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Coulomb holes and correlation potentials in the helium atom
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In this paper we investigate Coulomb correlation effects in the He atom by studying the structure of
the static and dynamic Coulomb hole charge distributions as determined by the analytical 39-parameter
correlated wave function of Kinoshita. The static Coulomb hole, which is defined in terms of the radial
electron-electron distribution function, shows that as a result of Coulomb repulsion there is a reduction
in probability of electron approach within a distance of one atomic unit and an increase in this probabili-

ty for greater separations. The dynamic Coulomb hole defined directly in terms of the pair-correlation
density describes the probability of finding one of the electrons given the position of the other. We thus
demonstrate how the two electrons are correlated as a function of the nonuniform density of the atom.
We also investigate the correlation potential W, (r) of the work formalism, which is the work done to
move an electron in the force field of the dynamic Coulomb hole charge. The structure of 8' (r) is simi-
lar to the exchange potential 8' (r) (which is the work done to move an electron in the force field of the
Fermi hole), in that it is attractive, monotonic, and has zero slope at the nucleus. However, as a result of
the structure of the Coulomb hole for asymptotic electron positions, and the fact that its total charge is
zero, the potential 8,(r) vanishes rapidly in the classically forbidden region. Thus, the asymptotic
structure of the exchange-correlation potential 8', (r) of the work formalism is that of 8' (r) which is

( —1/r). We also detemine via the Kinoshita wave function the correlation potential p, (r) of Kohn-
Sham theory, which differs from 8' (r) in that it also incorporates the effects of the correlation contribu-
tion to the kinetic energy. Consequently, it is less attractive than 8' (r), but also has zero slope at the
nucleus. However, as is known, the potential p, (r) is nonmonotonic, since it goes positive within the
atom, then becomes negative in the classically forbidden region, finally vanishing asymptotically as a
negative function. Since the exchange potentials of the work formalism and Kohn-Sham theory are the
same for this atom, and because 8' (r) is strictly representative of Coulomb correlations, we attribute
the nonmonotonicity and positiveness of the Kohn-Sham potential p, (r) to the correlation kinetic ener-

gy. This conclusion is consistent with the result that the difference between the correlation energies
determined within the work formalism from the dynamic Coulomb hole and Kohn-Sham theory is equal
to the correlation contribution to the kinetic energy.

PACS number(s): 31.10.+z, 31.25.Eb, 31.15.Ew

I. INTRODUCTION

Electron correlations result from the Pauli exclusion
principle as expressed by the requirement that the wave
function be antisymmetric in an interchange of the coor-
dinates at any two electrons, and by mutual repulsion as
governed by Coulomb's law. There is thus a reduction in
density or hole surrounding each electron. This reduc-
tion in density at r about an electron at r is the Fermi-
Coulomb hole charge distribution p„,(r, r'), the total
charge excluded being that of an electron. For the uni-
form electron gas the Fermi-Coulomb hole is spherically
symmetric about and independent of the electron posi-
tion. In a nonuniform-density system, the Fermi-
Coulomb hole charge is not spherically symmetric about
the electron. Furthermore, its structure is dependent
upon the position of the electron. Thus for such systems

*Present address: Department of Physics, St. Mary's College
of Maryland, St. Mary's City, MD 20686.

the Fermi-Coulomb hole is a dynamic charge whose dis-
tribution changes as a function of electron position.
Since the Fermi-Coulomb hole represents the correlations
between electrons due to the Pauli exclusion principle
and Coulomb's law, the lowering of the energy due to
these correlations —the exchange-correlation energy-
can also be expressed in terms of this charge distribution:
it is the energy of interaction between the electron densi-

ty p(r) and the Fermi-Coulomb hole charge.
The component of the Fermi-Coulomb hole due to

Pauli correlations, viz. , the Fermi hole charge p„(r, r'), is
defined as that obtained when only these correlations be-
tween electrons are assum. ed present, as in Hartree-Fock
theory. Within such an approximation, the reduction in
density about each electron due to the Pauli exclusion
principle is then explicitly known in terms of the indem-
potent Dirac density matrix. The Fermi hole thus
defined also excludes a total charge of one electron. Since
the expression for the Fermi hole in terms of the spin or-
bitals is exactly known, a considerable number of studies
of its structure have been performed for the nonuniform
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density system of atoms [1], molecules [2], and metallic
surfaces [3,4].

The Coulomb hole p, (r, r') is then defined as the
difference between the Fermi-Coulomb and Fermi hole
charge distributions. Since the total charge of both the
Fermi-Coulomb and Fermi holes is that of an electron,
the total charge of the Coulomb hole is zero. As a conse-
quence, whereas the Fermi hole charge is always nega-
tive, representing the reduction in density about the elec-
tron in the distribution of other electrons of the same
spin, the Coulomb hole is positive as well as negative.
The determination of the structure of the Coulomb hole,
however, requires a knowledge of the wave function of
the system. Although there has been recent work [5] on
the pair-correlation density for the Be and Ne atoms and
their ions, and of the Coulomb hole for the uniform elec-
tron gas [6], there is to our knowledge no systematic
study of the Coulomb hole structure for nonuniform-
density systems. One purpose of this paper, therefore, is
to study the structure of the Coulomb hole p, (r, r') as a
function of electron position for the ground state of the
He atom. The wave function employed in our calcula-
tions is the analytical 39-parameter correlated wave func-
tion of Kinoshita [7]. This wave function leads to the
same energy as that due to the 1078-parameter wave
function of Pekeris [8] to seven significant figures, and to
the expectations of various single-particle operators from
four to five significant figures. The wave function also
satisfies the electron-nucleus [9] cusp condition to three
significant figures and the electron-electron [9] cusp con-
dition over most of the atomic region to two significant
figures. For purposes of completeness we have also deter-
mined the previously studied [10,11] static Coulomb hole
p',""'(R), where R is the magnitude of the interelectronic
distance.

