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Distributions of delay times and transmission times in Bohm's causal interpretation
of quantum mechanics
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In Bohm s causal or trajectory interpretation of quantum mechanics, it is straightforward to deter-

mine, from a sufficiently large number of calculated particle trajectories, probability distributions for
time delays caused by a potential barrier, or for transmission times through a barrier. We show that
these distributions can be calculated directly and more efficiently from probability currents, without the
calculation of Bohm trajectories as an intermediate step. The ideas are illustrated for Gaussian wave

packets incident on a square potential barrier and used to explain why average causal delay times differ

from the average delay times calculated in other approaches.

PACS number(s): 03.65.Bz, 73.40.Gk, 05.60.+w

I. INTRODUCTION

Consider an ensemble of N single-particle scattering
experiments. In each experiment, a particle is launched
at t =0 in the normalized state g(z, t =0}from the left of
and at normal incidence to a potential barrier
V(z)8(z)8(d —z) which varies only in the z direction.
(The Heaviside unit step functions 9 ensure that the bar-
rier is confined to 0 ~ z ~ d. ) Beyond the barrier is an ideal
detector that responds if and only if the particle reaches
the plane z=b )d, recording the arrival time t(b). The
initial centroid zo = ( f'(z, O)zg(z, O) ) of the wave packet
is chosen far enough to the left of the barrier that the in-
tegrated probability density from z =0 to ~ is negligibly
small compared to the transmission probability lTl .
Then, for sufficiently large N, the % experiments give
good estimates for both the transmission probability

5N (t(b) — t(b)+ }T' 2' 2

NT5t(b)
(2b)

where j(z, t) =—(A/m )Im[g'(z, t)t}Q(z, t)/Bz] is the proba-
bility current density, XT is the total number of triggered
detectors, and 5NT(t (b) —5t(b)/2, t (b)+5t(b)/2)/NT is

the fraction of these for which the recorded arrival time
lies within +5t(b)/2 of t(b). [5t(b) must be small
enough that j (b, t(b)) varies slowly with t (b) on the scale
of 5t(b) Aderivatio. n using Bohmian mechanics of (2a},
clearly showing its range of validity, is given in [2].]

Several other characteristic times for the one-
dimensional scattering of wave packets have been intro-
duced into the theoretical literature [3]. It is widely

l

Tl'= hill J d l—qz( t)zl'=
t —+co d X

and the distribution of arrival times for transmitted parti-
cles [1,2]

j (b, t(b))

r(o, d)=lTl rT(o, d)+lRl ri, (0,d), (4)

involving mean transmission and refiection times rT(O, d)
and rtt(O, d), respectively. (Here lR l

=1—
l Tl is the

refiection probability. ) Many, including us, believe that
this cannot be meaningfully done within conventional in-
terpretations of quantum mechanics.

One approach that leads to further characteristic times
without bending the rules of orthodox quantum mechan-
ics, is to study the efFect of the barrier on the mean time
spent by the particles in a much larger spatial range
a &z & b containing the barrier. For this purpose a
second ensemble is introduced, identical to the one con-
sidered above except that V(z) is zero everywhere. [We
label all quantities associated with this ensemble of freely
evolving particles with a superscript (f).] Jaworski and
Wardlaw [4] use the mean dwell times for the two ensem-
bles to define the mean delay time for the region a & z & b
as

b r(a, b) =r(a, b) r'f'(a, b)—.

In a similar vein, they define the mean delay time for
transmitted particles arriving at z =b & d by

b, r'T '(b)= lim r' '(b, z2)—
g2 —+ oo

They then use

hr(a, b) = l Tl br' '(b)+ lR l
br'z '(a, b)

agreed that the mean dwell time or sojourn time r(z„z2),
defined as the average time spent subsequent to t =0 in
the region z, &z &z2 by particles with initial wave func-
tion P(z, O), is correctly given by the expression

( )=J dt J d ly(, t)l'. (3)
1

On the other hand, a great deal of controversy has
stemmed from attempts to decompose r(0, d), the mean
dwell time for the barrier region, into "to be transmitted"
and "to be rejected" components according to
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to obtain the mean delay time b,rz '(a, b) for refiected
particles. Equation (6) involves the assumption

~

T' '~ = 1. This assumption is not true in general; for ex-
ample, an initial Gaussian wave packet with zero mean
velocity has

~

T'f'~ =1/2, and, strictly speaking, any
Cxaussian wave packet has ~T' '~ (1. But the difference
1 —~T'f'~ can be made arbitrarily small by making the
spread of momentum of the wave packet sufficiently
small compared to the average momentum. Taking
~T'f'~ =1 is an excellent approximation for the cases
considered below. The expressions for b,v'T '(b) and
b,r(a, b) in the limits a~ —~ and b~+ ~ in general
depend on the arguments b or a and b, respectively.
However, if the potential barrier is symmetric about
some point z=z', then b,r(a —+ —oo, baz oo ) is indepen-
dent of a and b if the natural restriction b —z'=z' —a is
adopted. It is clear from the analysis of Jaworski and
Wardlaw that attempts to localize the entire transmission
time delay to the barrier region, for example by defining
the mean transmission time rT(O, d) to be r' '(O, d)
+ b, r'T '(b), are not justified.

