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Knowledge of bounds and equalities for the exact density-functional exchange-correlation potential
5E„,[n]/5n (r) is necessary for its accurate approximation. With this in mind, it is shown,
for A~O, that A,

' f d'rn(r)5E„, [ n]i/5n(r) ~2A 'E„,[ni ] and f n(r')~r —r'~ 'd'r'

+A, '5E„,[ni ]/5n(r) ~0, where ni(x, y, z)=A'n(Ax, ly, Az). The local-density approximation satisfies
the former inequality but violates the latter one. Moreover, with respect to the Fermi level,
it is shown that the exact correlation potential 5E, [n ]/5n (r ) satisfies

E, [n] E, [n——dna']~ f5E, [n]/5n(r)hnF(r)d'r, where An& is the density of the highest-occupied

Kohn-Sham orbital of n. The corresponding inequality for the exact exchange potential 5E, [n]/5n (r) is

in the opposite direction: E„[n] E„[n hn—F] ~—f 5E„[n]/5n(r)hnr(r)d r It i.s a diificult challenge

for an approximate exchange-correlation functional to simultaneously satisfy both inequalities. For in-

stance, the local-density approximation does not.

PACS number(s): 31.15.Ew, 71.10.+x, 31.25.—v

I. INTRODUCTION AND SUMMARY

For the purpose of obtaining more accurate approxi-
mations to the exact exchange-correlation density func-
tional E„,[n], and the corresponding exchange-
correlation potential u„,( [n];r) =5E„,[n ]/5n (r ), it is
essential to continue to find conditions satisfied by E„
and U„,. Any given approximation to E„, or v„, should
then be modified to satisfy the conditions, if it does not
already do so.

There are not a large number of relations known that
involve U„,. In this paper, we focus upon v„, as well as
upon E„„and show that

5E„, n~
limA i f d r n(r) "' +2 limA, 'E„[ni ]
X~O 5n r) i. o

and

5E„,[ni ]
limA, 'f d rg(r)
A, ~O 5n r

g(r)n(r)
(2b)

with g(r) ~0. The scaled density nx(r) is obtained from
the original density n (r) by uniform coordinate scaling

n&(x, y, z)=A n(Ax, Ay, Az) .

[Note that constraint (2b), with g =n, is equivalent to Eq.
(1) plus

, 5E..[n~) n(r )
limA, ' +, d r'~0, for all r, (2a)

o 5n (r) ~r —r'~

E„,[n ] E„,[n An—F ]

5E„,[n]~ f "'
bnF(r)d r

5n(r
b,nF(r, )hn~(r2)+—

~ ~

d rid r2
ri 12

(3)

where AnF is the density at the Fermi level. That is, AnF
is the density of the highest occupied Kohn-Sham orbital
of that noninteracting Hamiltonian whose ground-state
density is n.

The functional derivative 5E„,[n] /5n (r) is defined

only to within an additive constant if, as in this work,
densities are assumed to have a fixed electron number

[2—4]. In the more general theory, which allows continu-
ously varying electron numbers, 5E„,[n]/5n(r) is com-
pletely defined, however, and has a derivative discon-
tinuity at integer electron numbers [3,4]. For the densi-
ties appearing in this work, which have a fixed integer
electron number, the functional derivative 5E„,[n] /5n (r)
is completely defined as the one obtained from the more
general theory if the density n is approached from the
electron deficiency side [2—4]. In the same way, possible
ambiguities from additive constants are removed in the
functional derivatives 5E„[n]/5n(r) and 5E, [n]/5n(r)
of the components E„[n] and E, [n ] of E„,[n ]. For finite

n (r, )n (r2)
2hmA 'fE„,[n&] ff,

~

d r, d r2,
A, —+0 r, -r,

which was previously obtained in Ref. [1].] &s shown in

the &ppendix, the functional derivative 5E„,[ni„]/5n(r)
js equal to u„,([ ni];r /A), which therefore can be substi-

tuted for 5E„,[n & ] /5n ( r ) in Eqs. (1) and (2).
At the Fermi level, we then show that
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systems with boundary conditions that require their den-
sities to have asymptotic exponential decay [2], this
means that the functional derivatives vanish as r~~~.
It is crucial for the validity of the result given in this
work that the functional derivatives of E„[n],E, [n], and
E„,[n] be defined as described above.

