590
—955.316
—687.211
—509.457

Error

0.200
0.251
0.223
0.182
0.144
0.115

6
7
8
9

10

—658.0174
—456.6619
—324.3128
—236.6280
—177.1181

0.6639
0.6018
0.4863
0.3826
0.3007

0.0062
0.0014

—0.0010
—0.0019
—0.0022

—657.3504
—456.0594
—323.8270
—236.2464
—176.8185

0.0031
0.0007
0.0005
0.0010
0.0011

7
8
9

10

—175.6392
—128.6956
—95.6986
—72.5341

0.0810
0.0773
0.0658
0.0541

0.0012
0.0010
0.0007
0.0005

—175.5576
—128.6178
—95.6325
—72.4798

0.0006
0.0005
0.0004
0.0003

—56.626 05
—43.207 23
—33.29026

0.013 63
0.01345
0.011 90

0.000 19
0.000 17
0.000 14

—56.612 33
—43.193 70
—33.278 29

0.000 10
0.00009
0.000 07

9
10

—21.025 976
—16.554 171

0.002 901
0.002 929

0.000 035
0.000033

—21.023 058
—16.551 226

0.000 018
0.000 017

10 —8.712 722 0.000 738 0.000 007 —8.711 981 0.000004
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analytically and exactly [6]. The expectation value of
each term in the effective potential of Eq. (13) is shown in
Table II, along with the total evaluated according to the
prescription (14).

Since we have included U8 it is not consistent to omit
the effect of including a1lx to second order. That is

&NL a, ix'IN'L &&N Lla, rx'INL &

N N'

(States labeled with capital letters are eigenstates of H„
and refer to the valence electron, while those labeled with
lower-case letters refer to the core. ) The quantity hz can
be obtained (by scaling a, ) from the previous results for
helium [7] or from Drake and Swainson's explicit formu-
la [8]. This is shown in Table III.

The last correction to be included here is the largest
relativistic effect. It is derived fron1 the nonrelativistic
form of the Breit operator and is mainly due to the in-
crease of mass with velocity [9]. But, as was pointed out
in Ref. [9], to obtain the result correct to order K it is
necessary to include an additional term. It may be
worthwhile to outline the derivation of this correction
[10].

In order to derive the leading relativistic term in the
energy we treat the atom (as discussed in Ref. [10]) as a
two-body system: the core and the valence electron. This
simplification should give results which are accurate up
to first order in K, which is adequate for the present pur-

We are only interested here in the first-order effect of
these operators, so only their expectation values in the
appropriate hydrogenic states must be calculated. These
are easily obtained by rewriting the differential operators
as follows:

V2
X

2 r) L(L+1)
x Bx

(17)

The hydrogenic expectation values needed here are

(".') =-(-.' =-.'

(
1 1 1 1

x N (L+—,') x N L(L+ ,')(L+1)—
and

pose. The two relevant terms in the Breit operator are

2 E
H) = — (m') R 1+ V„,(2+K)

(16)
a (m') R„K 1

(2+K) x

=0 for L 0. (18)

TABLE III. Second-order corrections, leading relativistic
corrections, and the final total shift for Li in MHz.

Final total

Inserting these in the formulas for H& and H2 and ex-
panding the K-dependent factors, we get the following ex-
pression for the leading relativistic correction:

5 4 —0.448
6 —0.338
7 —0.242
8 —0.175
9 —0.129

10 —0.097

6 5

7
8

9
10

—0.0248
—0.0201
—0.0154
—0.0117
—0.0090

7 6 —0.0023
8 —0.0019
9 —0.0016

10 —0.0012

—101.218
—78.849
—58.774
—43.956
—33.375
—25.790

—46.0819
—38.1392
—30.1323
—23.6659
—18.7122

—23.8534
—20.5620
—16.9444
—13.8122

—3309.381+0.200
—2140.190+0.251
—1434.606+0.223
—999.446+0. 182
—720.714+0.144
—535.343+0.115

—703.4571+0.0031
—494.2186+0.0007
—353.9747+0.0005
—259.9240+0.0010
—195.5397+0.0011

—199.4133+0.0006
—149.1818+0.0005
—112.5784+0.0004
—86.2932+0.0003

a R
N

3 K 2
4N 6 2L+1 (19)

TABLE IV. Fine-structure splittings in the N =10 manifold
of Li. The theoretical errors are obtained by summing in quad-
rature.

where we have replaced R by R and have kept terms up
to order K, even though they appear only in the L-
independent term, will not contribute to the L-dependent
fine structure, and are very small in any case. Equation
(19) is evaluated and the relativistic shifts are displayed in
Table III.

A sample of these fine-structure splittings for the
N=10 manifold is shown in Table IV. They are com-

8 7 —0.000 30
9 —0.000 26

10 —0.000 22

9 8 —0.000 051
10 —0.000 046

10 9 —0.000 011

—13.543 81
—12.015 26
—10.218 88

—8.245 930
—7.471 035

—5.301 687

—70.15644+0.000 10
—55.209 22+0.000 09
—43.497 39+0.000 07

—29.269 04+0.000 02
—24.022 31+0.000 02

—14.013 679+0.000 004

Interval

10G-10H
10H-10I
10I-10K
10K-10L
10L-10M

'Reference [11].

Energy shift (MHz)

339.80+0. 11
109.246 6+0.001 1

42.795 8+0.000 3
19.475 08+0.000 07
10.008 63+0.000 02

Experiment' (MHz)

339.7186+0.0031
109.2140+0.0047
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pared with the results being reported in an accompanying
paper [11]. Notice that the experiment and theory are
not in accurate agreement for the 10H-10I interval. The
discrepancy, however, is not larger than might be expect-
ed for the uncalculated relativistic and retardation terms.
In the helium case ['2] these are of order (aZ) smaller
than the leading polarizability correction and reduce the
splitting. Terms of this order are being investigated now.
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