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Semiclassical computations of time-dependent tunneling
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In this paper we consider the time evolution of wave-packet tunneling through a potential barrier.
Using a path-summation approach, we can describe the quantum evolution in terms of particle trajec-
tories both in the allowed and forbidden regions. Near the barrier edges, where the potential changes
rapidly, the wave aspects dominate. These make the trajectories branch into infinite families of paths,
which have to be included in the summation. Combining these features, we treat correctly the comple-
mentary aspects of the full quantum process, and this allows us to obtain a computational method that
gives accurate numerical results with considerably less expenditure of computer time than a direct in-

tegration of the Schrodinger equation. We test the method on a simple rectangular potential by compar-
ing the calculations with both conventional wave scattering results and computations from the
Schrodinger equation. A general potential can be approximated by a staircase, which allows the applica-
tion of our method. A simple adiabatic extension is shown to work excellently for the case of a periodi-
cally modulated barrier.

PACS number{s): 31.70.Hq, 03.65.Sq, 73.40.Csk

I. INTRODUCTION

It was early recognized that tunneling is one of the
most remarkable nonclassical manifestations of quantum
dynamics, and it is an essential feature of many physical
phenomena. It makes a contribution to various chemical
reactions, and its use in electronic devices goes back to
the Esaki diode of the 1960s. Modern semiconductor
technology manufactures heterostructures, where the dy-
namics of charge carriers is dominated by quantum
features; for a recent review see Ref. [1].

The customary approach to tunneling (see, e.g. , Ref.
[2]) is to calculate the stationary states and compare their
strength on one side of the barrier with that penetrating
to the other side. The transmission probability can be ob-
tained in a fair approximation using the semiclassical
WKB approach [2]. A particularly popular method con-
tinues classical variables like time and momentum into
the complex plane. This has been used in condensed-
matter theory, phase-transition problems, reaction rate
calculations, and cosmological problems; for reviews and
many references consult, e.g. , Ref. [3]. The tunneling de-
cay rate has been calculated in terms of an imaginary-
time propagator; see Coleman's review [4]. This ap-
proach allowed Caldeiera and Legget [5] to add dissipa-
tive features to quantum tunneling. However, all these
investigations are fundamentally time-independent

.Schrodinger equation calculations. Recently the develop-
ment of well-controlled femtosecond laser pulses has
made it possible to interrogate quantum dynamics in real
time. In addition to the fundamental task of verifying the
Schrodinger equation in the time domain, this technology
has become an efficient tool in many areas of applica-
tions; see the articles in Ref. [6]. These developments
motivate a discussion of time-dependent quantum phe-
nornena and wave-packet propagation. Except for purely
pedagogical examples (see, e.g., Ref. [2]), only a few in-

vestigations have explicitly considered the time evolution
of quantum tunneling. Semiconductor device applica-
tions have initiated a discussion of tunneling times [7,8].
In such applications, temporal variation of the structural
parameters has been considered in several papers [9—13].
In these cases the computation of electronic wave-packet
propagation has provided a valuable complement to
scattering calculations.

The semiclassical approximation makes it possible to
describe quantum evolution in terms of the action func-
tion calculated from classical trajectories [14]. This ap-
proach has been extended to complex time integration by
Miller and George [15—17]. In [18] they explicitly
display the tunneling trajectories allowing penetration
into classically forbidden regions. It is the purpose of
this paper to utilize semiclassical understanding to calcu-
late the time-dependent aspects of a wave packet
penetrating potential barriers.

Wave packets can be propagated exactly when the
Green function of the time-dependent Schrodinger equa-
tion is known. This can be expressed in terms of Feyn-
man path integrals [3]. However, even the simple case of
rectangular potential barriers has been solved exactly
only recently [19,20]. The results are complicated, and
only of limited use in numerical applications. Needless to
say, any additional complications make exact solutions
unavailable.

In the case of a rectangular barrier like Fig. 1, or po-
tentials very close to this, we can divide the space into
external and internal regions. Far from the barrier, the
particle is free and the semiclassical propagator is exact.
Here we can, consequently, interpret the propagator en-
tirely in terms of particle paths. Classically these turn
around when they encounter the barrier, but the wave
mechanical nature of the system allows barrier penetra-
tion, making the particles emerge in the classically al-
lowed region on the other side of the barrier. There
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FIG. 1. In this picture a particle, represented by a sphere, is

rejected or transmitted from a rectangular barrier. The particle
is initially at (x;, t; ) and finally at (xf tf ).

again a classical path description holds. Thus the propa-
gation can be described in terms of classical mechanics
everywhere except during the tunneling, where wave
mechanics prevails; the phenomenon is an illustration of
complementarity in quantum mechanics. It is the aim of
the present paper to utilize this freedom to use a comple-
mentary description to obtain a computationally accurate
and intuitively transparent approach to tunneling.