Observe that in Eqs. (1) and (2), the scaled density n & is
placed within E„„then the functional derivative is taken
with respect to the unscaled density n, and finally the lim-
it A, —+0 is taken. If we assume that the functional E„, is
suf5ciently well behaved, we can interchange the last two
steps. Although this is by no means necessary to apply
Eqs. (1) and (2), it leads to algebraic simplifications for
most approximation functionals. For example, let us
consider

E„,[n]= f n d r+ f d rIVn~ n

+ f d r(n+~Vn~n ' )(1+n '
)

as an approximation to E„,[n]. (The functional E„,[n] is
employed here for illustrative purposes only; it is a rather
poor approximation. ) Now substitute n& for n in Eq. (4)
to form

E„,[n i, ]=Afn . d r + A, fd r I Vn
~

n

+ f d r(n + ~Vn~n
' )(I+A, 'n )

and

5E„[n],5E, [ni ]f d r n(r) +limA,
5n r i. o 5n r

~ 2(E„[n]+limi, 'E, [ni ]) (10)
X~O

5E [n ] 5E I. n ]
+limA, ' +, d r'~0.

I

5n(r) i,-o 5n(r) ~r —r'~

In the local-density approximation (LDA),

+ limp 'E" [n ]
A, —+0

=a f n ~ (r)d r+b f n ~ (r)d r

=cfn (r)d r . (12)

[The term b f n ~ (r)d r arises from the low-density limit
for the correlation energy of a uniform electron gas [6].]
Now, note that since the constant c emerging in the LDA
low-density limit is negative, it follows that the local-
density approximation satisfies Eq. (1). However, the
local-density approximation does not satisfy Eqs. (2); it is
easy to find well-behaved densities for which

so that

limk. 'E„,[n i]=2f n d r+ f d r~Vn I n
—,cn' (r)+, d r'~0,n(r')

fr —r'/
(13a)

and

+ f d'rlIVn
I

which corresponds to Eq. (2a), and for which

f g/ d f f ( ') ( ) d ,d )3C J n 7 J J P 7 (13b)

, 5E„,[ni ]
lima '
i.-o 5n (r)

2fn d r+fd rIVn~ n
5

5n(r)

+ f d'rIVn
~

(7)

Alternatively, if the exchange-correlation potential
V„,([n];r) of the approximate functional E„,[n] is
known, then one can substitute n& for n and rfA, for r in

V„,([n];r), replace in Eqs. (1) and (2) 5E„,[ni ]/5n(r) by
the resulting v„,([n&];r/A. ), and finally take the limit
A, ~O (see Appendix).

It shall perhaps prove convenient, when testing func-
tionals, to express Eqs. (1) and (2) in alternative forms.
One may partition E„,as

which corresponds to Eq. (2b) with g (r) =n(r), are
violated.

for a quick example, consider r=O in expression (13a)
and take n(r)=de r . This inequality is violated when

y )3rdIe~ '. F.or another example, the inequality
(13b) is violated if one substitutes A, n(A, Axy, z) for an ar-
bitrary n and takes X~o. Nonlocal approximations have
yet to be tested with respect to conditions (1) and (2).

With respect to the Fermi level, Eq. (3) is actually the
A, =1 special case of

E„,[n~] —E..[n~ —SnF, ~]

5E„,[ni„]~ f En'(r)d r
5n r

b,nF(ri)b. nF(r2)+ 2A all A, ~O,
r&

—r2

E„,[n]=E„[n]+E,[n]

and utilize [5]

E„[ni ]=RE„[n]
to express Eqs. (1) and (2a) as

(8)
where An~&(r)= A, bn~(ix, ky, kz)— with hnF(r)
=~PF(r)~, where PF(r) is the highest-occupied Kohn-
Sham orbital of n (r). Now, we have observed that a re-
cently derived density-functional Koopmans's theorem
[7,8] can be cast as [8]
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5E„[n]
E [n] E—„[n i]]n—z]= f " bnF(r)d3r

