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Bounds for the atomic electronic density and related functions
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Simple upper bounds for the spherical average of the atomic electronic density p(r) in terms
of different negative powers of r, and depending on some average quantities, such as either radial
expectation values or other relevant functionals of p(r), are obtained. The procedure used to get
these results also enables us to find bounds for other atomic relevant functions, such as the number of
electrons inside a sphere of radius r, i.e., Q(r), the isotropic atomic form factor F(q), the spherically
averaged momentum density p(p), and the atomic Coinpton profile J(q).

PACS number(s): 31.10.+z

I. INTRODUCTION
pr dr

In recent literature, the interest in 6nding bounds for
the electronic density of an atom has been pointed out,
because of its special role in atomic physics and the lack
of rigorous information about it. Different results have
been found [1—8].

It is also interesting to bound other related functions
of an atom, such as

(i) the number of electrons enclosed within a sphere of
radius r, i.e.,

which, e.g. , for t = 5/3, t = 4/3 and t = 2, are related
to the Thomas-Fermi kinetic energy, the Dirac-Slater ex-
change energy, and the average radial density, respec-
tively.

The corresponding quantities in momentum space, i.e.,

(6)

4mF(q) = r sin qr p(r) dr;
q

(2)

(iii) the spherically averaged momentum density p(p);
and

(iv) the Coinpton profile [9]

However, the results that can be found in the literature
for these functions are more scarce [8,10—13].

Bounds for these functions are interesting when they
depend only on quantities which have a physical meaning
and/or are experimentally measurable. Some quantities
of this type are the moments or radial expectation values
of the function, which are physically interesting in many
problems [14]. They are defined by

(r )=fr p(rgb

for electronic density and in a similar form for the other
quantities Q(r), F(q), p(pQ, and J(q).

For electronic density, other relevant average quantities
are those functionals of the type

Q(r) = 4vrr p(r) dr,
0

where p(r) denotes the spherically averaged electronic
density;

(ii) the isotropic form factor

are also of interest, e.g. , the average momentum density
(p) = U2 which is an experimentally measurable quantity
[15]. There exist not only inequalities between Ui and the
momentum expectation values (p ) [16],but also between
Ui and the radial expectation values (r~) [14].

Two main types of bounds for the functions defined
above can be found in the literature. Bounds of the 6rst
type are those which may be written by analytical and
often simple expressions [1—7,10] which can be applied
in analytical procedures, such as bounding expectation
values of one-electron operators.

Recently, bounds of a different type have been found
[8,11,12]. These bounds need to solve numerically a set
of equations starting &om numerical information about
some average values such as the radial expectation ones.
The accuracy of these bounds can be continuously im-
proved by getting to know more of these quantities, but
general analytical expressions cannot be given for them.

The aim of this work is to formulate upper bounds of
the former type, of the functions mentioned above, in
terms of their moments and functionals ui (Ui in mo-
mentum space). The only assumption used to obtain
these bounds is that the function to be bounded must be
monotone. This is a feature that has been found in dif-
ferent calculations for the electronic density [17,18] and
for the atomic form factor [19]. Besides, it is trivially
verified by the functions Q(r) and J(q) because of their
definitions as integrals of positive functions. The bounds
obtained here will be compared with similar analytical
results which have been found in the literature.
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II. UPPER BOUNDS FOR A MONOTONICALLY
DECREASING FUNCTION

In order to find upper bounds for a monotonically de-
creasing and non-negative function f(z) [i.e. f(x) & 0,
f'(z) & 0], we define for a particular value of x the fol-
lowing function:

f(z) y & z
f(w) =

f(
Then, for any positive function g and any positive and

nondecreasing function F, it is verified that

y dy& gy F y dy

pi, = x"f (x) dz.
0

In the limit k ~ 0 this inequality is fulfilled because of
the monotonic decreasing of f, as

Equation (14) gives a set of pointwise upper bounds
for f (z) provided we have information about the average
quantities pA, . From now on, unless explicitly stated, we
will restrict ourselves to integer values of k.