The dynamic Coulomb hole charge p, (r, r') also consti-
tutes a fundamental quantity in the work formalism
[12,13] of electronic structure. In this formalism the
wave function 4 can in principle be obtained by solution
of a Sturm-Liou ville-type differential equation whose
eigenfunctions form a complete set. The Coulomb hole

p, (r, r') is the quantum-mechanical source charge distri-
bution which gives rise to both the correlation energy E,
and the local potential W, (r) representing Coulomb
correlations within this formalism. Since the Coulomb
hole charge depends upon the electron position, the
correlation potential W, (r) is the work done to move an
electron in the force field C, (r) of this charge. The corre-
lation energy E, is in turn the energy of interaction be-
tween the density and the Coulomb hole charge. The lo-
cal potential W (r) representing Pauli correlations and
the exchange energy E are similarly defined in terms of
the Fermi hole p (r, r'). The application [13]of the work
formalism within the Pauli-correlated approximation to
atoms, atomic ions, metallic surfaces, and metallic clus-
ters has led to highly accurate results, and the structure
of the exchange potential W (r) for these nonuniform-
density systems is known. In this paper we study the
structure of the corresponding force field g, (r) and
correlation potential W, (r) due to the Coulomb hole

charge p, (r, r') for the He atom. Once again we assume
the wave function known and to be that of Kinoshita,
and determine these properties from the resulting
Coulomb hole charge. Now in local-potential theories of
the He atom, it is possible to define a Fermi hole from
which the exchange potential W, (r) can then be ob-
tained. As such, comparisons are also made of the ex-
change W (r), correlation W, (r), and exchange-
correlation W„,(r) potentials for this atom determined
within the work formalism. Such a comparison is impor-
tant since within this formalism the asymptotic structure
of the exchange-correlation potential of all nonuniform-
density systems is that of the exchange potential alone.
The reason for this is that the total Coulomb hole charge
is zero, and consequently there is no force field due to this
charge for electron positions asymptotically far from it.
Therefore the correlation potential vanishes for these po-
sitions of the electron, and the asymptotic structure of
the exchange-correlation potential is given by its ex-
change component due to the unit charge of the Fermi
hole. Thus the asymptotic structure of the many-body
potential W„,(r) can be determined by solving the system
differential equation in the Pauli-correlated approxima-
tion for W„(r). In atoms and molecules the asymptotic
structure of W (r) is ( —1/r). Furthermore, it is mean-
ingful then to compare the highest occupied eigenvalue of
this difFerential equation to experimental ionization po-
tentials, electron affinities, and transition energies. In
such a comparison [13] with the corresponding eigenval-
ue of Hartree-Fock theory, the highest occupied eigenval-
ue of the work formalism for atoms and negative atomic
ions is observed to be consistently superior with respect
to experiment. In this paper we explicitly demonstrate
that the correlation potential vanishes as the exchange-
correlation and exchange potentials approach their
asymptotic structure of —1/r, thereby validating the
above argument and observation.

Finally, we compare the potential W, (r) with the
correlation potential p, (r ) of Hohenberg-Kahn-Sham
[14] density-functional theory [15]. We have determined
the potential p, (r ) by inverting the Kohn-Sham
differential equation as in the work of Almbladh and
Pedroza [16] but have obtained the density and thereby
the Kohn-Sham orbitals via the Kinoshita wave function.
The potential thus obtained is the same as that of a
Monte Carlo calculation [17]. The correlation potentials
W, (r) and p, (r) differ fundamentally in that the former
is purely representative of Coulomb correlations whereas
the latter [15] incorporates in addition the correlation
contribution T, to the kinetic energy. Thus, since for the
He atom the exchange potentials W„(r) and p„(r) of the
work formalism and Kohn-Sham theory, respectively, are
the same, the difference between the correlation poten-
tials of the two theories provides an estimate of the
correlation-kinetic-energy contribution 5T, /fip(r) to the
Kohn-Sham potential.

In the following section we define and then describe the
structure of the static and dynamic Coulomb hole charge
distributions for the He atom. We then briefly describe
the work formalism and Kohn-Sham theory, and discuss
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and compare the corresponding correlation potentials.
Finally, we conclude with a summary of our results. For
expressions of the relevant properties derived from the
Kinoshita wave function we refer the reader to Ref. [18].