Jaworski and Wardlaw [5] also extended the method of
analysis of Hauge, Falck, and Fjeldly [6] to define mean
transmission and reAection time delays based on the ar-
rival times of the centroids of wave packets at z =b and
z =a, with and without the barrier. They found that the
two approaches give identical results for wave packets
with vanishingly small dispersion in energy, but in gen-
eral lead to different results.

Although Jaworski and Wardlaw suggested the desira-
bility of extending their work to distributions of transmis-
sion and reAection delays, this has not been done. The
approach based on the work of Hauge, Falck, and Fjeldly
[6] involves the time evolution of the centroids of in-
cident, rejected, and transmitted wave packets at small
or large times. Since each of these centroids is by
definition the same for each member of the ensemble, it is
clear that this approach cannot be extended to the calcu-
lation of distributions. To see the difficulties involved in
calculating distributions in orthodox quantum mechan-
ics, consider how to interpret the results of two indepen-
dent scattering experiments, each of N trials, one with a
barrier and the other without a barrier, but otherwise
identical. The data consist of Xz arrival times
It;(b)~i=1, . . . , NT] for the "withbarrier" ensemble and
Ng' arrival times [t' '(b)~ j= 1, . . . , Np] for the refer-
ence or "without barrier" ensemble. How does one con-
struct a set of transmission time delays from the XT ar-
rival times t,.(b) and the larger number Ng' of reference
arrival times t'. ', faced with the impossibility of experi-
mentally correlating a given t;(b) with a particular
t'.f'(b)? (This question is related to the problem of con-
structing a joint probability distribution for t, (b) and
t~'f'(b), given only the individual (or marginal) distribu-
tions for t;(b) and t' '(b). Even in classical probability
theory this cannot be done in general [7].) Consistent
with the inherent randomness of conventional quantum
mechanics, one might try to pair every measured result
for one ensemble with every one of the other, assigning
equal weight to every pair. This leads to the set
[bt; (b)=t;(b) —t'f'(b)~i=1, . . . , NTj =1, . . . , N j''] of

NTN j'' individual transmission time delays with which to
generate the desired distribution. This is consistent with
the approach of Jaworski and Wardlaw for the mean
transmission time delay. But now consider the case in
which V(z) goes to zero. Since time delays for the finite
barrier case are attributed solely to the presence of the
barrier, it seems logical to require that time delays should
be zero for a barrier of zero height, as is the case classi-
cally. But the above quantum prescription obviously gen-
erates a distribution of time delays of nonzero width for a
barrier of zero height, even though the mean transmis-
sion time delay hr'T '(b) is zero.

Rather than abandon the concept of delay time distri-
bution altogether, we think it worthwhile to take a fresh
look at it from the point of view of Bohm's causal or tra-
jectory interpretation of quantum mechanics [8—11].
Since the concept of delay time is fundamentally different
within this interpretation we use a new name, causal de-
lay time, to make this clear. In the next section, we
briefly introduce the relevant parts of Bohm's interpreta-
tion, then define the causal transmission delay time.
Then we discuss an efficient way to calculate these distri-
butions without calculating Bohm trajectories, and apply
this technique to several examples.

To reduce the number of subscripts needed to distin-
guish all the different types of times we discuss, we allow
the meaning of the symbol t( ) to depend on the number
of arguments. Thus, for example, t(b) denotes the time
of arrival at z =b with a barrier potential present and
t'f'(b) the time of arrival of a free particle (no barrier);
b, t(b) denotes the delay time, the difference between the
arrival times with and without a barrier; t(a, b) denotes
the dwell time, the time spent in the region z =a to z =b;
and bt(a, b) denotes the difFerence in dwell times with
and without a barrier. The symbol r( ) is used similarly
for average values. Subscripts T and R on ~ indicate
averages for transmitted or rejected particles only.

II. BOHM'S INTERPRETATION OF QUANTUM
MECHANICS AND CAUSAL DELAY TIMES

within Bohm's causal "hidden variable" interpretation
of nonrelativistic quantum mechanics [8—11],a quantum
entity such as an electron is a particle with, at each in-
stant of time, a well-defined position and velocity causally
determined by an objectively real (complex-valued) field

f(z, t) Althou. gh this basic postulate is completely con-
trary to the fundamental tenets of conventional quantum
mechanics, it leads to the same results for all experimen-
tally observable quantities when augmented by the fol-
lowing three secondary postulates: (1) the guiding field
g(z, t) satisfies the time-dependent Schrodinger equation
(TDSE); (2) when the particle is at the position z at time t
its velocity is given by

0(z, t) = i(z, t)
(g)

(3) the quantity
~ g(z, t)

~
dz is the probability of the parti-

cle being between z and z+dz at time t even in the ab-
sence of a position measurement. For a particle prepared
at t =0 in the state described by f(z, O), uncertainty
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enters only because the initial position of the particle is
not known precisely. If the initial position is z' ' then the
subsequent trajectory z(z' ', t ) is uniquely determined by
simultaneous integration of' the TDSE and the guidance
equation dz (t) Idt =U(z, t) l, —,~,~.