We now ask ourselves, for a given value of x, which of
the bounds fi', (z), k = 0, 1, ..., is the best one'? To answer
this question let us define the points

provided that the right-hand side is finite. The left-hand
side is bounded &om below by

gyF y dy& gyF y dy

and

Po

f(o)

kpA: —x

(k —1)pg

(17)

which leads to

j. ~(~)+(f(~))du
j, e(u)du

If we define G(x) by

= +[f(z) 1 a(u) du
0

(10)

for k &1.
Here, each zA, is the cut between fz i(x) and f& (x).

It is clear that for x & zi, the relation f& i(x) & fi*, (x)
is fulfilled and otherwise if x & xg.

In addition, the sequence (zi, x2, ..., zi„..., ) increases
with k, as we will prove below. Then, for a fixed x, the
best bound for f(x) in xi, & x & zi,+i is fi*, (z). Then we
can build a continuous function which is the best bound
among f&(z) for every x, as:

G(*) = g(~)d~
0

fo(z) = f(o)
f;(z) = poz ' if 0&x&x'

if xg &x&x2
then, for any G(x) such that G(0) = 0, G'(x) & 0, it is
verified that

f (z) = &

fg(z) =kgb ix "if zA, &x&zy+i

&Z i & je G'(~)&(f(~))d~'t
G(*)

This is the general basic result which will be applied later
on. Here, F is an arbitrary function such that F & 0 and
E' & 0. The particular case F(f) = f leads to

In order to prove that xA, & xp+q for every k, we re-
call Stieltjes' theorem [21] which states that, if p& are
the moments of a positive function p(x), the following
determinant inequalities hold:

& j, G(~) (f~) ~d

G(x) &0 (20)

This result can also be derived &om the Markov inequal-
ity [20].

A. Bounds in terms of moments

For J"(f) = f and G(x) = x", for any k ) 0, Eq. (12)
leads to

I I I
~a+m ~J+m+i ' ' ~@+2m

for any k & 0 and any m & 0, provided that all the
moments involved exist. If we apply this theorem, when
m = 1, to p(x) = f'(z), whose mom—ents are related to
those of f (x) by

kgb y lf k & 0
f(0) f k=0

f (*) & "„'—= f~ (*) (14) we Bnd that

where pA, denotes the moment of order k of the function
) 1.e.) for any k & 1.

xA: & xk+i (22)
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f(x) x exp( —ax") (23)

its moments in the k large limit are given by

Ic+6+1

p ~(A:+b}/P (24)

which allows us to calculate f (xA, ), which in this limit
behaves asymptotically as

Let us analyze the asymptotic behavior of these upper
bounds. If f(x) vanishes at infinity as x, its moments
pA, do exist if and only if k ( o.+ 1, which means that the
bound given by Eq. (19) will be applicable from k = 0 to
the integer part of n, if o. i.s not an integer, or to k = a —1
otherwise. If we apply Eq. (14) for noninteger values of
k, we can 6nd bounds with an asymptotic behavior like
x +', with e being a positive arbitrary small number.

If f(x) vanishes at infinity faster than any inverse
power of x, all p, i, exist. The sequence in Eq. (19) can
be continued to arbitrary large values of k. Therefore,
f'( x) will also vanish at infinity faster than any inverse
power of x. We can compare the asymptotic behavior
of f and f* in the following example: if f is a function
which behaves asymptotically as

For t = 1 we find

x()& ..
which can also be obtained from Eq. (14) when k = 3.

III. APPLICATIONS

A. Upper bounds for the atomic electronic density

We shall now apply the previous results to the spheri-
cally averaged atomic electronic density

1
p(r) = — p(r)dO.

4m
(32)

When f = p, Eq. (14) leads to the following inequality:

k —3)
) (r) &

4 „ = / a(r) (33)

where the bounds are written in terms of the radial ex-
pectation values defined in Eq. (4)

Some particular cases of Eq. (33) are the following:

f '(xg) x„+"/' exp ( ax~), — (25) ~(r) &
4

= / i(r)
(r ')

a behavior which is closer to that of f than one of any
negative power of x.

