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Classical and quantum Malus laws
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The classical and the quantum Malus laws for light and spin are discussed. It is shown that
for spin —,the quantum Malus law is equivalent in form to the classical Malus law provided the
statistical average involves a quasidistribution function that can become negative. A generalization
of Malus's law for arbitrary spin s is obtained in the form of a Feynman path-integral representation
for the Malus amplitude. The classical limit of the Malus amplitude for s -+ oo is discussed.
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I. INTRODUCTION II. QUANTUM MALUS LAW

The classical Malus law predicts an attenuation of a
polarized light beam through a linear polarizer. This
attenuation depends on the relative angle o, between the
polarization direction a of the incoming wave and the
orientation a' of the polarizer. According to Malus's law
the attenuation of the light intensity is just cos o.. If
the incoming beam consists of a statistical mixture of
polarized light, the probability to go through a linear
polarizer is

p = dOP, ~ A cos o..

In this formula the integration is over all possible angles-
of the random polarization direction a described by a
solid angle 0 = (8, P) and the classical distribution func-
tion P,~(O) characterizes the statistical properties of the
incident light beam polarization.

It is the purpose of this paper to discuss the quan-
tum Malus law for spin systems. Entangled spin cor-
relations provide examples of such systems. We show
that, in general, the quantum Malus law is equivalent
in form to the classical Malus law provided the statisti-
cal average involves a quasidistribution function that can
become negative. A generalization of the Malus law for
an arbitrary spin-8 system is obtained. Using a Feynman
path-integral representation for the Malus amplitude, the
relation between Malus's amplitude and the Malus law is
obtained in the limit of 8 ~ oo. The classical limit of the
Malus law is discussed and classical equations of motion
for spin systems are derived. The motivation for the dis-
cussion of the Malus law for higher spins comes &om the
fact that systems involving higher-spin states or many
particles exhibit very strong quantum correlations [1,2].

*Permanent address.
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where the solid angle 0 characterizes the spin orientation
on a unit sphere (the Bloch sphere).

The quantum amplitude for the transmission of such
a spin state through a Stern-Gerlach apparatus is A =
(A~a') and the probability is just the quantum Malus
transmission function

p = iAi2 = cos' —,2'

where

cosn = cos9cos9'+ sinesin0'cos(P —P') (4)

is the relative angle between the spherical orientation 0
of the detected state (2) and the spherical direction 0'
of the Stern-Gerlach polarizer. Photons and spins difFer
in this formulation by a factor 2 in the relative angle
involved in the Malus law.

Following the classical Malus law for an unpolarized
light beam (1), one can write the following probability for
an arbitrary mixed state of the spin-2 system detected
by the Stern-Gerlach apparatus:

p= dQP 0 cos 2' (5)

The function P(A) plays the role of a statistical distribu-
tion for an arbitrary beam of spin-2 particles. In quan-
tum mechanics one deals with probability amplitudes
rather than probabilities and one should sum these am-
plitudes first, before squaring the result. Malus's ampli-

In quantum mechanics a similar Malus law holds for
spin-& particles detected by a Stern-Gerlach apparatus
oriented in the direction ~a'). An arbitrary pure state of
the spin 2 can be written as a linear superposition of the
up ~+) and down

~

—) spin states
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tudes can be derived in such a way [3]. Nevertheless, the
formula (5) is valid in quantum mechanics if the quantum
mechanical distribution P(O) is a quasidistribution. The
quantum quasidistribution function is associated with an
arbitrary density matrix p of the spin- 2 system in the fol-
lowing way:

P(O'; Ob) = —h~ l(O' + O'b)— (10)

Formula (9) has the forrnal structure of a hidden variable
theory. In such a theory the joint probability function is
calculated &om the expression

p= dOP O O O. (6) p(o, ;tt) = f ttA f dAt P(A;Ab) t(pt, A ) t(b, At), (11)

In this expression the diagonal weight function P(O) is a
quantum quasiprobability distribution and accordingly
contains all the statistical information about the spin
state. This formula is similar in its structure to the diag-
onal Glauber P representation for a harmonic oscillator if
coherent states are used [4]. For spin 2 the corresponding
spin coherent states (SCSs) are given by unit directions
(2) on the Bloch sphere. From the properties of the SCSs,
one concludes that the quasidistribution function is nor-
malized f dOP(O) = 1, but in general it is not positive
definite or unique [5]. For example, for the up and the
down spin states Ik&, the corresponding quasidistribu-
tions are P~(O) =

4 (1 ~ 3 cos 0). These functions can
take up negative values that indicate the quantum char-
acter of these states. As another example, the incoherent
(mixed) state of the spin system described by the den-
sity matrix )0 =

2 I+)(+I+ 2 I

—
& {—I

leads to a distribution
that has a purely classical behavior corresponding to a
uniform distribution of directions on the Bloch sphere,
i.e. , P(O) = —' [6].

The quantum character of the negative quasi-
probability is seen best for correlations involving a den-
sity operator for an entangled Einstein-Podolsky-Rosen
state [7]. For such a correlated system of two spin-2
particles, labeled by indices a and 6, the singlet wave
function is

(12)

where 7- = 20e '& and S~ are the spin-8 ladder operators.
The SCSs form an overcomplete set of states on the Bloch
sphere

dOO O =I. (13)

where P(A; Ab) describes the distribution of some hid-
den variables A and Ab and the objective realities of
the spin variables are given by the deterministic trans-
mission functions t{a,A ) and t(b, Ab) through the Stern-
Gerlach apparatus. It is clear that the quantum mechan-
ical formula (9) has the form of a hidden variable theory
with the local spin realities given by cos n(O, O') and
cos ot{Ob, Ob). In such a theory the hidden parameters
are represented by "hidden angles" on a Bloch sphere and
are distributed according to Eq. (8) or (10). There the
analogy ends because the quantum distribution of these
"hidden directions" is given by a nonpositive function
that leads to the failure of Bell's inequalities for such an
entangled state.