5n r
b,nF(r])b.nF(r2)+-

ir, —r, [

Xd T1d 72 (15)

For a diamagnetic two-electron system,
E, [nz b, n~ z] =—0 and hnF = ,' n. Equat—ion (16) then
gives

5E, [nz]
E, [nz]( —,

' f ' n(r)d r .
5n r

At A. = 1, Eq. (16) becomes

Hence, the combination of Eqs. (8), (9), (14), and (15)
gives the following inequality that involves correlation
alone:

5E, [nz]E[n„] E[—n, Sn„—] f anF(r)d'r,
5n r

all A, )0 . (16)

a)0. (21)

Here n =A, ' is a coupling constant and u is a local mul-
tiplicative external potential that keeps the ground-state
density independent of a [9,10]. Next, by factoring q]'(„')

in the manner of expression (14) in Ref. [2], as an
(N —1)-electron part multiplied by a part involving just
the Xth electron, it follows that the variational theorem
dictates

(q/&»iH&» & ~IP&») &E&»
[n] [n] [n] — [n]

where

(22)

N —1 N —2N —1 N —1

H(„') '= g —
—,'V, + g g ar, '+ g u ([n];r, ),

i=1 j)i

II. DERIVATION OF CONSTRAINT (1)

Define 4(„') (x„.. . , x&) as that antisymmetric wave
function that yields the density n and that is the ground
state of H [„'],where, in atomic units,

N —1 N N

H(„') = g —
—,'V;+ g g ar J

'+ g u ([n];r;),
i=1 i=1 j)i i=1

5E, [n]
E, [n] E, [n b—,n~]—( f '

b, nz(r)d r .
5n r

(17)

(23)

This correlation expression contrasts with the following
corresponding one for exchange alone:

N —1

H(„'i '=H(„'i + —,'Vz —a g r~' u([n];r~), — (24)

5E [n]
E, [n] E[n hn~]) —f— bnz(r)d r, (18)

5n r

which is implied by Eq. (15). Note that the inequalities in
expressions (17) and (18) are in opposite directions.

Observe that conditions (16) and (18) cannot be
satisfied simultaneously by the LDA. For example,
divide Eq. (16) by X, let A, ~O, and utilize
lim& Dk 'E," [n&]=b J n i (r)d r from expression
(12) to obtain

f n i (r)d r —f [n(r) —bn+(r)] i d r

', f n' —(r)bn~(r)d r . (19)
where

N

]~]—(2]2,N Z ]22 gN),
i=1

Now utilize E„[n]= f12n
i (r)d r in Eq. (18) to obtain

f n (r)d r —f [n(r) it nz(r])] i d r—
N —1

V;, ]22]=(WI'„i Z Z 2,2
' q2I'„I),

i =1 j)i) ', fn'i (—r)bn~(r)d r . (20)

where E[„] ' is the ground-state energy of H[„'] '. In
other words, H~„' ' is obtained by removing the Nth
electron from H(„') . In this connection, note that the in-

tegration in Eq. (22) is defined to involve the space-spin
coordinates of electrons 1 through X, even though
H[„'] ' contains only electrons 1 through N —1. Also
note that n is clearly not the ground-state density of
H [„'] ", n contains X electrons and not N —1 electrons.

Combine Eqs. (22) and (24) to obtain

T [n]+2aV„[n]+f d r n(r)u ([n];r)+NI(0, (25)

The simultaneous validity of expressions (19) and (20) re-
quires the equality in both expressions, which is generally
impossible. The situation with nonlocal approximations
for exchange correlation (such as the use of gradient
corrections to the LDA) has not yet been explored with
respect to the simultaneous satisfaction of conditions (16)
and (18). [The LDA for exchange alone clearly violates
Eq. (15). Indeed, Eq. (15) is violated as well by most ap-
proximations with gradient terms. Noteworthy then is
the fact that Krieger, Li, and Iafrate [7] have incorporat-
ed Eq. (15) into their recent exchange-potential approxi-
mations, which go beyond the LDA. ]

and where I, the ionization energy of H [„],is given by

(28)