~(r) &
2 „, —= S2(r)
(r ')

(35)

B. Bounds in terms of functionals uq

) 1/t " 1/t

f(x) &
I 4 (26)

where uz is de6ned by

~i ——4vr x [f(x)]' dx
0

For g(x) = 4vrx2 and F(f) = f', being t ) 0, Eq. (10)
leads to

3N
~(r) &

4 „,= Ss(r) (36)

p(r) & 4—:P4(r)
()

Here, N stands for the number of electrons. As shown in
Sec. II, each of these bounds is the best of all of them in
a particular range of r values. Therefore, if several (r")
values were known, we could build the optimum upper
bound [Eq. (19)] which in this case is written as

which is equal to ~q in Eq. (5) for a three-dimensional
isotropic function. If f(r) denotes the spherical average
of a nonisotropic f (r ), it is easy to prove by means of the
Holder inequality, that p'(") = &

A, ( k —3)
4~~k rI. ««I+i

p(0) r & ri
( ') ri&r&r2

(38)

- t
dAf(rA) & (4m)' '

, f do[j(r, O)]

It can then be proved straightforwardly that

r 'dr-=—~,

which allows us to replace ~q by ~q in Eq. (26).
In the limit t -+ oo, Eq. (26) reduces to

&(*) & &(0)

(28)

(29)

( ')
4~p(0)

when k = 1 and

fork) 1.

k(rA. —s)

(k —1)(ri -4)

where the values of ry are given by

(39)

(40)
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Just as an illustration, we have performed a numer-
ical test of some of the upper bounds p&(r) given by
Eq. (33). These bounds are plotted in Fig. I for the
neon atom, where the (r") values have been evaluated
from the Hartree-Fock data of Clementi and Roetti [22].
A comparison of the values of p(r) (dot-dashed line) eval-
uated within the same model is included. The solid line
represents the values of the optimum bound [Eq. (38)],
which proves to be adequate in a wide range of r.

We will now discuss brie8y the asymptotic behavior
of this bound when the sequence is continued to inan-
ity. From Eq. (25) and the knowledge of the asymptotic
behavior [23] of p(r),

3 2 2/3
Tp = —(37l ) caI5/s

10
(47)

3 /3i"
~o = ——

I

—
I ~4/s4& r

(48)

(49)

since in these cases the functionals uq are related to
the Thomas-Fermi kinetic energy, the exchange energy
in Dirac-Slater form, and the average radial density, re-
spectively, by means of the following expressions (atomic
units will be used throughout):

( )
/3 2(2I) i—v (4I) which allow us to write

we can state that for large k

p*(")- r.' p(") (42)

( 3 q
1/t 1/t

p(&) &
I 4

We can also obtain bounds in terms of other density
functionals by applying Eqs. (26) and (29) to p(r), which
leads to the upper bounds

5 / 2 i2/s T'/'
p( )

/ 2 't'/'T'/'
27r i 15vr) rs/s ' (50)

where T is the exact kinetic energy. For the last step we
have made use of Lich's conjecture [24], T ) To. For the
other cases,

where uq is defined in Eq. (5).
Special cases of interest of Eq. (43) are

(—z.)'/'
(5I)

(52)

t'3 ~"~4/.

) 1/2 1/2

p(&) &
I 4

(46)

These bounds depend on diH'erent noninteger powers of
r, and they improve, in some regions, the quality of the
bounds in terms of the moments described above. This
is illustrated in Fig. 2 for the neon atom by using the
same Hartree-Fock (HF) data, where the bounds given
by Eqs. (44)—(46) are compared to the optimum bound
given by Eq. (38) and the values of p(r).

From this comparison we realize that the bounds given
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FIG. 1. Plot of the bounds pz (dashed lines), given by
Eq. (33), for p (dot-dashed line) and for the neon atom. The
optimum bound, i.e., p* [Eq. (38)] is shown by the solid line.
The HF data of Clementi and Roetti [22] have been used.

FIG. 2. Plot of the bounds given by Eqs. (44), (45), and
(46) denoted, respectively, by (a), (b), and (c), compared to
the optimum bound in terms of moments given by Eq. (38)
(dot-dashed line), and to the HF value of p (dot-dashed line).
The same HF data as in Fig. 1 are used.
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( 3 ) 2/3

p(r) &
l

—
I«r (53)

by Eqs. (44)—(46) improve the one given by Eq. (38) for
small values of r (in the case of neon for r values between
0.15 and 0.6 a.u. ). The last bound in Eq. (50) would lie
slightly above that corresponding to Eq. (44) by a factor
of 1.054.