To this end we calculate classical paths outside the bar-
rier. These are the stationary phase solutions to the path
integrals. Following Miller and George, we convert to an
imaginary-time description inside the barrier, when the
paths correspond to a steepest descent approach. In
areas of constant potential, these give an exact quantum
description inside the barrier. The wave features of the
particles manifest themselves only near the barrier edges,
where the potential varies rapidly. Here we can define
reAection and transmission coefBcients as in classical
wave physics, and these split up any incoming particle
path into reAected and transmitted components. In the
classical path description each trajectory encountering
the boundary branches into two separate ones, with their
ratio given by wave mechanics. Thus we obtain an
infinite multitude of semiclassical trajectories, each of
which contributes to the action giving the wave function
of the system. The quantum features are seen in the pos-
sibilities of interference between the waves deriving from
each semiclassical trajectory.

We have also written a numerical program to calculate
the time-dependent evolution of a wave packet using the
one-dimensional Schrodinger equation; see Ref. [21]. The
time steps are implemented using a split-operator
method. The program can be applied to both molecular
energy levels and semiconductor heterostructures by the
use of an appropriate scaling. We introduce time and
space scales T, and R„respectively. In addition, we
choose the energy scale Vp=0. 5 eV as being relevant
both for molecular vibrations and semiconductor poten-
tial differences. This fixes the time scale to be
T =A/ Vp = 1.3 16 fs. This is in a suitable range for the
dynamic phenomena investigated by short pulse lasers.
The space scale depends on the mass according to
R, =(fiT, /2m )'~ . In GaAs the effective mass is 7% of
the free-electron mass giving R, =1.04 nm; for a molecu-

0
lar mass of 20 proton masses, we find R, =0.0144 A. In
both cases the relevant dimensionless space variable ex-
tends to about 100 times the basic unit R, . It is thus pos-

II. THE PROPAGATOR AS A SUM OVER PATHS

In quantum mechanics the wave function at the time t&
can be obtained from the wave function at an earlier time
t, by a linear kernel according to

(xf y tf ) f IC(xf y tf ~x;, t; )%(x;,t, )dx, .(1)

where the final coordinate is denoted by x&. The integral
kernel K is the Green function of the nonrelativistic
Schrodinger equation. According to Feynman [22), this
can be represented by the functional integral

iS~,. /fi
&~, =K(x~, t~~x, , t, )= f2)xe (2)

where the integration goes over all paths from (x;, t; ) to
(xf tf ) with the appropriate measure. The function in
the exponent is the expression for the classical action

t~
S~, = f L(x,x)dt= f [—,'mx —V(x)]dt . (3)

t

Using the stationary phase approximation, we obtain the
maximal contribution from those paths in expression (2)
which are determined such that the variation around
them is zero (5S=0). These paths are determined by the
classical equation of motion. If there is more than one
classical path leading from x; to x& in the time interval
[t, , t~ ], we may write the propagator (2) in the form

iS( )/A 1S (7j, 'g x i )/A
K&,. = e' mme (4)

where the sum n goes over all such paths. The terms in
expression (4) consist of actions along the classical paths
and quantum correction path integrals in the neighbor-
hood of these paths. Expression (4) is a truly semiclassi-
cal expression; the paths involved are determined from
the classical equations of motion, but applying the propa-
gator (4) in Eq. (1) allows interference between various

sible to adapt the numerical integration method of Ref.
[21] to deal with both parameter ranges. All results
presented in this paper have been verified by numerical
computation from the time-dependent Schrodinger equa-
tion.

This paper presents results as follows. The time-
dependent propagator is introduced in Sec. II. Section
III describes its calculation in terms of classical trajec-
tories penetrating into the tunneling region. Section IV
shows how the wave aspect splits the trajectories at the
potential edges. These complementary aspects are com-
bined in Sec. V to give a full semiclassical description of
time-dependent tunneling phenomena. In Sec. VI we dis-
cuss the extension of the method beyond the case of rec-
tangular and stationary potential barriers. The computa-
tional applications of the trajectory method are presented
in Sec. VII and compared with the quantum-dynamical
evolution of wave packets obtained by exact numerical
evaluation of the time-dependent Schrodinger equation.
To justify our choice of a rectangular potential, we have
used parameters relevant to the physics of semiconductor
heterostructures. Finally, in Sec. VII we present the con-
clusions of the work.
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paths, which is a genuinely wave mechanical feature. We
now proceed to consider these two aspects in some detail. —,'mx —Vo dt= —— —m

'2

+ Vo (+id')

III. THE PARTICLE ASPECT OF TUNNELING

The trajectories leading to a stationary phase in the
path integral are given by the Lagrange equation of
motion. It is well known that this admits the constant of
motion

E=—,'mx + V(x) .