The SCSs and the quantum Malus law (5) can be gen-
eralized to an arbitrary spin 8. The spin-8 coherent states
are obtained by a rotation of the maximum down spin
state Is, —s) [9]:

The corresponding quasidistribution function has the
form [8]

Using these formulas, it is easy to calculate Malus's quan-
tum amplitude and the probability for a transmission of
such a state through a Stern-Gerlach apparatus. As a
result one obtains

1P(O; Ob) = [1 + 9 cos 0 cos Ob
4vr 2

+9 sin 8 sin eb cos(P —Pb].
p = I(OIO')I' = cos— (14)

The quantum Malus law (5), if applied to the joint
correlations involving two Stern-Gerlach detectors (with
directions a and b), provides the following joint probabil-
ity for detection:

with a straightforward generalization involving an arbi-
trary quasidistribution function P(O) for a density op-
erator of a system with arbitrary spin 8. This quantum
mechanical expression for the transmission function pro-
vides a generalization of the spin-2 Malus law (3) to the
case of an arbitrary spin-s system.

x cos cK(Ot11 O~) cos ck(Obt Ob). (9) III. PATH-INTEGRAL FORM
OF MALUS'S LA%

This correlation function evaluated with the expression
(8) leads to the well known quantum mechanical result
for the joint spin correlation: p(a; 6) = 2(1 —a 6)
The distribution function (8) is not unique because the
same result is reproduced if one uses the quasidistribu-
tion function

This quantum Malus law for arbitrary spin is well
suited to study the relation between classical and quan-
tum features of the transmission function. In quantum
mechanics the primary object is the probability ampli-
tude for the transmission of a SCS IO) through a Stern-
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Gerlach apparatus la) characterized by a solid angle 0'.
This probability amplitude is A = (O[O') and can be
cast into a path-integral form exhibiting various quan-
tum paths contributing to the transition. Following the
basic idea of path integration [10], one can evaluate the
Malus amplitude by dividing the spin trajectories on the
Bloch sphere into infinitesimal subintervals lQ, ), where
i = 1, . . . , N with 00 ——0' and O~ ——O. Using the de-
composition of unity for the SCS for each subinterval and
the infinitesimal form of the Malus amplitude (0;lO, i),
one obtains

X=fdn, ' '
dn,

'
4m' 4'

N

x exp is) (P—; —P, i) cos9;
4=1

In the limit of N ~ oo, this expression can be written in
the form of the spin Feynman path integral

1- 1-
qi, 2 = q+ q) p1,2 = p+ p.

2s 2s (21)

In the limit of s —+ oo, the path integrals with respect
to 27q and 'Vp can be performed, leading to functional
Dirac's functions, and the entire expression for the prob-
ability simplifies to

lution before the particle has reached the Stern-Gerlach
apparatus.

In order to see the connection with the quantum Malus
law (5) and the classical Malus law (1) one can investi-
gate the properties of Malus's transmission function in
the classical limit corresponding to s ~ oo. The transi-
tion from quantum amplitudes to classical probabilities
can be carried out, if the four path integrals can be sim-
plified. In configuration space the classical limit of the
path integral can be investigated using a suitable change
of variables [11]. In the case of the path integral for
Malus's probability this change of variables is

2. +1si= f Drq s'xp —is ddccsq
4vr

(16)

where PO is the functional path-integration measure over
all spin trajectories connecting lA') with [O) on the Bloch
sphere. This path-integral representation of the quantum
Malus law can be cast in a more familiar form if the
spherical angles are identified with the canonical position
and the canonical momentum in the following way: qti ~
q, cos 0 ~ p, and dO = dgdcoso ~ dqdp. Using these
variables we can rewrite the path integral (16) in the form

Vqzp ( i
(qlq') =

2vrh ( h,
expl —— dqp ~.

The Malus probability for the spin-s transition of the
state lB) through such a Stern-Gerlach apparatus can be
expressed as a product of four path integrals

2s+ 1
Vq2 Vp2

2s+ 1

4m

x exp [i8(qi, pi) —iS(q2, p2)],

where the classical action is

1
S(q, q) = s J qdq+ — qddi (20)

In this expression a classical Hamiltonian '8 has been
added in order to describe a possible dynamical time evo-

2s+1
si = f VqVp sxpl is pdq-

4m ( )'
which is the spin analog of the phase-space path integral
for the following quantum mechanical amplitude in the
configuration space:

lies ~A~' = fVq
1 PR) ~. 1 ct'R~

Vpb q —— bi p+—

(22)

This expression shows that in the classical limit, the spin-
s Malus transmission function reduces to a classical dy-
namics on the Bloch sphere with the following canonical
equations of motion:

P = {P,R},. 0 = {0,'R}. (23)

Prom the reduced path-integral formula (22) one obtains
that the Poisson bracket of the classical dynamics is
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In these equations one recognizes the classical equations
of motion of a particle con6ned to a sphere. The Poisson
bracket in this case has a typical structure for a curved
phase space associated with the Bloch sphere [12].

If the Malus law is applied to an arbitrary spin-s sys-
tem described by a quasidistribution function, in the
limit s ~ oo the expression (22) corresponds to a classi-
cal statistical mechanics on a unit sphere. These classical
trajectories are distributed with a classical distribution
function P,i(O) emerging from P(A) in the limit s -+ oo.
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