II. COULOMB HOLES

The Schrodinger equation for X electrons in an exter-
nal potential U,„,(r) is

g(r, r') = ( g (((r; —r5(r( —r'( tr)
EJ Wl

6r, —r
I

where the denominator is the density p(r):

(r(r(=(tr Z (((r; —r) 4) .
1

where 4 is the electronic wave function and E the total
energy, which is the expectation value of the Hamiltoni-
an. Both the static and dynamic Coulomb holes are
defined through the wa, ve function 4 via the pair-
correlation density g(r, r'), which is the density at r' if an
electron is assumed to be at r. Thus,

where f, (R ) is the radial distribution function when only
Pauli correlations are assumed present. Since both distri-
bution functions integrate to the number of electron
pairs, the total charge

StatIC g dg p (&)

and hence p',""'(R) has no definite sign.
In Fig. 1 we plot the radial distribution functions f (R)

and f (R) for the He atom using the Kinoshita and
Hartree-Fock [19]wave functions, respectively, as well as
the static Coulomb hole p", ""(R). In the region where
0(R ~ 1 a.u. the function f (R) lies below f, (R), indi-
cating thereby that in this region Coulomb correlations
reduce the probability of two electrons being a certain
distance apart from that when these correlations are ab-
sent. Thus in this region the Coulomb hole is negative.
In the region beyond R ~ 1 a.u. , f (R ) lies above f (R ) so
that the Coulomb hole is positive, indicating that as a re-
sult of Coulomb correlations there is an increase in the
probability that the electrons are separated by a distance
greater than —1 a.u. The structure of the positive part of
the hole describes the probability of this separation.
Studies [10] of the He isoelectronic sequence
Li+, Be +, . . . , Ne + show that the region in which the
Coulomb hole is positive increases with increasing atomic
number as it must, but that the structure of the hole
remains the same.

In the quantum-mechanical description of an atom, the
probability of an electron being at some position changes
as a function of its distance r from the nucleus. The stat-

Thus the total charge of the pair-correlation density is

fg(r, r')dr'=X —1. The pair-correlation density, which

incorporates all the electron correlations in its structure,
can also be written in terms of the Fermi-Coulomb hole
charge p„,(r, r') as

g(r, r') =p(r')+p„, (r, r'),
so that the total charge of the Fermi-Coulomb hole is
then fp„,(r, r')dr'= —1.

Static Coulomb hole

The static Coulomb hole p", ""(R) is defined [11] in
terms of the radial electron-electron distribution function

f (R), which is the probability of finding two electrons at
r, and r2 a distance R =~rz —r, ~

apart. In terms of the
pair-correlation density g(r, r ) this probability can be
written as
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f(R)= —,
' fdrp(r) fg(r, r+R)dQ&R, (5)

where the factor of —,
' ensures the normalization [ll] of

this distribution function to be the number of electron
pairs:

f f (R)dR =

The static Coulomb hole p,"""(R) is defined as the
difFerence

p',""'(R)=f(R)—f„(r),

O.i-
(r) = 0.929

0.0 -'

-Q. i
0 i 2 3

R (a.u. )
FICx. 1. Static Coulomb hole p',""'(R) as a function of the in-

terelectronic distance R for the He atom. The radial electron-
electron distribution functions f(R} and f„(R}determined via
the Kinoshita and Hartree-Fock wave functions, respectively,
are also plotted.
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ic Coulomb hole does not describe the eA'ects of Coulomb
correlations as a function of this probability or
equivalently of the nonuniformity of the electronic densi-
ty. This is described by the dynamic Coulomb hole
charge discussed below.

Dynamic Coulomb hole

The dynamic Coulomb hole charge p, (r, r') is defined
as the difference

p, (r, r') =p„,(r, r') —p„(r,r'),
where the Fermi hole is determined in an approximation
in which only Pauli correlations are considered, such as
Hartree-Fock theory or the exchange-only version of the
work formalism. As such, the Fermi hole can be ex-
pressed in terms of the idempotent Dirac density matrix
l (r, r') =g, P,*(r)P, (r') as

He Atom
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where y(r, r)=p(r) and where the P;(r) are the spin or-
bitals generated within the corresponding theory. The
Fermi hole satisfies the constraints of charge conserva-
tion fp (r, r')dr'= —I, negatively p (r, r') ~ 0, and value
at electron position p„(r, r) = —p(r)/2.

For the He atom in its ground state there are no corre-
lations due to the Pauli exclusion principle since the elec-
trons have opposite spin. Thus the determinantal wave
function reduces to a product of two spin orbitals. The
corresponding pair-correlation density for an electron at
r is then the density due to the other electron at r', which
is half the total density, so that g(r, r') =p(r') /2. Howev-
er, when the pair-correlation density is written as in Eq.
(4), it is appropriate to think in terms of a "Fermi hole, "
which is the negative of the self-interaction term in the
density. Therefore for the He atom p„(r,r')= —p(r')/2,
which is independent of the electron position. Such a
concept derives from local-e6'ective-potential theories in
which the pair-correlation density constitutes the funda-
mental quantity, with both the density and the Fermi or
Fermi-Coulomb holes [see Eq. (4)] giving rise to local po-
tentials.