We now consider the various characteristic times dis-
cussed in the Introduction from the point of view of
Bohm's causal approach to quantum mechanics [12].
Bohm trajectories, although unobservable or hidden, are
to be interpreted not as abstract mathematical constructs
but as possible particle trajectories, one of which the par-
ticle actually follows in a given scattering experiment.
Hence the methods of classical statistical mechanics can
be applied to an ensemble of such scattering experiments
using the possible particle trajectories [z(z' ', t)l —00

(z' '( oo] appropriate to the initial state f(z 0) and
barrier potential V(z). For a particle that is at z =z' ' at
t =0 the time spent thereafter in the region z

&

~ z (zz is
given by the classical stopwatch expression

t(z„z;z' ')= f dt f dz 5(z z(z' ', t))—.
0 zi

(9)

~T(z„zz)=,f dt f dz lg(z, t) l'8(z —z, (t)},
T

(13)

1 ~ z,
r~(zi, z2)= f dt f dzlg(z, t)l 8(z, (t) —z) .

R 0 zi

(14)

For these average quantities it is sufBcient to calculate a

The mean dwell time is then given by

~(z„z, ) =f" dz"'ly(z"', 0)l'r(z, ,z„z"') . (1O)

There is no integration over initial momenta p' ' in these
expressions because p' '=mv' '=mj(z' ', 0)/lg(z' ', 0)l
is uniquely determined by z' ' for given g(z' ', 0). Insert-
ing Eq. (9) into Eq. (10) and noting that

lg(z, t)l2= f dz'0'lg(z' ', 0)l 5(z —z(z' ', t))

immediately gives the expression (3) for the dwell time.
A crucial property of Bohm trajectories z(z' ', t) with

different z' ' is that they do not intersect each other
[11,12]: if z,.' 'Wz' ', then z(z, ' ', t)Az(z' ', t) for any t
This fact allows the probability density lg(z, t)l for a
scattering experiment to be decomposed at any time t )0
into components lP(z, t)l 8(z —z, (t)) and lg(z, t)l 8(z, (t)
—z) associated with transmission and re6ection, respec-
tively. (See Fig. 1 of Ref. [2] for an example. ) The bifur-
cation curve z, (t) separating transmitted trajectories
from reflected ones is the Bohm trajectory z(z,' ', t ) given
implicitly by

ITI'= f „,dzl@(z, r}l' (12)

with z,' '=z, (0). The mean dwell time r(zi, z2) given by
Eq. (3) is readily decomposed into components associated
with transmission and reflection, as in Eq. (4). The re-
sulting mean transmission and reflection times are given
by

single Bohm trajectory, namely z, (t) T. he most straight-
forward way to calculate numerically the distribution of
transmission times,

is to construct a histogram by computing a large number
of trajectories z(z' ', t) with z' '&z,' ', and for each tra-
jectory adding the weight lg(z' ', 0)l to the histogram
channel determined by t(zi, zz, z' '). A more efficient nu-

merical method is discussed in the next section.
Equation (9) for the dwell time automatically takes into

account the possibilities that a given particle never enters
the region of interest or that it enters the region more
than once. These possibilities are not so easily dealt with
in calculations of arrival times and delay times. We con-
sider the concept of the time of arrival t(z' ';b) of a parti-
cle at the point z =b to be meaningless if the particle fol-
lowing its trajectory z(z' ', t ) never actually reaches z =b
for t &0. We do not consider t(b;z' ') for such a trajec-
tory to be + ~; if this were the case then the mean ar-
rival time at a point b &d would in general be infinite.
We exclude such trajectories from the outset by consider-
ing for b )d only those for which b &z' '&z,' '. This in-

volves the implicit assumption that a reflected particle
never reaches a point z in the region of zero potential
z & d and that a transmitted particle with z' ' &z arrives
there once and only once. Within Bohm's interpretation,
this is equivalent to the assumption that j(z, t) is non-
negative for z + d. If this is indeed the case, then the ar-
rival time distribution at z =b & d is given by [2]

P(t(b)}= ~ ' (b &d) . (16)

If for some particular case j (b, t) becomes negative for
b «d and t &0 then Eq. (16) is no longer applicable, and
reentrant trajectories must be allowed for in the analysis.
The analysis along the lines of [2] necessarily becomes
complicated. A negative value of j(b, t) implies trajec-
tories are crossing z =b from right to left. For the cases
we consider, all but a negligible number of trajectories be-
gin to the left of z =b at t =0, so trajectories associated
with negative j (b, t) must have crossed z =b from left to
right at least once at some earlier time. If we wish to cal-
culate delay or dwell times for such trajectories, we must
keep track of the entire history of these trajectories. One
way to do this is outlined below.