Solving this for the time dependence, we obtain

X dX

x; v 2[E —V(x')]/m

compare Refs. [23] and [24]. We are now going to make
a formal generalization of the path concept into classical-
ly forbidden regions. We thus consider a part of space
with V(x) )E, where no classical trajectories can
penetrate. However, formally the integral expression (6)
can be continued into such regions of x when we allow t
to become a complex variable. Hence the equation of
motion is continued from the real t axis into the complex
plane in a Inanner well known from the theory of ordi-
nary differential equations. This type of integration has
been extensively used by Miller and George in several ap-
plications [15,18].

In order to carry out the following investigations ex-
plicitly, we consider the simple rectangular potential bar-
rier shown in Fig. 1. We assume that the particle enters
with the initial velocity u; at (x;, t; ), and that its total en-

ergy is

E=—'mv2
2

The particle reaches the barrier at x = —a at time t
and we write the integrated time from Eq. (6) for x & a in
the form

.x+a= t t;+i —(8)
W

1 dX+ & m, x d7d~' (12)

t —i~= f&xexp —f Ldt+ f Ldt
fi

+f Ldt ' (13)

We want to point out that the original propagator (2)
does not have any classical path solutions: the time evo-
lution has to be modified as in Eq. (13). The time path
chosen for the integration is shown in Fig. 2. During
part A the path x,&

propagates from x; to —a, in part 8
it propagates from —a to a, and in part C from a to x&.
This is reached at the unphysical time t&

—i~. To obtain
the physically applicable propagator we consider
K(x/, x;, ts) in Eq. (13) as an analytic function of the
variable t„and carry out an analytic continuation to the
real-time axis by the replacement tz ~tz+i ~. In order to
obtain the classical paths, we integrate the equation of
motion separately in the three regions of Fig. 2. As we
have no forces acting inside the regions, we obtain the ex-
pressions

where & is formally the Hamiltonian of the system. In
order to make large energies & damp out, we have to
choose the time evolution in the direction of the negative
imaginary axis —i~. We choose this branch in the fol-
lowing. Now the stationary phase method becomes the
method of steepest descent. The paths we use for tunnel-
ing are such that the difference between the initial and
final positions is given by t(xI ) t(x; ) = t—s i r —We.

define the modified propagator by the formal expression

K(xI,x, , t„)

where

w =2VO/m —
u,

If we set x =+a, we find that the trajectory emerges on
the other side of the barrier at the time

u (t t ) —a, —x& —a

x(t)= .iw(t t ) —a, ——a &x &a

u,.(t t +ir)+a, x )a.—

(14a)

(14b)

(14c)

t=t +i~ . (10)

The final time can be obtained from the final position
x& &a as

i Elm(t)

f dxt(xI ) = t +i r+ = t +i r+(t/ —t ) = t/+Er
a U; : Re(t)

From this we can see that the traversal through the clas-
sically excluded region has added the imaginary part +i ~
to the time used to get from x, to x&.

In order to fix the sign of the imaginary part, we con-
sider the action in the excluded region,

FICx. 2. This picture illustrates how the integration is per-
formed in Eq. (13). The time evolution is divided into three
parts A, B, and C.
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Choosing

2a
w

(15) Xp

we obtain a continuous path in Eqs. (14). Choice (15) is
in full agreement with the general expression in Eq. (11).
Writing out the expression for x (t; ) and x(tf ir—) from
Eq. (14), we can express the initial velocity in terms of
traveled distance xf; and elapsed physical time as

x; =x(t; ) =v;(t,. t )
——a,

xf =x ( tf —i r ) = u; ( tf —t ) +a

From this the velocity v, is obtained as

fxf [

—x; —2a
1

(16)

(17)

FIG. 3. A wave function encounters a boundary at xp. Re-

gion I contains the incoming and reflected wave functions, and

region II the transmitted wave function.

Here we have taken the absolute value of xf in order to
obtain the correct expression even when the path is
reflected from the barrier (Fig. 1). The observed travel
time tf, from x; to xf follows from the velocity u; in such
a way that no time appears to be consumed by the tunnel-
ing through the potential. In a separate publication we
will discuss the semiclassical interpretation of tunneling
times.

X =Xf p

as'"'
cl

axf Xf =Xp

imuf
K

Xf =XP

(20)

where the classical action relation BS,&/Bxf =pf has been
used. Here vf is the velocity at the end of the classical
path. With the notation of Fig. 3, relation (19b) becomes

IV. THK WAVE ASPECT OF TUNNELING

The quantum tunneling cannot be described entirely in
terms of classical paths even when complex time is intro-
duced. Expression (4) includes quantum interference be-
tween different equivalent paths leading to the same final
coordinates (xf, tf ). In the present case, these arise be-
cause for matter waves each interface acts as a beam
splitter, making the path branch into two additional ones
after each encounter with the interface. This is a pure
wave property well known from classical optics. In order
to obtain a full description of quantum tunneling, we
must include this feature properly. First of all we have to
match the wave functions at the boundary. For each
term in series (4) we have an expression of the form

~s'"'t~—8 (18)

In Fig. 3 we show a situation where the incoming wave
function '0, impinges on the boundary between regions I
and II. (Note that now xf is near the interface at xo.)