In Fig. 2 we plot a cross section through the Coulomb

p, (r, r'), Fermi p„(r,r'), and Fermi-Coulomb p„,(r, r')
hole charge distributions for an electron at the nucleus
r=0 as determined via the Kinoshita wave function.
Also plotted for purposes of comparison is the electronic
density p(r'). Observe that for this electron position all
the hole charge distributions are spherically symmetric
about the electron. At the position of the electron, the
holes all also exhibit a cusp. (The cusp in the structure of
the Fermi hole is a consequence of the cusp in the densi-
ty. ) At and about the electron position the Fermi-
Coulomb hole is more negative than the Fermi hole as
must be the case. This is a consequence of the fact that,
when Coulomb correlations are introduced, an electron
creates a hole about it that is deeper than when only Pau-
li correlations are present. Thus, in the region about the
electron, the Coulomb hole is negative. (This is also the
case for all electron positions. ) However, near the surface

-1.5 -1.0 -0.5 0.0
r' (a.u. )

I

0.5
I

1.0 1.5

FIG. 2. Cross sections of the Coulomb p, (r, r'), Fermi

p (r, r'), and Fermi-Coulomb p„,(r, r') holes for the He atom as
determined via the Kinoshita wave function for an electron at
the nucleus r=0, as indicated by the arrow. The nucleus is at
the origin. The positive part of the Coulomb hole is not evident
on the scale of the figure. The electronic density p(r') is also
plotted.

of the atom ((r ) =0.929 a.u. ) and in the classically for-
bidden region, the Fermi-CouloInb hole must lie above
the Fermi hole since both these distributions satisfy the
same charge conservation constraint. In these regions
the Coulomb hole is then positive. (The positive part of
the Coulomb hole is not evident on the scale of Fig. 2, but
is clearly exhibited in the figures to follow. ) Thus the
Coulomb hole is both positive and negative, and in-

tegrates to a total charge of zero. The positive part of the
hole indicates that for an electron at the origin the other
electron is outside the surface in the classically forbidden
region of the atom.

Since the Fermi hole for this atom is independent of
the electron position, we now focus our attention solely
on the structure of the Coulomb hole for the other elec-
tron positions considered. In Fig. 3(a) we plot the
Coulomb hole for an electron with a radial coordinate of
r=0. 566 a.u. which is at the maximum of the radial
probability density, and in Fig. 3(b) for an electron at
r =0.8 a.u. The polar angle 8 of the electron position is
taken to be zero. The polar angles 8' of the Coulomb
hole charge considered correspond to 0'=0', 45', and 90'
with respect to the nucleus-electron direction. Since the
electron position is along the 0' =0 direction, the
Coulomb hole (for this spherically symmetric atom) is in-
dependent of its azimuthal angle P'. For these electron
positions the Coulomb hole is no longer spherically sym-
metric about the electron. Observe also the cusp in the
structure of the Coulomb hole at the position of the elec-
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essentially positive for asymptotic positions of the elec-
tron. This is a direct consequence of the fact that
Coulomb repulsion depends upon the distance between
the electrons. On the other hand, the Fermi hole is al-
ways negative irrespective of the electron position. The
negative Fermi hole charge gives rise to a force field
8 (r) that is negative, and consequently the exchange po-
tential W„(r), determined as the work done to bring an
electron from infinity to its position at r in this field, is
also always negative. On the other hand, the Coulomb
hole charge is both positive and negative, and changes
from being nearly all negative to nearly all positive. Does
the force field C, (r) due to this charge distribution and
the corresponding work done W, (r) in this field then go
positive in certain regions of space? The structure of the
force field due to the Coulomb hole charge and the result-
ing correlation potential are discussed in the following
section.

III. CORRELATION POTENTIALS

Prior to discussing the structure of the correlation po-
tential W, (r ) of the work formalism for the He atom, and
in order to explain how it differs from the corresponding
potential p, (r) of Kohn-Sham theory, we give a brief out-
line of the formalism. We then describe the relevant
features of Kohn-Sham theory, and finally compare the
two correlation potentials.

The work formalism

The fundamental quantity in the work formalism
[12,13] is the pair-correlation density g(r, r') of Eq. (2). It
constitutes the quantum-mechanical source charge distri-
bution which gives rise via Coulomb's law to both a local
potential W(r) representing electron correlations and the
electron interaction energy E„. Since the pair-
correlation density is a dynamic (nonlocal) charge distri-
bution which depends upon the electron position, the po-
tential W(r) is obtained as the work done to bring an
electron from infinity to its position at r against the force
field C(r) of this distribution. With the pair-correlation
density written as in Eq. (4), the field C(r) is the sum of
the Hartree CH(r) and exchange-correlation g„,(r) fields,
where

( )
p(r')(r —r') d,

(10)

and the potential W(r) is the sum of the corresponding
Hartree WH(r) and the exchange-correlation W'„,(r) po-
tentials defined as the work

WH(r) = —f CH(r') dl'

W„,(r) = —f C„,(r') dl',

respectively. Now since the electronic density p(r) is a
static charge distribution, the work done in the Hartree
field CH(r) can also be written as

WH(r)= f, dr' . (12)

The differential equation governing the system is then

+ W„,(r) P,.(r)=e, P, (r) . (13)

This is a Sturm-Liouville differential equation, and as
such its solutions form a complete set. Thus the wave
function 4 can, in principle be obtained [20] as an infinite
linear combination of ¹ lectron Slater determinants
4(P,. ] of the spin orbitals P,.(r) corresponding to the oc-
cupied and virtual states of the system:

4=gB;N[P;], (14)

(15)

so that E„is the energy of interaction between the densi-

ty p(r) and the Fermi-Coulomb hole charge distribution

p„,(r, r').
Implicit in the above description of the local potential

representing electron correlations is that the work W(r)
in the force field C(r) is path independent, or equivalent-
ly that the curl of the field vanishes: V X C(r) =0.
The Hartree potential WH (r ) is path independent
since VX AH(r)=0. The exchange-correlation potential
W„,(r) is rigorously path independent [i.e., VXC„,(r)
=0] for symmetrical-density systems, such as spherically
symmetric atoms, jellium metal surfaces and clusters, and
nonspherically symmetric systems in the central-field ap-
proximation. There is as yet no general proof of the path
independence of W„,(r) for systems of arbitrary symme-

try in which the external potential is physically realistic.
However, if there are systems for which the curl of the
force field C„,(r ) does not vanish, a local path-
independent effective exchange-correlation potential

where the 8,. are appropriately chosen coefficients. In the
work formalism, therefore, the wave function is obtained
self-consistently from a force field that is intrinsic to the
system, arising from the pair-correlation density, which
in turn is defined in terms of the wave function. The elec-
tron interaction energy E„, which is the expectation
value of the electron-electron interaction operator in the
Hamiltonian of Eq. (1), is the energy of interaction be-
tween the electronic and pair-correlation densities. With
the latter written as in Eq. (4), the energy E„ is then the
sum of the Coulomb self-energy EH and the exchange-
correlation energy E„,where

p(r)p(r')
d d,

H dr dr'
r —r'/

and
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W'„, (r) may be obtained [12,13] from the irrotational
component of this force field, the solenoidal component
being neglected. Equivalently, the effective potential
W'„, (r) arises from a scalar static effective Fermi-
Coulomb hole charge p'„,(r) =(1/4m. )V C„,(r) so that

0.0

He Atom

efF( ri )
W'„, (r)=f, dr' .

/r —r'/
(16)

The potential W'„, (r) is substituted into the differential
equation Eq. (13) which is then solved self-consistently
for the determination of the wave function. For systems
for which the curl of the force field C„,(r) vanishes, the
effective potential W'„, (r) is equivalent to W„,(r). Thus,
for such systems, the work formalism can also be de-
scribed entirely in terms of the static effective charge
p'„,(r), thereby precluding the requirement of performing
line integrals.

In the approximation when only Pauli correlations are
considered and the wave function is a single Slater deter-
minant of spin orbitals, the system differential equation is
the same as Eq. (13) with W„,(r) replaced by the ex-
change potential W, (r), which is the work done in the
force field of the Fermi hole p„(r,r') as defined in terms
of the Dirac density matrix. The exchange energy E, in
turn, is the energy of interaction between the resulting
density and the Fermi hole charge.

With the Coulomb hole charge p, (r, r') defined as in
Eq. (9), the correlation potential W, (r) is the work done
to move an electron in its force field 8,(r ):

W, (r) = —f C, (r') dl',

where

p, (r, r')(r —r')
C, (r)= ', dr' .

[r—r'/' (18)

The correlation energy E, is then the interaction energy
between the density and the Coulomb hole charge:

E, = —,
' ff, drdr' .

p(r)p, (r, r')
(19)

Correlation potential of the work formalism

To study the structure of the He atom correlation po-
tential W, ( r ) the Kinoshita wave function again was as-
sumed. The structure of the resulting Coulomb p, (r, r'),
Fermi p„(r, r'), and Fermi-Coulomb p„,(r, r') hole charge
distributions is then as determined previously. The re-
sulting exchange g„(r), correlation g, (r), and
exchange-correlation C„,(r) force fields due to these
charge distributions are plotted in Fig. 6. Observe that

Note that this definition differs from the quantum-
chemistry definition of the correlation energy, which is
the difference between the total nonrelativistic and
Hartree-Fock theory ground-state energies. It also differs
from the Kohn-Sham theory correlation energy defined
below. Having described the work formalism, we next
determine the correlation potential W, (r ) for the He
atom.

CO
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FIG. 6. Force fields C, (r), C„(r), and C„,(r) due to the
Coulomb, Fermi, and Fermi-Coulomb hole charges, respective-
ly, for the He atom. The function ( —1/r ) is also plotted.