In conventional interpretations, all particles belonging
to the "with barrier" and "without barrier" ensembles
are identical at t =0, because they are described by the
same initial wave function g(z, o). Within Bohm s causal
interpretation, however, complete specification of the ini-
tial state of the particle a1so requires its initial position
z' '. Hence, for a given value of z' '&z,' ' the causal de-
lay in the arrival time at z =b ~ d due to the presence of
the barrier is quite naturally defined to be

dent(b;z' ')=t(b;z' ') r' '(b;z' ') . —

P (t(z, ,z ))—: f, ,
dz' 'lg(z' ', 0}l

Z' 2 z(0)

X5(t(zi, z2) —t(zi, zq, z' ')),
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The distribution of such causal arrival time delays is
given by

used in this paper the free-particle motion is readily ob-
tained. Using (8)

P{bt(b)}= f dz lty(Z, O)l
ITIZ

X5(bt(b) —At(b;z"))) . (18)

Note that P(ht(b)) does not contain a 5-function contri-
bution at b,t(b)=+ 00, because we have excluded from
the analysis those particles that do not reach z =b.
Equation (18}is obviously equal to 5(b, t(b) } for the spe-
cial case V(z) =0 considered above. That part of the de-
lay actually occurring in the barrier region is

Rk fi'(z z)—t0 + 0

v (z t)= 4m (kz )

At
4m (M)

Integration of dz ldt =v then gives

A2t 2
z' '(z' ', t)=z +v t+(z' ' —z ) 1+0 0 0 4 2(~)4

1 /2

(22)

bt(o, d;z' ')=t(o, d;z' ') t'f'(O—, d;z' '),

1
P(z, o)= exp

[21r(b,z )') '

2
Z Z0 + ikoz2hz

and the corresponding distribution is

P,(~t(O, d))= ' f "dz"'lq( '",0)I'
I

TI'

X5(ht(o, d) —ht(o, d;z"')) .

For the initial wave function

(19)

(20}

lim z(z"', t )=~,j~ oo
(24)

which is equivalent to z' '&z,' ', where for the free-
particle case z,' '=z0 —2k0(M ) . The arrival time
t'f'(b;z' ') for the Bohm trajectory starting at z'0' is
defined implicitly by z'f'(z' ', t' '(b;z' ')) =b for
z,' ) +z( ) ~b (otherwise the particle never reaches z =b
for t ~ 0). This is readily solved to give

(23)

for the Bohm trajectory starting from z=z"' at t=0.
Transmitted trajectories are those for which

t (f)(b.z(0) )—

(b z' ')(b+z—' ' —2z()
(b —z )+(z —z' ') 1+

4k()(hz)

z z(0) 2
0

Uo
2k0(M)2

(25)

III. EFFICIENT METHOD FOR CALCULATING
DISTRIBUTIONS

So far we have considered an ideal detector that regis-
ters when a particle arrives. The quantities to be intro-
duced in this section are closer to a different but related
thought experiment. Consider as in the Introduction a
series of experiments in which a particle is released at
time t =0 in a state g(z, o). At a time t, create an
infinitesimally thin, perfectly rejecting potential barrier
at a point z =b to the right of where lg(z, o) I is non-
negligible. Such a barrier divides space into the region to
the right and left of b, and once it is in place we can
determine whether the particle was to the left or the right
of it at time t. Repeating this sufticiently many times for
particular values of b and t determines to any desired ac-
curacy the probability 6(b, t) that a particle in the en-
semble is found to the right of b at time t. In terms of the
wave function g(z, t),

6(b, t) = f lg(z, t)12dz . (26)
b

We consider only Gaussian wave packets initially local-
ized sufficiently far to the left of the barrier so that the
transmission probability I Tl is well defined and given by

=j(b, t) . (27)

In the causal interpretation the distribution of arrival
times, P(t (b)), is related toj (b, t (b)) by Eq. (16), provid-
ed there are no reentrant trajectories through z =b.
Then

P( (b)) 1 }6((byt)
ITI' dt

In probability theory, this relation implies that
Q(t(b)):6(b, t =t(b—)) is

I Tl times the cumulative dis-
tribution function corresponding to P{t(b)) [7]. If j(b, t)
is known from a solution to the TDSE, Q(t(b)) can be
calculated from the integral of Eq. (27),

Q(t(b))= f j (b, t)dt . (29)

the limiting value of 6(b, t) as t tends to infinity. From
the continuity equation it follows that

da(b, t) - alp(z, t)l'
dz

dt b (}t

dj(z, t)
Bz
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[We normalize Q ( t ( b ) ) to the number of particles
released from the source, rather than to the number of
transmitted particles, to simplify the expressions derived
below. ]

We turn now to probability distributions of delay and
transmission times. Rather than express these distribu-
tions in terms of integrals over trajectories, as in Sec. II,
we shall relate them to pairs of distributions of arrival
times. Since this approach avoids the calculation of tra-
jectories, it is more efficient numerically than evaluating
the integrals of Sec. II.

As an example, Fig. 1 shows Q(t(a)} and Q(t(b)) for
a =0 A and b =20 A for a free electron that initially has
a minimum-uncertainty-product Gaussian wave packet;
the details will be discussed in the next section. We wish
to calculate from these two functions a third function
Q(t (a, b) }which gives the cumulant distribution function
for the time t (a, b) that a transmitted particle spends be-
tween a and b.