T [n]=A, T'[nz]=T [n]+A, T„,[nz],
V„[n]=A, 'V,', [nq]=U[n]+A, 'E„,[nq]

—A, 'T„,[n~],
and [14]

(29)

(30)

E[n] [n]

Here E[„'N] is the ground-state energy of H [„'] .
Next, utilize A, =a and in Eq. (25) utilize [1,5, 11—13]
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to generate

5T0[n] 5U[n] z 5E„,[ni ] A, ~0, E„,[n i ]——
A, [1]and therefore

(31)
BE„,[n~]

limA, 'E„,[n&]—lim =0 .
X~O A, —+0

5T' nf d r n(r) —T [n]&1VI+2A E„,[ni)5n r

5E„,[ni ]
T„,[ni ] A— .f d r n(r)

5n r

where

() (')d3 d3, (33)

III. DERIVATION OF CONSTRAINT (2)

It is known that the square root of the electron density
satisfies the following Schrodinger equation [2,16]:

[
—

—,'V +u ([n];r)+ u, s([n];r)]n'~ (r)= In'~2—(r) .

(39)

and

N N —1 N

E„,[n]—= (w('„j x —
—,'v, + x x r,

' 4('„'f)
i=1 i=1 j)i

—U[n] —T [n],

Now it has been shown [2] that

u,s([n ];r)&0,

which, when combined with Eq. (39), gives

,'n ' —(r)Vn'~ (r) —u ([n];r) I &0—.

(40)

(41)

T„,[ni]=—T'[ni] —T [n~] . (35)

(Observe that the identity [5] T [ni]=A, T [n] has been
used in Eq. (29) and that the identity U[n&]=AU[n] has
been used in Eq. (30). Also notice that T [n] is the
Kohn-Sham noninteracting kinetic energy. )

Again, 5E„,[n]/5n(r) is defined by the corresponding
electron deficiency limit of a more general theory that al-
lows continuously varying electron numbers. The func-
tional derivative 5T [n]/5n (r) is the corresponding elec-
tron deficiency form of the functional derivative of T [n]
plus the ionization energy I. For finite systems with
boundary conditions that require their densities to have
asymptotic exponential decay, these definitions have the
consequence that 5T [n]/5n(r), and subsequently also
u ([n];r), go to zero as ~r~ ~ ~. As a result the ioniza-
tion energy I is independent of a for v as determined by
Eq. (31) and with the functional derivatives as defined in
this work.

In Eq. (32), now employ [5]

'6E„, n&+A- - ' -I=O.
5n(r)

(42)

Finally after multiplying by A, , in the limit A, ~O, Eq. (42)
implies Eq. (2a). Again, use has been made of the fact
that E„,[ni ]——

A, as A~O. Further, in the limit A,~ oo,
Eq. (42) implies

5T' n—'n ' '(r)V2n' 2(r)+ &I (43)

which is a known result [2,17,18].

IV. DERIVATION OF EQ. (3)

First express E~„'~ in terms of the density functionals.
To accomplish this, note that

Next, employ Eq. (31) for u and substitute in Eq. (41) to
obtain

5TD[n], 5U[n]
5n(r) 5n(r)

ABE„,[ni ]
T„,[ni ]=—E„,[ni ]+

to obtain

f d r n(r) —TD[n]
5T Inl 0

5n(r)

(36) E~»= (y&»~II&»~qg~»)
t:n j [~] [n1 [~j

Thus, from expressions (21), (26), and (27), we have

E(„'~ =T [n]+aV„[n]+f u ([n];r)n(r)d r .