all the force fields vanish at the origin. This is a conse-
quence of the fact that, for an electron at the nucleus, the
charge distributions p, (r, r'), p„(r,r'), and p„,(r, r') are all
spherically symmetric about it. As such there is no force
field at the position of the electron. The structure of the
correlation field C, (r) in the interior of the atom is simi-
lar to the exchange field C„(r), although it is about an or-
der of magnitude smaller. However, both the fields C„(r)
and 8,(r) are negative throughout space. This is an in-
teresting result since the corresponding source charge
distributions for these fields are strikingly different. The
Fermi hole is negative for all electron positions and there-
fore the field C„(r) is negative throughout. On the other
hand, the Coulomb hole is both positive and negative and
can be substantially one or the other depending upon the
position of the electron. The fact that the correlation
field C, (r) is negative is a consequence of the fact that
the force field depends not only on the structure of the
charge distribution but also on the inverse of the square
of the distance between the charge and the electron.
Thus the part of the charge that lies farther from the
electron contributes less to the field than the charge that
is closer. For example, for an electron at r = 1.5 a.u. , the
positive part of the Coulomb hole [see Fig. 4(b)] is much
larger in magnitude than its negative part. However, the
positive part is localized about the nucleus far from the
electron and therefore its contribution to the force field is
less than that of the negative charge closer to the elec-
tron, with the result that the net force field at the electron
position is negative. This explains why the correlation
field C, (r) is negative. The fact that the Coulomb hole
goes substantially positive for asymptotic positions of the
electron does, however, cause the correlation field C, (r)
to decay far more rapidly than the exchange field 8 (r).
The correlation field C, (r) (see Fig. 6) has essentially van-
ished by r -4 a.u. whereas the exchange field C„(r) de-
cays asymptotically as ( —1/r ). Thus the exchange-
correlation field C„,(r) is asymptotically the same as its
exchange component C„(r), and decays as ( —1/r ).
This asymptotic structure may also be understood to be a
consequence of the fact that the total charge of the



2822 MARLINA SLAMET AND VIRAHT SAHNI

Coulomb hole is zero, whereas that of the Fermi and
Fermi-Coulomb holes is unity, and the fact that all these
charge distributions are localized and essentially static
about the nucleus for asymptotic positions of the elec-
tron.

In Fig. 7 we plot the correlation W, (r), exchange
W„(r)= —

—,
' W//(r), and exchange-correlation W„,(r) po-

tentials. Observe that the potentials all approach the nu-
cleus quadratically, and have zero slope at the origin as a
consequence of the force fields vanishing there. In the in-
terior of the atom, the structure of W, (r) is similar to
that of W (r), but is an order of magnitude smaller.
Note that W, (r) is negative throughout space and mono-
tonic, and therefore positive work must be done to move
an electron against the force field of the Coulomb hole
charge. Since the correlation field 8,(r ) decays rapidly,
the correlation potential W, (r) is also negligible by r -4
a.u. The exchange W„(r ) and exchange-correlation
W„,(r) potentials, however, decay asymptotically as
( —1/r), as they must. This clearly demonstrates that the
exchange-correlation potential W„,(r) of the work for-
malism reduces to its exchange component W„(r) asymp-
totically. Thus the asymptotic structure of the many-
body potential W„,(r) in the atom can be obtained by
solution of the differential equation in the Pauli-
correlated approximation. Furthermore, as a conse-
quence, it is meaningful to compare the highest occupied
eigenvalue of this differential equation to experiment.

Kohn-Sham theory

In Kohn-Sham (KS) theory [15], the ground-state ener-
gy E of Eq. (1), which is a universal functional of the den-
sity p(r) is partitioned as follows:

E[p]=T,[p]+E,„,[p]+EH[p]+E c [p), (20)

where T, [p] is the kinetic energy of a system of nonin
tera@ting electrons having the same density distribution
as the interacting system, E,„,[p]= jv,„,(r}p(r)dr is the
expectation of the external potential, E~ is the Coulomb
self-energy of Eq. (15), and E„, [p] is the Kohn-Sham
theory exchange-correlation energy. Thus E„, [p] differs
from the quantum-mechanical definition of the
exchange-correlation energy E„, of Eq. (15) in that as a
result of the above partition it also accounts for the
correlation contribution T, [p] to the kinetic energy.

On application of the variational principle for the ener-
gy to the energy functional of Eq. (20) for arbitrary varia-
tions of the density, the Kohn-Sham differential equation
is obtained:

I—
—,'V +v,„,(r)+ f ~,

~

dr'
r —r'

+p„,(r) P;(r)=e;P;(r), (21)

where the Kohn-Sham exchange-correlation potential
p„,(r ) is the functional derivative of E„, [p]:

p„,(r)=5E„, [p]/5p(r) . (22)

p(r)=(ejg; f x gr, —r) ejqt, j)=x lp, (r)l' .
1

(23)

Thus the potential p„,(r) contains the efFects of T, [p] in
its structure. The ground-state density of a closed-shell
system is then obtained from a single Slater determinant
4{/; ) of the lowest occupied orbits P; (r) of the Kohn-
Sham differential equation:
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With the orbitals P;(r) and density p(r), the total energy
is then determined from Eq. (20). The highest occupied
eigenvalue [21] of the difFerential equation in turn gives
the negative of the removal energy. The functional
E„, [p] and consequently the potential p„,(r) are at
present unknown. However, for an assumed wave func-
tion and thereby known ground-state energy and density,
the corresponding Kohn-Sham orbitals P;(r), eigenvalues
e, , exchange-correlation energy E„, [p), and potential
p„,(r) can all be determined [16,22).