This is impossible without knowing how each particle
travels from a to b. Suppose for a moment that Fig. 1 ap-
plies to a classical system, where each particle in the en-
semble follows a classical trajectory from source to detec-
tor, but only the information Q(t(a)} and Q(t(b)} is
available for analysis. Since the two curves are almost
the same except for a translation along the time axis, it
would be natural to assume that each particle in the en-
semble took about the same time to cross from a to b. If
so, the transmission time distribution would be sharply
peaked near 1.5 fs. But without knowing the trajectories
of the particles, we cannot rule out other (perhaps con-
trived) possibilities, such as one in which the last particles
to arrive at a are rapidly accelerated between a and b,
and actually are the first to arrive at b, and conversely
that the first to arrive at a are the last to arrive at b. In
such a case, the transmission time distribution would be
broad, extending from about 0 to 5 fs. As a third possi-
bility, we could match all points in one arrival time distri-
bution with all points in the other, as discussed in the In-
troduction; this would also lead to a broad transmission
time distribution. The problem, obviously, is to match
points in one arrival time distribution with points in the
other.

In the causal interpretation of quantum mechanics,
there is a well-defined procedure to do this matching,
even when there is a potential barrier in the region be-
tween z =a and z =b, as long as there are no reentrant
transmitted trajectories through either of these points.
Let z' '(t(b)) denote the origin of the trajectory that
crosses b at time t (b). Since trajectories do not cross, all
trajectories that begin to the right of z' '(t (b) }must lie to
the right of b at time t (b). Thus

Q(&(b))= I dz"'lg(z"', 0)l'. (30)
~' '(~(b))

Because of this relation, we can use Q(t(b)) instead of
z' ' to label the trajectories that actually reach z =b.

If Q(t (b) ) is not monotonic, then j (b, t) must be nega-
tive for some times, implying reentrant trajectories
through b. Because trajectories do not cross each other,
each time a trajectory crosses b it must do so at the same
value of Q. (This is because at the instant a trajectory

crosses b, all those trajectories that were to the right of it
in the starting distribution must be to the right of b, and
all those that were to the left of it in the starting distribu-
tion must be to the left of b )T. hus all the arrival times of
a given trajectory can be read off the points where a hor-
izontal line at a given Q intersects a plot of Q(t(b)}
versus t (b). It is readily shown from such a construction,
or by the type of analysis given in [2], that the arrival
time distribution is given by
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FIG. 1. Calculating the causal dwell time of a free particle,
with initial wave function as given in the text. (a) Probability
current density at a =0 A (dashed curve) and b =20 A (solid
curve). (h) Cumulative distribution functions Q(t(a)) (dashed
curve) and Q(t(b)) (solid curve) for arrival times t(a) and t(b)
calculated by integrating the currents in (a) through Eq. (29).
The horizontal dashed arrows indicate the matching of equal
values of Q central to the calculation of the distribution of
causal dwell times. (c) Cumulative distribution function
g(t (a, b)) (dashed curve) of causal dwell times t (a, b) between a
and b, calculated from (b) through Eq. (32), and corresponding
probability distribution P(t(a, b)) (solid curve). The dotted
curve in (c) is the probability density calculated from Eq. (34)
based on the (unjusti6ed) assumption that a given particle has a
constant but unknown velocity Ak /m.
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P( (b)} Ij(bzt(b))l

I dt'jl(b, t')
I

(31)

allowing for multiple arrival times, both from the left and
right, associated with any reentrant trajectory that might
occur. Moreover, if the sense of the crossing is needed, as
it is in determining the dwell time, it can be read off from
the slope of Q(t (b) ); trajectories cross b from left to right
when Q(t(b)) is increasing and from right to left when
Q(t (b)) is decreasing. Although it is, therefore, possible
to treat these more complicated cases, there is no need to
do so in the examples that follow.

As discussed earlier, to calculate the distribution of
transmission times for the region a ~ z ~ b, we consider
the time spent in that region for each transmitted trajec-
tory. Since each such trajectory is associated with a
unique value of Q, it can be labeled by Q, giving

t(a, b;Q)=t(b;Q) —t(a;Q) . (32)

Inverting this relation gives QT(t(a, b)) for the causal
transmission time t (a, b), and differentiating QT(t (a, b))
with respect to t(a, b) and normalizing with ITI gives
the transmission time distribution PT(t (a, b)).

To obtain a distribution of arrival time delays, we com-
pare the distribution of arrival times Q{t (b)) of transmit-
ted particles with the barrier in place and the distribution
Q'f'(t(b)) for the free particle (no barrier). The delay
time bt(b) for a particular trajectory is given by the
difFerence between the arrival time t (b) at b with the bar-
rier and the value t'f'(b) for the corresponding trajectory
(the same z' ') without the barrier. Again, because trajec-
tories do not cross, corresponding trajectories are unique-
ly specified by their cominon value of Q. The causal de-
lay time At(b) for a given Q is given by

bt(b;Q)=t(b;Q) t' '(b Q) . — (33)

IV. NUMERlCAL RESULTS

In this section, we demonstrate the accuracy of the ap-
proach of the previous section in calculations of transmis-

Inverting this gives Q(b, t(b)) for the delay time ht(b) at
the point b Differe. ntiating Q(b, t(b)) with respect to
bt(b) and normalizing with ITI gives the arrival time
delay distribution P(ht (b)).