This is divided into a reAected wave 4„and a transmitted
one 4, . Both the wave function and its derivative have
to be continuous at the boundary. Because the wave
functions according to Eq. (1) are proportional to the
propagators K, at the boundary we find

u, (A, —A„)=vii A,

because S,l has the same value for all waves at the surface

xf =xo. From (21) and (19a) we obtain the reflection and
transmission coefficients

ui —vR=
v, +u„

2vi

ur+vn

(22)

(23)

2v; Vl. lW

V]- +1W
(24)

2lWT+=, R+=
u] + lW VI + lW

= —R (25)

The coefficients T+ and R+ (Fig. 4) are obtained by time
or space inversion and, because all coefficients are sym-
metric with respect to time inversion, we have

These are similar to corresponding coefficients for elec-
tromagnetic waves [25].

The transmission and reflection coefficients can be gen-
eralized to the potential barrier using the imaginary time
argument. We use the notation defined in Fig. 4. Inside
the barrier we have v =iw, and directly obtain

(19a)
T+ =T+, R+ =R+ . (26)

az, ae,+
ax ax

ax,
ax

(19b) For further use we note the normalization of the deter-
minant

We will argue in Appendix A that the derivative of the
amplitude A '"' can be neglected for large enough tf„and
hence we obtain

det
T R

=T T+ —R R+=1 . (27)
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E =K R +T e ' "R T ~R "e
r cl + +~ +e

n=0

R +R+(T T+ —R R+ )e=Kcl ~ 2 —4amw/A'
1 R+e

e 2amw/A e
—2amw/

=K R 2amw/A' ~ 2 —2amw /fi
E—%

e R+e
(35)

where relations (25) and (27) have been used. % is the to-
tal reAection coefficient of the barrier. When we combine
all the contributions to the full propagator Ef;, we must
also consider the fact that, when xf ~ —a, there is the
possibility of direct propagation from x; to xf without
ever entering the barrier. We denote this propagator by
K,&. We note that the velocity in Eq. (33) is to be defined
here as

(35) as a genuine phase factor. The resulting expressions
become rapidly oscillating and do not have the excellent
convergence properties of the tunneling case. Nev'erthe-
less, they result in a correct expression in the semiclassi-
cal limit.

There have been many calculations of the tunneling
propagator using the stationary phase approximation
[24,26,27]. In these references the time evolution was al-
lowed to be imaginary during the tunneling, but the wave
properties were not completely included. These methods
lead to results equivalent with the WKB approximation.
We have managed to go beyond this approximation be-
cause our propagator gives the exact wave-function ex-
pression (38) for a monochromatic plane wave. As a
matter of fact, in Appendix 8 we show that our propaga-
tor is exact when tf, ~~.

[xf —x, f

U (36)

VI. PROPAGATOR
FOR MORE GENERAL POTENTIAL BARRIERS

The total propagator is then given by the expression

K(xf tf ~x;, t, )

=(K,)+E„R)e(—a —xf )+KdV'e(xf —a ) . (37)

When this expression is applied to an initial mono-
chromatic plane-wave state, the ordinary scattering rep-
resentation

%(x, t ) = [[e'""+N(haik/m )e '" 'e '""]6(—a —x )

+'T(haik/m )e '" 'e'" e(x —a)]e " (38)

follows.
In order to obtain information about the tunneling pro-

cess we need not include the contributions inside the bar-
rier, ~x ~

(a, into the propagator (37). The relevant infor-
mation was utilized in calculating the coefficients A and
'T As no obs.ervation is going to be made inside the bar-
rier, the propagator is not needed in this region. Howev-
er, it can be constructed from our results in a straightfor-
ward way.

The semiclassical result in Eq. (37) adds contributions
from the paths in a coherent way. This allows for in-
terference between the wave functions generated by all
paths. We consider the case of tunneling here, hence the
trajectories traversing back and forth inside the barrier
all derive from imaginary-time dynamics. Ef the energy is
above the barrier, the stationary phase approximation of
Eq. (2) gives only one classical path which passes over the
barrier. However, the wave nature of the particles will,
even in this case, give reAections at the interfaces and
cause a proliferation of the trajectories into many single
ones which can interfere. Only when this eFect is includ-
ed in the semiclassical calculation can we obtain agree-
ment with the wave mechanical description. If we in-
clude only the allowed classical trajectory from x; to xf,
all quantum interferences are lost.

For overbarrier transmission the velocity in the region
~x ~

(a becomes real, and the time can be kept real. This
means that its action enters into sums of the type (34) and

In principle the present treatment can be extended to
more general potential barriers. The work by Miller and
George [l5—l8] has shown how time-dependent trajec-
tories can traverse classically forbidden regions. The
method is, however, rather difficult to implement and re-
quires extended numerical calculations. The imaginary
time trajectories can be found only iteratively in order to
reach the final coordinates (tf,xf ). When the potential
can be divided into steep edges and nearly constant por-
tions, our present semiclassical approach becomes an ac-
curate and fast way to evaluate the tunneling propagator.
When such a division of the potential is not possible, one
cannot separate the wave and particle aspects as we have
done. An example is the inverted parabolic barrier, as
shown by Brink and Smilansky in Ref. [28].