Upper bounds in terms of either r or r can also be
found from Eq. (43). They can be compared with those
obtained by means of the moments and with other well
known results in the literature. For t = 3/2 we obtain

expressions of the well known upper bound [1],

1
p(r) ( (1 —e ")(nN + 2T/n), (62)

which is a very appropriate bound for most values of r
when optimizing the free parameter n numerically for
each r. The only cases where n can be determined ana-
lytically correspond to the limits mentioned above, and
these are the cases that will be compared with our results.

Another bound in terms of r, which improves
Eq. (61), was found in Ref. [6]:

and for t = 3 we have p(r) &
2 „ l(2 —~)~]"—= p, (r) (63)

) 1/s 1/3

p(r) &
I

—
I

q4vr ) r (54)

These bounds can be expressed in terms of other more
interesting average quantities, such as the zeroth and sec-
ond order of the gradient expansion of the kinetic energy,
i.e. , To and T2 (T2 ——9Tgr, Tgr being the classical von
Weizsacker term).

(a) From the generalized Holder inequality it can be
found that

~ zr&/6
3/2 —" 5/3 (55)

/'125 )"m'/'T' '
(")

&96
(56)

and a result in terms of T can be obtained by applying
Lieb's conjecture

/' 125 ) / jy&/sT~/2
p(r) &

I , I , = p (r)(967rs r r2 (57)

(b) By means of the Sobolev inequality [25] it can be
found that [26]

2'3' 3
Tz (58)

which can be applied to Eq. (54), leading to

(2'341 '/' T,
p(r) &

l . l

—'=—p, ( ).qvr' r r (59)

Several analytical bounds with the behavior of r and
r can be found in the literature. Let us mention a
result of HofFmann-Ostenhof and HofFmann-Ostenhof

(2~T) &/2

p(r) &
4 „, =—p (r) (60)

which, in addition to Eqs. (47) and (53), allow us to
obtain

this being h = (r 2)/(4T). It is applicable only if h ( 1.
Other bounds with a similar dependence on r can be
found [4,5], but they are worse than those mentioned
here.

A comparison of the bounds in terms of r, those
given by Eqs. (34), (59), (61), and (63), has been per-
formed by using Clementi and Roetti's Hartree-Fock data
[22]. This is illustrated in Table I, where the values of the
coeKcients of r in each bound have been displayed for
several atoms. From these values we can conclude that
the bound p given by Eq. (59) in the present work is
smaller than the previous results for atoms with large Z.
Let us also note that the accuracy of the bound pq, given
by Eq. (34), approaches those of the other bounds when
Z increases.

A direct comparison between the bounds in terms of
r 2, p, and p, given by Eqs. (57) and (60), can be
performed since they have the same dependence on T.
Equation (57) of this work gives a better bound than
Eq. (60) for Z & 9. In order to include Eq. (35) in this
comparison we have again made use of the Hartree-Fock
data mentioned above and obtained the values displayed
in Table II. We realize that this latter bound, i.e. , p2,
also lies below p~ for large atoms, but is always above
PT"

We must also mention here that the bounds in this
work are unsatisfactory only in the very near nuclear
region, because they are singular at the origin except
for the trivial bound p(r) ( p(0). However, appropriate
bounds for the very near nuclear region are known [7].

Let us Anally comment that if we compare these
bounds to others of a different type recently found [8],

TABLE I. Comparison among the bounds p~ (r),
pr (r), p» (r), and p» (r) to p(r), given respectively by
Eqs. (34), (59), (61), and (63), by means of the coefficient
of r in the r.h.s. of these expressions, for some atoms.
These coefficients have been evaluated from the Clementi and
Roetti HF data. Numbers in square brackets denote powers
of ten. Atomic units are used.

and the result found by King [7]

T
p(r) &

2
—= p, (r). (61)

These two bounds correspond to the large and small r

Z r pl (r) rpr, (r)
10 0.33017[+02] 0.20527[+02]
18 0.11658[+03] 0.69857[+02]
36 0.50377[+03] 0.28917[+03]
54 0.11792[+04] 0.66408[+03]

0.20459 [+02]
0.83843[+02]
0.43799[+03]
0.11509[+04]

0.20074[+02]
0.79854 [+02]
0.39649[+03]
0.10048[+04]

rp (r) rp, (r)
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2
10
18
36
54

r'p'(r)
0.537
4.952

11.097
29.101
50.591

r2p (r)
0.431
3.780
8.439

21.650
37.549

r'ps (r )
0.269
4.035

10.959
35.423
70.329

both have a similar accuracy when few (r") are known.
In the following sections, similar applications of the gen-
eral results of Sec. II will be developed for other atomic
relevant functions, which will be discussed with less de-
tail.