Analogous to the quantum-mechanical definitions, the
exchange-correlation energy E„, [p] can also be thought
of as the energy of interaction between the density p(r)
and the Kohn-Sham Fermi-Coulomb hole charge
p„, (r, r'). This hole charge, however, difFers from the
quantum-mechanical hole in that its structure also in-
corporates the correlation contribution to the kinetic en-
ergy. The Kohn-Sham hole charge is defined in terms of
the electron-electron-interaction coupling constant A, in-
tegral as [23]

0.01 0.1 1
r (a.u. )

10
1f d&gq(r, r') =P(r')+P~s(r, r'),

0
(24)

FIG. 7. Work formalism correlation W, (r), exchange W„(r),
and exchange-correlation W„,(r) potentials for the He atom.
The function {—1/r) is also plotted.

where gz(r, r') is the pair-correlation density of a hy-
pothetical system in an external potential U,„,„(r) chosen
such that the ground-state density p (r)
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= (0'i ~p;5(r; —r)~%'&) is identical with the true density
p(r) for all values of the constant A, . Due to the complex-
ity of its definition p„, (r, r') has not been determined
even for simple nonuniform systems for which the density
is known via an accurate wave function.

Since in Kohn-Sham theory the density is obtained
from a single Slater determinant, it is meaningful [24] to
further partition the energy E„, [p] into its exchange
E„[p] and correlation E, [p] components. The ex-
change energy E„[p]is then defined as the energy of in-
teraction between the density p(r) and the Kohn-Sham
Fermi hole p„(r,r'), where in turn the latter is defined in
terms of the idempotent Dirac density matrix formed
from the Kohn-Sham orbitals P;(r). However, since the
functional dependence of p (r, r') on p(r) is unknown,
the functional derivative p„(r)=5E„[p]/5p(r) is also
unknown. The correlation energy E, [p] is similarly
defined in terms of the density and the Kohn-Sham
Coulomb hole p, (r, r'), but with the correlation contri-
bution T, [p] now incorporated in these components of
the energy and hole charge distribution. Once again, the
functional derivative p, (r) =5E, [p]/5p(r) is unknown.
{It is also possible to partition E„, [p] in terms of the ex-
change energy (and the resulting correlation energy)
defined [24] as that obtained from exchange-only Kohn-
Sham theory. The corresponding exchange potential is
then that obtained by the optimized-potential method
[25]. In the present work we do not employ this latter
definition. )

p, (r)=@+ + —— dr' —p (r),V'4 2 p(r')
Ir —r'I (25)

where the Kohn-Sham orbital P(r) = [p(r)/2]'~, the ei-
genvalue e is taken to be the first ionization potential
[26], and the expression for the exchange potential p„(r)
is the same as W (r) discussed previously.

A plot of the potential p, (r) for the density corre-
sponding to the Kinoshita wave function is given in Fig.
8. For purposes of comparison we include in this figure
the potential W, (r). Observe (see inset) that p, (r) also
approaches the nucleus quadratically and has zero slope
at the origin. As is known, p, (r) is not a monotonic
function and goes positive at «-0.3. a.u. , and then de-
cays as a positive function. In recent work [27], however,
the use of a 491-term correlated wave function shows
that p, (r) goes negative for r )4 a.u. and vanishes
asymptotically as a negative function. The potential
p, (r) as determined by the Kinoshita wave function also
goes negative but for these asymptotic positions of the

Correlation potential of Kohn-Sham theory

The correlation potential p, (r) for the He atom for an
assuined density p(r) can be determined either by the
methods of Ref. [22] or as in the original work of Alm-
bladh and Pedroza [16]. We follow the latter procedure
whereby p, (r) is obtained by inversion of the Kohn-Sham
differential equation Eq. (21):
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FIG. 8. Correlation potentials W, (r) and p, (r) of the work
formalism and Kohn-Sham theory, respectively, for the He
atom. The ansatz 5T, /5p= p, (r) —8', (r) is also plotted. The
inset is on a logarithmic scale to indicate the structure near the
nucleus of the atom.

electron its accuracy is obviously not as great. In con-
trast, W, (r) is monotonic and always negative. Further-
more, in the interior of the atom the potential p, (r) is
less at tractive than W, ( r ).

It is thus evident that the structure of the Kohn-Sham
Coulomb hole p, (r, r') is different from that of the
quantum-mechanical Coulomb hole p, (r, r') described in
the previous section. It is, however, dificult to infer the
structure of p, (r, r') from that of the potential p, (r) via
Coulomb's law. This is because the potential W, (r)
determined as the work done in the force field of either

p, (r, r') or p, (r, r') does not [12,28] satisfy the Kohn-
Sham theory correlation sum rule [29]

E, [p]+fdrp(r)r Vp, (r)= —. T, [p](0. (26)

On substitution of either of the above W, (r) for p, (r)
into the sum rule, the left-hand side vanishes. This im-
plies that the contribution of T, [p] to p, (r, r') and thus
to p, (r ) cannot be described by Coulomb's law, or,
equivalently, the components of p, (r, r') due to T, [p] do
not contribute to the resulting force field. (They do, how-
ever, contribute to the Kohn-Sham correlation energy
E, [p ].) Now the potential W, (r ) due to the Coulomb
hole p, (r, r') is strictly representative of Coulomb corre-
lations whereas p, (r) includes in addition the correlation
contribution T, [p] to the kinetic energy. [This is con-
sistent with p, (r) being less attractive than W, (r).] Thus
it is reasonable to assume that the difference

[p, (r) —W, (r)] is a good approxiination to 5T, [p]/
5p(r), the contribution of T, [p] to p, (r). The result of
this ansatz for 5T, /5p is also plotted in Fig. 8. Observe
that it is of the same order of magnitude as p, (r), and
also not monotonic. It is, however, positive over the en-
tire range of the figure. The fact that 5T, /5p is a
significant fraction of p, (r) is refiected in the correspond-
ing values of the energies T, [p] and E, [p]. From Eq.
(20), E, [p]= —0.0422 a.u. whereas from Eq. (19) of the
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work formalism E,= —0.0787 a.u. Once again, since the
exchange energies of Kohn-Sham theory and the work
formalism are the same, we have T, [p]=E, [p]

E—, =0.0365 a.u. This value for T, [p] is the same as
that determined by Ludena et al [3.0] by means of local
scaling transformations.