When one wants to obtain a numerically accurate ap-
proximation to the tunneling propagator, one can use a
step-function approximation for a potential of arbitrary
shape. This was, to the best of our knowledge, first point-
ed out by l.andauer [29]. We introduce the staircase ap-
proximation to the potential as shown in Fig. 6(A). At
each step we use the wave mechanical transmission and
reAection coefficients, and in the constant potential re-
gion we use semiclassical expressions for the trajectories.
In this way we build up a branching tree series of semi-
classical trajectories according to Fig. 6(B). When the
number of steps is increased, the number of terms in this
sum grows rapidly. However, we can sum over the
branches, which gives recursion relations between
transmission and re6ection contribution of the nth step
and preceding (n —I ) steps. This means that if we divide
the barrier into X steps, we obtain the transmission con-
tribution after X recursion loops. The calculation is com-
pletely analytical and can be carried out rapidly and ac-
curately.

When the potential rises steeply, the vertical parts of
the steps become large and the wave properties dominate.
Along slowly varying portions of the potential the hor-
izontal parts can be extended, and the particlelike ap-
proximation to the propagator dominates. Thus the com-
plementary interpretation of the approach retains its va-
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, R,
'

R„~-
n

The replacement of V(t) by a static value can be con-
sidered as an adiabatic approximation. As the tunneling
appears to take a negligible time compared with the real
propagation of the wave packet, we may expect adiabatic
conditions to prevail. In the complex time domain it is,
however, dificult to justify this. The real proof is the nu-
merical success of the method presented in Sec. VII.

X2 X3
VII. NUMERICAL APPLICATIONS

FIG. 6. A generic potential is discretized into piecewise con-
stant parts (A). In the rightmost figure (B), only the boundaries
are shown. The path can branch from each boundary due to
reAection and transmission.

V(t)= Vo+ V, (t),
this lead" to

S=I [ —,'mx —[V + V, (t )]]d&

V& t —
V& t dt,

(39)

(40)

where we neglect the second contribution during propa-
gation through the. barrier. Thus the imaginary-time evo-
lution takes place in the static potential Vo+ V, (r ),
where t is the time when the trajectory hits the edge of
the potential. Up to that time, the classical paths are
evaluated in the full potential V(t); the classical formal-
ism in Secs. II and III allows this generalization directly.
In our case, V=O for ~x ~

)a, and the time dependence of
the potential enters only through the value V& (t ),
where t depends on the previous history of the trajecto-
ry. As a result the propagator becomes the same as in
Eq. (37), and the velocity v; is obtained from Eqs. (17)
and (36). Instead of result (9), the velocity w acquires a
dependence on t

2[VO+ Vi(t )]
I (41)

lidity even in the case of a general potential function.
The approximation of a potential barrier by a set of

steps is, in fact, an accurate representation of many sys-
tems of physical interest. It is a good model for many
semiconductor devices like double barriers, Josephson
junctions, and infinite Bloch lattices. The consecutive in-
terfaces can be used to split the semiclassica1 trajectories,
which may be used to describe many properties in such
devices. We believe that most such phenomena can be
understood better by using classical concepts and a semi-
classical interpretation of the tunneling.

Another problem occurs when we want to calculate the
semiclassical trajectories in time-dependent potentials. A
direct continuation of V( t) to complex times is question-
able both from numerical and fundamental points of
view. In fact, the propagation inside the barrier takes
place along imaginary time (see Fig. 2), and we may sur-
rnise that this should not see a variation of the physical
size of the barrier. We may try the separation of classical
action in the interval t H[t, t —ii] [see Eq. (13)] into
static and negligible parts. With the potential

We have applied the semiclassical path-summation
method introduced in previous sections to time-
dependent tunneling calculations. In these computations
we have evolved the initial wave function according to in-
tegral (1), where we used the semiclassical propagator as
the linear kernel. This gives the tunneled and reAected
wave functions from which we have obtained the k repre-
sentation of the wave function and the tunneling and
reAection probabilities. In particular, we considered a
constant rectangular potential, a simple double barrier,
and a periodically modulated one. The results are com-
pared with an exact numerical integration of the time-
dependent Schrodinger equation using the split-operator
method [13,21]; its application to wave-packet propaga-
tion is discussed in Ref. [21]. The semiclassical propaga-
tor method has been found to be accurate and fast. A
typical run takes 1 min on the Convex C3840 computer.