Equations (32) and (33) relate QT(t (a, b)) and
Q(bt(b)) to Q(t(a)), Q(t(b)), and Q' '(t(b)), which
through Eq. (29) are related to probability currents, and
hence to wave functions. Thus QT(t(a, b)) or Q(bt(b))
can be calculated directly from solutions of the TDSE
(subject to the above proviso regarding reentrant trajec-
tories); no intermediate calculations of trajectories are
needed. The next section shows calculated distributions
of delay and transmission times for electron wave packets
tunneling through a square potential. The quantities
QT{t(a,b)) or Q(ht(b)) also simplify derivation of rela-
tions between average causal dwell times and arrival
times; as an example, we discuss why the average causal
delay time differs from results derived in conventional ap-
proaches.

A. Free-electron transmission time distribution

As a first example, consider the time that a free elec-
tron spends in the region between a and b. The starting
wave function g(z, t =0) is assumed to be a minimum-
uncertainty-product Gaussian wave packet with centroid

0
at zo= —35.58 A, and initial spread in wave vector k of
hk =0.08 A '. (The reason for the particular choice of
initial centroid will emerge below in the analysis of the
same wave packet incident on a barrier. } Figure 1(a)
shows j 'f'(z, t) at z =a =0 and z =b =20 A as a function
of time, and Fig. 1(b} the corresponding results for
Q(t(a)) and Q(t(b)) calculated by Eq. (29). The arrows
in Fig. 1(b) show schematically how Q(t(a, b)) for the
dwell time is calculated through Eq. (32) by connecting
equal values of Q, and Fig. 1(c) shows the results of that
(numerical) calculation.

Also shown in Fig. 1(c) is the distribution of dwell
times based on the unjustijied assumption that each elec-
tron in the ensemble has a constant but unknown velocity
haik/m distributed according to m IP(k)l /2irh', where
P(k)= f f(z, O)e '"'dz is the Fourier transform of
g(z, O). The resulting probability density for the
transmission time t (a, b) =(b —a)m /haik is

P(t(, b))=
2iri%[t (a, b) ]

(34)

This quantity differs from the causal result because in
Bohm s interpretation the particle velocity is not neces-
sarily equal to irik/m. The particle is not "free" in the
classical sense within the causal interpretation —it is
guided by the wave function and hence subject to the
quantum potential —(A' /2m)lg(z, t)l '8 Ig(z, t)l/Bz
[8—11]. Holland [11]discusses this in more detail.

B. Causal distribution of arrival time delays

We now consider the distribution of arrival time delays
P{b,t(b)) produced by a barrier of height 10 eV extend-
ing from a =0 to b =5 A, for the same initial wave pack-
et used in Fig. 1. The initial centroid zo of the wave
packet was chosen so that only 10 ITI of the initial
probability density was to the right of z =0. Figure 2(a)
shows the probability current j(b, t) and j ' '(b, t), and
Fig. 2(b) the corresponding values of Q(t (b) ) and
Q' '(t(b)), obtained by integration through Eq. (29) with
and without the barrier, respectively. Note that Q(t(b) },
normalized to the number of electrons incident on the
barrier, tends to

I
Tl at long times. Thus in calculating

the arrival time delay [Eq. (33)], we need only those
values of Q'f'(t(b)) less than ITI; that is, we consider
only the free-electron trajectories corresponding to those
which are transmitted when the barrier is in place. Fig-
ure 2(c) shows the calculated cumulative distribution
function Q(b, t(b)) and the resulting distribution

sion and delay times for electron wave packets. We corn-
pare the probability distributions of these times calculat-
ed directly from the Bohm trajectories to those calculated
from the integrated current density using the results of
Sec. III.
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P(b, t (b)) of arrival time delays. The circles show the dis-
tribution calculated by direct numerical evaluation of Eq.
(18) using about 10 transmitted Bohm trajectories. The
two calculations agree as they should except for the
scatter of the circles, which could be eliminated by fol-
lowing a much larger number of trajectories or using a
better sampling technique.

The peak in P(b, t(b)) of Fig. 2(c) is at about 1.5 fs.
According to Fig. 2(a), most electrons arrive between 2
and 3 fs with the barrier in place, and most free electrons
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FIG. 2. Calculating the causal delay time associated with a
constant potential barrier of 10 eV extending from z =0 A to

0
z =5 A. The same initial wave function is used as in Fig. 1. (a)
Probability current density at b =5 A without a potential bar-
rier (dashed curve) and with a barrier (solid curve). Note the
different vertical scales for the two curves in (a). (b) Q'f'(t(b))
without the barrier (dashed curve) and Q(t (b)) with the barrier
(solid curve) calculated from the integral of the currents in (a)
through Eq. (29). The insert shows that Q'f'(t(b)) for the free
particle (no barrier) reaches a value close to unity at long times.
The dashed arrows connect equal values of Q, as used in the cal-
culatiou of (c). (c) Causal distribution function Q(t), t(b)) of
causal delay time At(b) at b (dashed curve) calculated from (b)
through Eq. (33), and corresponding probability distribution
P(ht(b)) (solid curve). The circles in (c) were calculated from
the integral in Eq. (18) using 10 Bohm trajectories.

starting from the same region in the initial distribution
arrive at about 1 fs. Thus in Bohm's interpretation the
barrier delays the electrons between about 1 and 2 fs. We
would arrive at a very different conclusion if we com-
pared the peaks in the probability current in Fig. 2(a); we
would conclude, in fact, that the delay is negative, or
that, on average, electrons travel faster in the region z ~ b
with the barrier than without. This conclusion, incorrect
in the Bohm interpretation (and unjustified in conven-
tional interpretations), is the result of ignoring the
difference in behavior of free electrons that would be
transmitted and those that would be rejected, were the
barrier in place. We return to this point below.