For completeness we note that Levy and Perdew [29]
(1985) have provided explanations for the nonmonotoni-
city and positiveness of the Kohn-Sham correlation po-
tential p, (r). For a tightly bound closed-shell atom they
show that to leading order (e ) in the electronic charge e
in perturbation theory, the integral term in the sum rule
Eq. (26) vanishes, and thus p, (r) cannot be monotonic
since p(r) is everywhere positive. The value of the in-
tegral turns out to be 0.0057 a.u. , which is small. To ex-
plain that p,,(r) goes positive in certain regions of space,
they employ the theorem [21] that the highest occupied
eigenvalue of the Kohn-Sham differential equation is the
negative of the first ionization potential. On comparing
the highest occupied eigenvalue of exchange-only Kohn-
Sham theory to the ionization potential they find that the
former is more negative than the latter for many atoms.
Thus, in order to satisfy the ionization potential theorem,
they conclude that the expectation value of p, (r) taken
with respect to the highest occupied orbital is often posi-
tive. The present analysis shows the physical source of
the nonmonotonicity and positiveness of p, (r) to be the
correlation contribution to the kinetic energy. The pure-
ly Coulomb correlation component of p, ,(r) is well de-
scribed by W, (r) just as the exchange potential p (r) of
Kohn-Sham theory is well described [12,13] by W (r).

IV. CONCLUSION

In this paper we have investigated Coulomb correla-
tion effects in the He atom by studying the structure of
the static and dynamic Coulomb hole charge distribu-
tions as determined by the correlated wave function of
Kinoshita. The static Coulomb hole, which is defined in
terms of the radial electron-electron distribution func-
tion, shows that due to Coulomb repulsion there is a de-
crease in probability that the two electrons will be
separated by a distance less than 1 a.u. , and an increase in
this probability for greater separations. The dynamic
Coulomb hole, which is defined directly in terms of the
pair-correlation density, describes the probability of
finding one of the electrons, given the position of the oth-
er. In contrast to the Fermi hole, which is negative over
the entire region of the atom irrespective of electron posi-
tion, the dynamic Coulomb hole is both negative and pos-
itive. At and about the test electron, the Coulomb hole is
always negative, indicating the reduction in density about
it due to Coulomb repulsion. The positive part of the
Coulomb hole then gives the positional probability of the
other electron. By studying the structure of the dynamic
Coulomb hole as a function of electron position, we have

explained how the two electrons are correlated as a func-
tion of the nonuniform density of the atom.

We have also investigated the structure of the correla-
tion potential W, (r ) of the work formalism as determined
by Coulomb's law from the dynamic Coulomb hole
charge distribution. Although the structure of the
Coulomb hole is strikingly different from that of the Fer-
mi hole, the structure of W, (r) is similar to the exchange
potential W, (r) due to the Fermi hole: it is negative, has
zero slope at the nucleus, and is monotonic, but is an or-
der of magnitude smaller. Since the total charge of the
Coulomb hole is zero, and because it is principally posi-
tive and localized about the nucleus for asymptotic elec-
tron positions, the potential W, (r) decays rapidly in this
region. Thus the asymptotic structure of the exchange-
correlation potential W„,(r) is that of the exchange po-
tential W (r) which is (

—1/r) The. se results then affirm
that the asymptotic structure of the many-body potential
W„,(r) can be obtained by solution within the Pauli-
correlated approximation of the work formalism.

The structure of W, (r) also sheds light on the physics
underlying the structure of the correlation potential p, (r )

of Kohn-Sham theory. The latter potential contains in
addition the correlation contribution T, [p] to the kinetic
energy and is thus less attractive. Further, it is not
monotonic as it goes positive within the atom and then
becomes negative again in the classically forbidden re-
gion, vanishing asymptotically as a negative function.
Since the potential W, (r) is strictly representative of
Coulomb correlations and is everywhere negative and
monotonic, the nonmonotonically and positiveness of the
Kohn-Sham correlation potential p, (r) can be attributed
to the correlation kinetic energy. (Note that for the He
atom the Kohn-Sham theory and work formalism ex-
change potentials are the same, being negative and mono-
tonic. )

Finally, since accurate Monte Carlo —generated wave
functions for atoms up to 20 electrons are now being
determined, similar studies of the Coulomb hole and
correlation potentials within the framework of the work
formalism and Kohn-Sham theory can be performed.
Simultaneously we also propose to determine the wave
function by self-consistent solution of the work formalism
differential equation. A comparison with the Monte
Carlo —generated results would then provide an estimate
of the number of configurations required to achieve the
same degree of accuracy.
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