In order to justify the use of a rectangular potential we
choose the parameters corresponding to a heterostructure
in GaAs [30,31]. The efFective mass is thus taken to be
m*=0.07m„ the height of the barrier is taken to be
Vo =0.23 eV, and its width is 50 A. The initial electronic
wave packet is chosen to be Gaussian:

'P(x;, t; ) =
' 1/4

o] /4~ Iko(x,. —xo
(42)

where the width is 5=500 A. This wave packet is broad
enough to have a reasonably well-defined averaged
momentum, and thus a well-defined energy. Thus its
reAection and tunneling should be in good agreement
with the steady-state plane-wave results, which are easily
obtained.

The initial and final positions of the wave packet are
chosen far away from the barrier x&= ~x;~=125=0.6
pm. Figure 7 shows how the initial wave packet (upper
part of Fig. 7) is divided into reilected and transmitted
wave packets after encountering the barrier (lower part of
Fig. 7). This picture is obtained by the use of the semi-
classical propagator method, and we can see how the
shape of the initial wave packet is preserved in both parts
of the wave function after the interaction. This behavior
is verified by direct integration of the Schrodinger equa-
tion. Because the incoming pulse has a narrow spread in
energy, we can compare the reAection and transmission
probabilities with steady-state results obtained from Eq.
(38). This is carried out in Fig. 8 for a range of incoming
energies. In part (A) the transmission probability T, ~ is
calculated from a semiclassicaHy propagated wave packet
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0.6-

$0.4-

To prove the utility of the staircase approximation to
obtain numerically reliable results quickly, we have com-
puted the tunneling in the double-barrier structure shown
in Fig. 9. The potentials consist of two hyperbolic secant
barriers of the form

I ~ I I I
I ' I I I

~ I s
'I I ~

I ~ ~ I
I I

~ I s I ~ I I
I I ~ I I I ~

V0
V(x)=

cosh (ax )
(43)

g 0.6-

$0.4-

-1.2 -0.8 -0.4
x (pm)

0.4 0.8 1.2

FIG. 7. The propagator method evolves an initial wave pack-
et into reAected and transmitted wave functions. The mean en-

ergy of the initial wave packet is 0.72VO. The line at x=0
denotes the position of the barrier.

and compared with the transmission probability of a
monoenergetic wave function T,„,=V"T. The results
agree within our plotting accuracy, and hence we show
the relative diFerence between the two results in part (B).
As we can see, for this initial state the numerical
difference remains better than 1%. To stress the wave
mechanical aspects of our particle computation, we point
out that for energies E & V0 the curve denotes over bar-
rier transmission, when the branching of paths deriving
from multiple rejections is necessary in order to obtain
the correct result. These multiple rejections above the
barrier have been summed in the steady state by Berry in
Ref. [32] and by Holstein in Ref. [27].

V, (t)= V, singlet . (44)

where the parameters correspond to the case of GaAs
(see above), and a '=20 A. The two barriers are situat-
ed at a distance of 100 A apart. The lower part of Fig. 9
shows the computed tunneling probability obtained using
a staircase approximation consisting of 500 steps of size
0.8 A. The accuracy of the result has been checked
against the direct numerical integration of the time-
dependent Schrodinger equation. For a single barrier
only, the tunneling probability can be obtained analyti-
cally', the staircase approximation has been checked
agaiiist this result as well. As in Fig. 8, the differences
between the various approaches are well below 1% and
thus not visible in the figure. It would be straightforward
to use the time-dependent propagator to evolve an initial
wave packet through the double-barrier structure, as in
Fig. 7. These calculations prove the utility of the semi-
classical approach as a tool for computations of results
for arbitrary barriers.

When we add a periodic modulation to the height of
the barrier, according to Eq. (40) we encounter additional
phenomena. The imaginary velocity under the barrier
has to be calculated from the static part Vo+ V, (t ) in

Eq. (41). The incoming energy Eo is no longer conserved
[33]. We can compare our results with those obtained by
Buttiker and Landauer [9,34] if we set

D
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FIG. 8. Picture (A) illustrates the transmission probability
Tp b of the static barrier calculated using the propagator
method. The monochromatic result T,„,=T*T is so close to
this that only the relative di6'erence 6T/Tp„b = ( Tp„b

T ) /Tp b is prCSCntCd in pictur C (B)

E/V0

FIG. 9. A smooth double barrier is illustrated in the upper
figure. The lower figure gives the transmission probability of
the system calculated by dividing the barrier system into 500

o

equally spaced stepwise parts from —200 to 200 A.
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As expected, the energy of the transmitted wave packet
acquires sidebands at multiples of the modulation fre-
quency E„=EO+nA~. This derives from the fact that
the barrier acts as a modulated nonlinear gate. We have
found this effect both in the semiclassical propagator
simulations and in the direct evaluation of the time-
dependent solution of the Schrodinger equation.