Next, by relations (29) through (31), Eq. (45) becomes

(44)

(45)

, BE„, ni
&1VI+3A, E„,[n&]—A,

5E„, nifd rn(r)
5n(r)

(37)

In Eq. (37), first consider A~ oo and take into considera-
tion the fact [1,15] that E„,[ni ] ——

A, , as A,~~, to get

d mr —T n NI.5T' n 0 (3&)
5n(r)

Finally, to arrive at Eq. (1), multiply Eq. (37) by A, , let
A, ~O, and now take into consideration the fact that for

E(„') = T [n]+aU[n]+a E„,[ni ]

—f d r n(r) —af d rn(r)5T [n] 3 5U[n]
5n r 5n r

5E„,[ni ]—a d rn(r)
5n r

(46)

Now define %fp] as that wave function that yields the
density p =n —

dna' and minimizes the expectation value
of g,.:i'——,

' V;+g; =i QJ &, 'arJ ' (Equiva. lently,
' is that wave function that yields p and minimizes

the expectation value of H('l '.) Clearly, employment of
Eq. (23) then yields
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(@la»—i~Ha» —i ~qla» —i)
/pl [~] [p]

=T [p]+aV„[p]+f u ([n];r)p(r)d r,
which implies

E(„'~
' T [p]+aV„[p]+f u ([n];r)p(r)d r,

because, of course,

ga» i & (@la» i~Ha» i
~gapa» i)

n] — tp) fn] [pj

(47)

(48)

(49)

by the variational theorem. [Note that the strict inequali-
ty applies in Eq. (49), except for a=0, because there are
relaxation eFects in the density when AnF is removed
from n, for a )0. Only when +=0 is p the ground-state
density of H~„' '. For a) 0, p is not the ground-state
density of H(„'} ', but p is generally close enough to the
ground-state density so that the bound in Eq. (49) is
reasonably tight and thus meaningful. ] Next, utilize
(29)—(31) with p in place of n, and utilize Eq. (48) to yield

5T 'n

+fd3 ( )
5T [n]
5n(r)

(52)

where P~ is the highest-occupied Kohn-Sham orbital of—
—,'7 —5T [n]/5n(r). (Note that I is independent of a.)
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APPENDIX: BEHAVIOR OF FUNCTIONAL
DERIVATIVES UNDER COORDINATE SCALING

In this Appendix the relation

E(„') ' T [p]+aU[p]+a E„,[pi]

5F[ni ] =v( [n„];r/A, )
5n r (A 1)

5TO—f d r p(r)
" af d r—p(r)

5n (r) 5n (r)
5E„,[n~]—a d rp(r)

5n r) (50)

is derived (see in this context also Ref. [19]). (The func-
tional derivative of F [n], which in this appendix shall be
an arbitrary functional of the arbitrary function n(r), is
defined here by u([n];r). ) Next the uniformly scaled
function ni(r) is interpreted as a functional nz([n];r) of
n(r):

ni ([n ];r') =n~(r') =I, n(Ar'), (A2)
Finally, we arrive at Eq. (14) by subtracting Eq. (46) from
Eq. (50) and by using the fact that the highest-occupied
Kohn-Sham orbital energy of the system with ground-
state density n is the negative of the exact ionization en-
ergy [2] of H(„'~. Namely,

y —~a, N Fa, N —1 f p (r)e( & p )p (r)d r

with the functional derivative

5ni([n ];r')
=A. 5(r —Ar') .

5n(r)

Equation (A3) follows from the relation

5n&(r') =A5n(Ar, ')= f d r A, 5(r —Ar')5n(r)

(A3)

or

—f d r b,n„(r) 5T [n]
5n r (51)

for infinitesimal changes 5n and 5n& of n and n&, respec-
tively.

The functional derivative 5F[ni ]/5n(r) is now evalu-
ated as

5F[ni ]
5n(r)

5F[ni[n]] 5F[ni [n]] 5ni([n];r')
d i'

5n(r) 5n~([n];r') 5n(r)

= fdr'v([n [ i]n];r')A, 5(r —Ar')= fdr"v([n [ni]];r"/A, )5(r —r")

=v([ni [n]];r/A, ) =v([ni ];r/A, ) . (AS)

In a similar way one obtains for nonuniform scaling

5F[ngf ] =u([n «ts ];x/a, y/P, z/y)5n r
with the nonuniformly scaled density n "«ti'r (r ) defined as

n g«~(r)=aPyn(ax, Py, gz) .

(A6)

(A7)
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