TABLE II. Comparison among the bounds pz(r ), pr(r)
and p (r), given respectively by Eqs. (35), (57), and (60), by
means of the coefficient of r in the r.h.s. of these expres-
sions, for some atoms. These coefficients have been evaluated
from the Clementi and Roetti HF data. Atomic units are
used.

A plot of some of the lower bounds q&(r) is given in
Fig. 3 (dashed lines) where the values of Q(r) (dot-dashed
line) have been also plotted for the neon atom. The opti-
mum bound, corresponding to Eq. (67), is plotted by the
solid line. The function Q(r) and the values (r") have
been evaluated &om the HF data of Clementi and Roetti
[22].

C. Upper bounds for the atomic form factor

The isotropic atomic form factor, defined in Eq. (2), is
a quantity that in numerical calculations is found to be a
monotonically decreasing [19]function. To the best of the
author's knowledge, there are no bounds for this function
known in the literature, apart &om a lower bound that
was recently found [13].

Some of the moments of the atomic form factor defined
by

B. Lower bounds for Q(r) v"+(c) &v
0

(70)

The results of Sec. II A can be applied in order to find
lower bounds for the number of electrons enclosed within
a sphere of radius r, i.e. , Q(r) defined by Eq. (1). If we
define the function vr(r i)

jl0 =
2

(71)

are related to those of the electronic density and the value
of p(0) by means of the expressions [27—29]

f(r) = 1V —Q(r) = 4sr j s'p(s)sts (64)
» =(r ') (72)

and apply Eq. (14) to this monotonically decreasing func-
tion f(r), we find

p2 = 2vr'p(0). (73)

f()(( ) (65)

This implies that the function Q(r) is bounded from
below by

Therefore, starting from Eqs. (14) and (16), we can
find upper bounds for I" (q) in terms of these quantities,
in the form

(66)

for any k & 0.
As was done for p(r), we can build an optimum bound

from q&(r) by using the best choice of k in every r, which
is given by

12

10—

q(r) ( q* = m — for r e [ri„r„+,],
(r")

(67) 6—

where
4

and

(r)
N (68)

0 I I

0.5 0.75 1.25
r (a.u. )

1.5 1.75

(69)

for k ) 1. The limit A; ~ 0 gives, in this case, the trivial
bound Q(r) ) 0.

FIG. 3. Plot of the bounds Q), (dashed lines), given by
Eq. (66), for the function Q (dot-dashed line) and for the
neon atom. The optimum bound, i.e., Q' [Eq. (67)] is shown

by the solid line. The HF data of Clementi and Roetti [22]
are used.
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F(q) & F(0) = N = Fo (q), 37—42, 49—50, 55—74, 81—82, and 87—92. For these atoms,
the application of the bounds given by Eq. (16) leads to

F(q) &
2

= Fi*(q)
vr(r ')

2g

F(q) & , = F2 (q)
2(r ')

(75)
II —3)

~(p) &
4 „„—= ~I'. (p).

When k = 1 we obtain

4vrp

(79)

(so)

and

F(q) &, = F:(q).
6~'p(0)

(77)

which can be compared to the following result [10] that
is analogous to Eq. (61) in the momentum space:

We can build again the optimum bound using the best
F&(q) for any particular value of q. In Fig. 4 we have
plotted for the neon atom the bounds given by Eqs. (75)—
(77) (dashed line) and the optimum bound (solid line)
compared to the function F(q), by means of the same
HF data of Clementi and Roetti [22].
We can also bound F(q) &om Eq. (26). In particular, for
t = 2, we obtain

4' (81)

The former bound will lie below the latter provided
that (p ) is smaller than (r ). A comparison of both
values &om the HF data of Clementi and Roetti shows
up when this occurs, among the atoms above considered,
for Z = 6, 7, 13, 22—31, and 37—50.