In our calculations we choose V& =0.05 Vo and
fico =0.35 Vo. In Fig. 10 we compare the energy spectrum
of the transmitted wave function using both the semiclas-
sical propagator and the numerical computations. The
energy is written directly using the equation

Ak
k

2 pled

(45)

and referred to the initial energy Eo =0.72Vo calculated
from ko in Eq. (42). To emphasize the agreement be-
tween the two calculations we use a logarithmic scale,
and we can clearly see the periodic modulation with the
energy difference iii~ (this is indicated in the figure). The
dotted curve is the numerical result, which shows two
side peaks on each side of the main peak, and the rest of
the peaks are lost in the numerical inaccuracy at the level
10 . The solid line gives the result of the semiclassical
propagator method. For the central peaks the results of
the two calculations agree remarkably well. The semi-
classical propagator method has a numerical error at lev-
el 10 ' only, and hence we can see three more side peaks
well resolved in the result of this calculation. Because of
the asymptotic nature of the calculation, the method
breaks down for low energies E =0. Thus there is less of
an agreement on the second sideband on the low-energy
side. Biittiker and Landauer (BL) give an analytic ex-
pression for the first two side peaks, n =+1. The ampli-
tudes given by their theory are indicated as BL+ in Fig.
10; they are found to agree well with our results.

The calculations verify that the semiclassica1 path
propagator contains all relevant physical information. In
particular, we note that the tunneling imaginary-time
paths are calculated using the static approximation of Eq.
(41) (the adiabatic assumption). The close agreement
with the wave-packet integration justifies a posteriori our
neglect of time evolution during the imaginary-time in-

0

-4
-6

-10
-12

o -14
-16

I

0.5 1 1.5 2 2.5 3

E/Eo

I ~ I

3.5 4

FIG. 10. The potential is subject to harmonic modulation.
The energy representation of the tunneled wave function is

shown. The solid curve is calculated using the propagator
method, and the dashed curve using the split-operator method.
The lines BL and BL+ illustrate the intensities of the first side
peaks calculated from the Buttiker-Landauer theory.

tegration. The advantage of the use of semiclassical path
summation is its shorter computational time and low nu-
merical error level as compared with the split-operator
method.

VIII. CONCLUSIONS

We have introduced a semiclassical description of
quantum-mechanical tunneling by extending the particle
trajectories into the classically forbidden regions. In the
spirit of Miller and George, we obtain these trajectories
by integrating the classical equations of motion in the
imaginary-time direction. Then the stationary phase ap-
proach giving the classical equations of motion has to be
replaced by a method of steepest descent. It is, however,
not possible to neglect the wave character of quantum
particles comp1etely, if accurate numerical results are
desired. At interfaces between allowed and forbidden re-
gions, the semiclassical trajectories branch, and the
branching ratio must be obtained from wave calculations.
We consider this to be an essential manifestation of the
complementary nature of quantum time evolution. The
repeated branching of the semiclassical paths attaches to
any individual one a whole family of related paths which
arise from repeated reAections at the interfaces.

When a11 the families of semiclassical paths are
summed in a path-summation representation of the quan-
tum propagator, we can obtain an asymptotically accu-
rate description of the tunneling phenomenon. This is
verified on the transmission of a wave packet across a
rectangular barrier. The semiclassica1 result is compared,
on the one hand, with the pure wave result for the
transmission probability (Fig. 8), and on the other hand
with a direct numerical solution of the Schrodinger equa-
tion. Excellent agreement is found. We have also shown
that the semiclassical results can be used as an approxi-
mate method to treat numerically an arbitrary potential
structure.

We have also tested the method in the case of a period-
ically modulated barrier. This case has been treated ear-
lier by other researchers, and we consider it an interest-
ing test case for the range of validity of our approach.
Utilizing a simple adiabatic approximation, we find (cf.
Fig. 10) that we obtain excellent results using less com-
puter time and achieving higher accuracy than the direct
integration method. Thus we recommend our method for
a wide variety of physical situations, even if we cannot as-
sert the exact range of situations where it may be useful.
As a first attempt at investigating a particular situation, it
should offer a cheap and fast way to obtain results.

From a strict formal point of view, the tunneling
occurs in imaginary time and no real-time delay is intro-
duced. The wave function starts to appear on the far side
of the barrier as soon as it hits the near edge. When tun-
neling times are part of some measurable observable,
there will appear an unavoidable delay. The exact value
of this depends on the manner of observing the delay. In
a forthcoming paper, we plan to discuss the various man-
ifestations of tunneling delay times, and try to elucidate
their properties by applying the presently introduced
method of semiclassical paths.
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APPENDIX A

Thus in the asymptotic limit ts~ ao (v; is kept constant)
the second term in (A2) vanishes, and only the classical
action term contributes to Eq. (A2). This result also
means that, inside an integral like Eq. (1), A'"' can be
treated as a constant because it varies more slowly than
the term with the classical action in the exponential.