C. Causal transmission time distribution

Figure 3(a}shows the probability current density at the
front (z =tt =0) and at the rear (z =b =d) of the same
barrier as above, for the same starting wave packet. Note
the difFerence in scales for the two currents. The proba-
bility current density at the front of the barrier goes neg-
ative, corresponding to Bohm trajectories that are
rejected after penetrating part way into the barrier.
(These trajectories are illustrated in Fig. 3 of Ref. [12].)
The functions Q(t(tt)) and Q(t (b)) calculated by Eq. (29)
are shown in Fig. 3(b). As shown by the insert, the peak
in Q(t (a}) is inuch higher than its final value

~ T~, indi-
cating that nearly all the trajectories crossing z =0 are
turned back. The calculation of Eq. (32) leads to the dis-
tribution of transmission times in Fig. 3(c).

In this example, the distribution of arrival time delays
P(b.t(b =d) ) of Fig. 2(c) is almost the same as the distri-
bution of transmission times Pz.(t(a =O, b =d)) of Fig.
3(c). This similarity suggests that most of the arrival
time delay occurs while the particle is inside the barrier.
The trajectories in Fig. 3 of Ref. [12] confirm this.

In the insert to Fig. 3(b), Q(t (a) } has a peak because
there are reentrant rejected trajectories at z =a. A
reAected trajectory that penetrates the barrier enters it at
t =t;„(a) with a positive velocity [j(a,t;„(a)}is positive]
and leaves it at a later time t „,(a) with a negative veloci-
ty [j(a,t~„,(a)) is negative]. With arguments similar to
those used in deriving the distribution of transmission
times in Eq. (32), we could calculate the distribution of
reflection times for the region z &a from the difference
t,„,(tt) —t;„(a) at a fixed Q, with t,«(a) to the right of the
peak in Q(t(tt)) and t;„(a) to the left of the peak, such
that Q( t,„,(a) ) =Q(t;„(a)) =Q.

V. AVERAGE DELAY TIMES

The distributions for delay and dwell times within
Bohm's theory are derived from differences in arrival
times. Similarly, the mean delay and dwell times can also
be expressed as differences in mean arrival times. As an
example, we consider the average transmission delay
time, and show that it involves a quantity that is
unde6ned in conventional quantum mechanics.

In the Bohm interpretation, the mean arrival time of
the particle at z =b )d with the barrier in place is
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r(b)= f t(b)P(t(b))dt(b) . (35)
0

We now change variables in the integral from t to Q, us-
ing Eq. (28) to relate P( t (b) ) to dg (t ( b) )/ dt ( b),

r(b) = f t (b) dt(b)
i
Ti2 o dt (b)

f t(b;Q)dQ .
o

(36)

= f 't'f'(b;Q)dg, (37)

where we have followed Jaworski and Wardlaw in assum-
ing that the free-particle transmission probability

~

T'f'~

is unity. A similar equation follows for the mean delay
time:

The expression for mean arrival time without the barrier
ls

hr(b)= f ht(b;Q)dg . (38)
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The delay and arrival times at a given Q are related by
Eq. (33). Substituting this relation into the integrand of
Eq. (38) gives

hr(b)= f t(b;Q}dQ —f ' ' t'f'(b;g)dg
0

=r(b) f— t' '(b;g)dQ1 ITI'

]T]'
=r(b) r' '(b)—

where r' '(b) is defined as
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ITI''(b)= f t' '(b;Q)dg . (40)

(Note that T, not T' ', enters this definition. )

This quantity r' '(b) is not defined in conventional in-
terpretations of quantum mechanic, because we cannot
ask whether a given particle would have been transmitted
if there had been a barrier, when in fact there was no bar-
rier. It is, however, well defined in Bohm's interpreta-
tion. As an example, let us compare the causal delay
time in Eq. (39) with the transmission time b.rz (b) con-
sidered by Jaworski and Wardlaw [4], given above in Eq.
(6). To see the diff'erence, we cast their expression in a
form like Eq. (39). From Eq. (26), the probability for
finding a particle to the right of z =b at time t is 6' '(b, t)
without the barrier and 6(b, t) with the barrier. Consider
the latter case 6rst. The dwell time for the region
b&z&ao is

0.0
2

t(a, b) (fs)

r(b, ao)= lim f 6(b, t)dt .
0

Integrating by parts gives

(41)

FICs. 3. Calculating the causal transmission time. The poten-
tial barrier and incident wave packet are the same as in Fig. 2.