The optimum bound in every region from Eq. (79) is
given by

F(q) &
3 f IF(RI'dq

4~ q»2
(p)

1/2
= V'6~2

q3/2 (78)
4'

p p1

pl p p2

where in the last step we have used, F(q) and p(r) are
the Fourier transforms of each other.

'7 (P)=t
a(p" )

4~pa pk p pk+1

(s2)

D. Lower bounds for the spherically averaged
momentum density

for k & 8 (otherwise the moments do not exist) where

Although the spherically averaged momentum density
is not a monotonically decreasing function for all atoms,
several results have been found in the literature under
this assumption for those atoms for which the numerical
calculations verify it [30], i.e. , Z = 1—7, 11—13, 19—25, 31,

101

and, for k ) 1,

( ')
4~p(0)

s)

(k —1)(p"-')

(s3)

(s4)

100

10—1 F

The values of p'(p) (solid line) are compared to those
of p(p) (dot-dashed line) for the helium atom in Fig. 5,
both calculated &om the HF wave functions of Clementi
and Roetti [22]. The particular bounds given by Eq. (79)
which contribute to p'(p) in the region displayed also
appear in the figure (dashed lines).

The bounds of Sec. II 8 can be useful in this case
because there are some relevant functionals Ut of p(p).
They are quite analogous to those of p(r), given by
Eq. (43),

10 2
0 10

I I I I I I I I I

20 30
k (a,u. )

I I I I I I I I I I I

40 50 60

( 3 ) 1/t U1/t

FIG. 4. Plot of the bounds F~*, F~, and F3 (dashed lines)
given, respectively, by Eqs. (75), (76), and (77), for the
isotropic form factor F (dot-dashed line) and for the neon
atom. The optimum bound, denoted by F' (see text) is shown

by the solid line. The HF data of Clementi and Roetti [22]
are used.

where Ut is defined by Eq. (6). For example, U2 is an ex-
perimentally measurable quantity [15] called the average
momentum density and denoted by (p). Besides, some
functionals Ut of p(p) have been found to be bounded
&om above [14] by means of radial expectation values

it)
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FIG. 5. Plot of the bounds pl', (dashed lines), given by
Eq. (79), for the momentum density p (dot-dashed line) and
for the neon atom. The optimum bound, i.e. , p' [Eq. (82)] is
shown by the solid line. The HF data of Clementi and Roetti
[22] are used.

FIG. 6. Plot of the bounds Jz (dashed lines), given by
Eq. (86), for the Compton profile J (dot-dashed line) and for
the neon atom. The optimum bound, denoted by J' (see
text), is shown by the solid line. The HF data of Clementi
and Roetti [22] are used.

E. Upper bounds for the atomic Compton profile

The Compton profile, defined by Eq. (3), can be
bounded from above in terms of expectation values (p")
by using Eq. (14) and expressing the moments of J(q) in
terms of those of p(p) by means of a simple integration
by parts. This leads to

(86)

for k &0.
The cuts between two successive bounds, JA*, z and JI*, ,

are given by qi, = (p" )/(p" 2) for k ) 0. The optimum
bound is JJ*, (q) for those q c [qt„qy+ij. An illustration of
the values of some bounds Jg(q) (dashed lines), as well
as those of the optimum bound (solid line), is given in
Fig. 6, where they have been compared to those of J(q)
(dot-dashed line) for the neon atom, evaluated from the
data of Cleinenti and Roetti [22].

an atomic system enables us to bound it for any value of
its argument. The bounds are written by very simple an-
alytical expressions, in terms of either the moments of the
function or other simple functionals. We have restricted
ourselves to some physically interesting functionals, but
other different applications of the results of Sec. II can
be performed which would lead to bounds with differ-
ent powers of the argument than those appearing in this
work.

The particular results found for the electronic density
and the momentum density improve for different atoms,
the accuracy of the previous results of the same type.
Also, the general results allow us to 6nd bounds for func-
tions for which results of this type are scarce or unexisting
(e.g. , the atomic form factor). The construction of opti-
mum bounds &om particular simple expressions make us
Gnd bounds that can be appropriate both at short and
larger distances Rom the origin.
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