Next we check how large tz should be in order to justi-
fy the asymptotic limit. For example, for 3 ' ' from Eqs.
(33) and (34), we obtain

1/2

T T+
2mikty

Here we prove that coefficient A'"' in Eq. (18) varies
more slowly than the term with the classical action in the
exponential. The coefticient A'"' can be obtained from
the quantum correction path integral in Eq. (4):

A '"'( v;, t;, t& ) =I2)ge (A 1}

2vriAt„

Expression (A3) becomes

a~"'
imv~ g"' av;

4iv;w

(v, +iw)

U; LW

U)W

'2

(A4)

(A5)

Generally tf has also an imaginary part and the integra-
tion is performed along a contour similar to that in Fig.
2. The quantum excursions g are zero at both initial and
final times. The form of the path integral suggests that
3'"' depends on xf and x, only through the classical
path x,&

which is determined uniquely by the initial ve-

locity. Thus A'"' is a function of t;, tf, and U;. Next we
take the derivative of the propagator, just as in Eq. (20):

aK i a~, i is'"'rx is'"'rx av;' ot ~(n)+ '
o&

Bf A Bf axe a vi.

s,'", '/~ t („) 1 aa(")

i s', ", 'r~, „, 1 i' 1 a A '"'=—mv eI t„ imvI rl'"' av,.

(A2)

where Eqs. (17) and (20) have been used: the plus and
minus signs come from the absolute value of xf in Eq.
(17). Assume that we investigate a chosen event after the
reAection or the tunneling. This means that we have to
keep U; constant as we increase t„because the particle is
free after encountering the barrier. Consequently only
the free propagation is added to the propagator, and the
quantum correction A'"' behaves as in the free-particle
case. This means that the derivative term

does not depend on t„assuming that v; is kept constant.

This is independent of t„because v; is constant, as men-
tioned above. For typical numerical parameters, the ab-
solute value of the additional term in the expression (A2)
becomes 5 X 10 times the major term. This justifies the
use of the asymptotic expressions in the numerical calcu-
lations.

APPENDIX 8

In this appendix we show that the constant energy
propagator derived by de Aguiar agrees with our result in
the limit that tz~~. De Aguiar derived an exact ex-
pression for the space-energy representation of the propa-
gator (Green function) for the rectangular potential [19].
The connection to the space-time representation is ob-
tained by the Fourier transformation

oo —iEt~ /A
K(xg, x;;&a)= DK(x~, x, ;E)e " dE

2K 0

oo

K(xI,x;;Ek )
7T oo

2

k dk,
Pl

(B1)

where we have changed the E integration to a k integra-
tion by the substitution Ek=h' k /2m. Following the
notations of Ref. [19],DK =K —K consists of the re-
tarded and advanced Green functions. The Green func-
tion K(E) in the last term of Eq. (Bl) will be determined
below. The imaginary prefactor in (Bl) is chosen in such
a way that the notation in our paper agrees with those of
Ref. [19]. Next we pick up those terms from de Aguiar's
results corresponding to Eq. (37):

K(x,x 'E) = [e .' +%(k)e ' ]e(—x —a )+ 5'(k)e ' e(x —a )f ikA f
iku t

[e ' "+%(k)e ' "]e(—x —a)+ 'T(k)e ' "e(x —a),f (B2}
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where we have applied the velocity relations (17) and (36). Furthermore, the initial position is assumed to be left of the
barrier x; (a. By using Eqs. (81) and (82) we obtain the space-time propagator

It (x&,x;;ts)= f [e ' +W(k)e' ' ]e '" '/ dk6( —xf —a)+ f V(k)'e' "'
e '"" '/ dk 6(x&—a)

oo

im(U, . ) t/2A cc —i{k—mv, ."/A) At/2m imu, ~t/2A' m i(—k —IU,./ii) iit/2m2

e ' e ' dk+e ' (k)e dk 6 —xf —a
2m' 00 OD

e
—iu At/2md

c1
00 2&m

imu, t/2e . ao —i(k —mu, /R)~tit/2m+ e
2m GO

1/2

=6(—xf —a ) K„ i fit
' 1/2

f A(u+m u/A)e '" "'/2 du

iAt

2am
u+mu; A e '" "' du 8 xf —a (83)

where we have used the classical propagator expression
(33) and changed the integration variable to
u =k —mu;/R. The first integral term in (83) becomes

1/2
iAtf,

2&Pl

—i u At& /2m
e " du

1/2
iktf,

27Tm

' 1/2
2Am

iAtq
(84)

The integration which contains V' or A cannot be evalu-
ated analytically. However, in the asymptotic limit
t„~ao the exponential term in the integral in Eq. (83)

+E„V'(mu, /R)6(xI —a ), (85)

which is the same as Eq. (37). We conclude that for a
rectangular potential barrier, the semiclassical propaga-
tor derived in this paper becomes asymptotically exact in
the limit tz —+ oo.

oscillates rapidly as u increases. Hence the integral con-
tributes only near u =0. This means that V and % can
be taken as constant in the integration (83), which thus
gives the same value as (84). Now we can rewrite Eq.
(83) as

K(x&,x, ;t„)=[K. ,i+IC,&%(mu; /i)l)]6( —a —x&)
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