0
(a) Probability current density at a =0 A (dashed curve) and at
b =5 A (solid curve). Note the difFerent vertical scales for the
two curves in (a). (b} Q(t(a)) at z =a =0 A (dashed curve) and
Q(t (b})at z =b = 5 A (solid curve) calculated from the integral
of the currents in (a) through Eq. (29). The insert shows the
peak and subsequent drop in Q(t(a}) due to the reentrant tra-
jectories of reflected particles. The dashed arrows connect
equal values of Q, as used in the calculation of (c}. (c)
Qr(t(a, b}) of causal transmission time t(a, b) calculated from
(b) through Eq. (32), and corresponding probability distribution
PT(t (a, b)) (solid curve). The circles in (c) were calculated from
the integral in Eq. (15}using 10 Bohm trajectories.

6(b, t2)
r(b, ac)= lim 6(b, t2)t2 —f t(b;Q)dg

)2~oo . 0

I
TI'= lim [/ T/ tz] —f t (b;Q)dg,

f~~ oo 0
(42)

f2~ oo
(43)

A similar expression follows for r~f}(b, oo ), except with
I
TI' «placedby I

T' 'I'=1:

where we have used 6(b, ~)=~T~ and assumed that
6(b, 0) is negligible. The last term in Eq. (42) is

~
T

~
r(b).

Thus
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(44)

Substituting (43) and (44) into (6) cancels the terms in

tz, giving

br' '(b)=r(b) r—' '(b) . (45)

This expression differs from the average causal delay time
br(b) in Eq. (39) because of the following inequality:

In words, r' '(b), the average arrival time without the
barrier, is not the same as r' '(b), the average arrival
time of only those particles with z' ') z,' ', which would
have been transmitted had the barrier been in place. This
statement is meaningless in conventional interpretations
of quantum mechanics, but in Bohm s interpretation it
makes sense, both in words and mathematically as ex-
pressed above. The di8'erence between v' '(b) and r' '(b)
can be large, especially when ~T~ is small, because only
those trajectories that reach the barrier first are transmit-
ted in Bohm's interpretation. Those trajectories originate
in the forward tail of the starting Gaussian wave packets
used in Fig. 2.

VI. DISCUSSION AND CONCLUSIONS

%'e have given a prescription for calculating causal
transmission times or causal delay times in the Bohm in-
terpretation directly from a solution of the TDSE, with
out calculating Bohm trajectories as an intermediate step.
%Pith these expressions, we derived the delay time of
Jaworski and Wardlaw, and showed why their expression
differs from the corresponding causal time: they assume
that each particle in a scattering experiment is identical,
and has the same probability of being transmitted as any
other, whereas the causal time is based on the idea that a
particle's fate is decided by its starting position, and so is
already determined before the particle reaches the bar-
rier. (The starting position, however, is not controllable. )
Jaworski and Wardlaw say, "The point is that quantum
mechanically there is no sense in speaking about
transmitted and rejected particles before they are detect-
ed as such. " %'e agree, but only in the conventional in-
terpretation of quantum mechanics. In Bohm's approach
this does make sense; the quantity v' '(b) is well defined,
and enters the expression for hr(b).

The assumption of Jaworski and %'ardlaw that all par-

ticles are equally likely to be transmitted has been called
into question by recent experiments on the time delay of
transmitted photons [13,14]. The authors of these experi-
ments interpret their results as evidence that the
transmitted packet comes from the front of the incident
packet, a particular case of what they cali pulse reshap-
ing. According to them [13], Bohm's causal interpreta-
tion provides "the closest there is to an explanation of
why only the early part of an incident wave packet
traverses a tunnel barrier. " This is certainly true in our
opinion when the particles involved are electrons, but
there is no consensus on the correct form of a causal in-
terpretation for photons [15]. Dumont and Marchioro
[1], who observed pulse reshaping in quantum and semi-
classical calculations for tunneling through one-
dimensional Gaussian and Lorentzian potentials, describe
the process as the barrier acting as a filter for the large-
momentum components of the initial wave packet, as
proposed by Hartman [16]. The Bohm interpretation
clearly gives a different picture.

Even if a delay time distribution can be determined ex-
perimentally, the theoretical causal expressions for it will
be of relevance to the experiment only if the measuring
process does not strongly perturb the intrinsic quantity.
It would be interesting to calculate how much a quantum
clock or other measuring apparatus changes the distribu-
tion. It may be that the causal delay times for an unper-
turbed system have little or no relation to measured
times. If so, these times would be analogous to the causal
momentum of an electron in a stationary s state. In the
causal interpretation, an electron in an s state is at rest.
But, as Bohm discusses [8], in a time-of-fiight measure-
ment the quantum potential accelerates the electron as
soon as the confining potential is removed, and the causal
interpretation predicts the same experimental result as
the conventional interpretation for the distribution of ar-
rival times at a distant detector. So in the causal inter-
pretation a time-of-Aight measurement of momentum
does not reveal the intrinsic value of momentum in the
stationary state. Perhaps the same is true of the causal
times we have considered here.

In summary, we have shown that distributions of
causal arrival times, causal transmission times, and
causal arrival time delays, all well-defined quantities in
Bohm's interpretation of quantum mechanics, can be ob-
tained directly from the probability current density
without a calculation of Bohm trajectories as an inter-
mediate step.
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