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Quasiclassical efFective Hamiltonian structure
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The Kirschbaum-Wilets quasiclassical, many-body atomic model [Phys. Rev. A 21, 834 (1980)] is
applied to atoms and ions having 1 & Z & 38. An efBcient method was found to search for the global
minimum of the energy functional. A quasiclassical shell structure is shown to result from the Hamil-
tonian formulation in terms of momentum-dependent potentials representing quantum-mechanical
effects codified in the Heisenberg and Pauli principles. Along with ionization and correlation ener-
gies, the ground-state configurations are presented for use as initial conditions in various dynamical
calculations.

PACS number(s): 31.90.+s, 31.15.Bs, 03.65.Sq

I. INTRODUCTION

The classical-trajectory Monte Carlo (CTMC) method
was invented in the early 1960s [1] to put new digital
computers to work calculating cross sections for atom-
molecule collisions; in this method, individual atoms
are treated as classical particles moving on a quantum-
mechanical potential-energy surface. A bold next step
was taken by Abrines and Percival [2], who applied the
CTMC method to the electronic motion as well as the
nuclear motions in p+H collisions. The method was jus-
tified by the correspondence principle for collisions with
Rydberg-atom targets, but it was evident that the results
were surprisingly good even for collisions with the ground
state. Since its first application, the CTMC method
has been much used in the calculation of ionization and
electron-capture cross sections for ion-atom collisions at
intermediate velocities (v 1 a.u. ) [3]; it has also had
considerable success for collisions of negatively charged
particles (p, p), even at very low velocities, and exotic
atom formation [4].

The allure is that a classical Hamiltonian system is eas-
ily integrated on a computer with no problems presented
by the electronic continuum, choice of coordinates or ba-
sis set, etc. Generally these calculations have been lim-
ited to one-particle transitions because of the unsuitabil-
ity of classical dynamics for the pure Coulomb dynamics
of multielectron systems. Though there exist interest-
ing special orbits of (at least) two-electron atoxns that
are classically stable [5], in general the classical atom is
unstable with respect to autoionization due to the ab-
sence of the lower bounds on the electron energies im-
posed by quantum mechanics. In any event, such special
orbits may be expected to destabilize when altered by
nonperturbative external forces. Even in single-electron
systems such as He+ + H+, there is a problem associated
with the tendency of a classically transferred electron to
go into an orbital of H having unphysically large bind-
ing energy [6]. Nonetheless, the CTMC technique has

been of great practical computational importance. Thus
a generalization improving the shortcomings and allow-
ing direct application to multielectron systems would be
highly desirable. Of course, the goal is a practical tool,
not a fundamental theory, which is already provided by
quantum mechanics.

The formulation of such a model was suggested by
Wilets et al. over a decade ago for application to
heavy-ion (nuclear) collisions [7] and later to atomic
collisions [8]. Proceeding heuristically, they introduced
momentum-dependent e8'ective two-body potentials to
enforce the quantal efFects reQected in atomic structure
by the Heisenberg uncertainty and. Pauli exclusion prin-
ciples. Only two fundamental parameters, one associated
with each principle, have to be fixed by resorting to quan-
tum mechanics. Kirschbaum and Wilets [8] determined
the former by matching the energy of the ground-state
hydrogen atom and the latter by matching the Fermi
energy of an infinite electron gas. It turns out that this
simple formulation suKces to stabilize all atoms. Perhaps
more surprising, the model yields atomic energies amaz-
ingly close to their accurate energies and a shell structure—though it will be shown that the shell structure does
not fully correspond to that of real atoms.

Most applications of the Kirschbaum-Wilets quasiclas-
sical method, which has come to be known as Fermi
molecular dynamics (FMD), have been made to two-
electron systems (there are a few calculations on systems
with more electrons). These applications have been to
scattering [6,9] as well as to atoms in intense fields [10,11].
In the latter problem, experiments suggest that correla-
tion sometimes plays an important role in the times and
energies of ionization [12]. Such correlation is difficult to
take into account in quantum-mechanical calculations,
but simply treated by FMD.

A systematic treatment of collisions by FMD has not
yet been attempted. In fact, it would seem that a thor-
ough examination of the quasiclassical structure of the
isolated atoms would be in order first. That examination
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is the objective of the present work. In its own right, the
investigation of quasiclassical atomic structure is of in-
terest for the insight it may lend to real atomic behavior
(especially electron correlation) and as a preliminary for
semiclassical treatments with topological quantization.

with h, . .. = 1 if the spins of the ith and jth electrons are
the same and 0 if they are different. For the constraints,
KW suggested the form

(7)

II. FORMULATION
(c = II or P) and, in particular,

A. Quasiclassical model

The quasiclassical Hamiltonian proposed by
Kirschbaum and Wilets (KW) [8] for atoms consists of
the usual kinetic energy and Coulomb terms subject to
constraints representing the quantal effects of electron
waves and symmetry. These effects are manifested in
the Heisenberg and Pauli principles and can be realized
by the constraints [13] r;p; & (HA and r;~p;~ & (~h,
respectively, where r; and p, are the position and mo-
mentum of the ith electron with respect to the nucleus
and r,j = rj —r; and p;j = z(pj —p;). [Note: The fac-
tor 2 in the latter comes &om the fact that p;~ is in the
electron-electron c.m. system, while p, and p~ are with
respect to the (heavy) nucleus. ] The two parameters (~
and (~, of order unity, can be determined by comparisons
with experiments or quantal calculations.

In almost any practical calculation, it is more con-
venient to deal with smooth constraining potentials in-
stead of sharp inequalities; such potentials are also con-
sistent with the probabilistic nature of quantum mechan-
ics. Thus the quasiclassical Hamiltonian can be written

where o. is a hardness parameter determining how
abruptly the constraint rp & (,h is enforced. Note that
Hq, is invariant under separate rigid-body rotations of
the r, and p, .

We can rearrange {1)in terms of one- and two-electron
operators

IIq, ——) h() ~ —) h,

where

(io)

and

where

Hq, ——HP + V~+ QP,

~0 —Ekin + ECoul (2)

For comparison with quantities &equently reported in
Hartree-Fock calculations, we define the "single-electron
energy" (analogous, in the minimum-energy configura-
tion, to the orbital energy, which is the Hartree-Fock
eigenvalue [14])

is the usual Hamiltonian, consisting of the kinetic energy

and interparticle Coulomb potentials

{12)

and the "total single-electron energy" (analogous to the
total orbital energy [15])

h(~) + ~h(2)2'

(4)
The e, is the energy of electron i in the field determined
by all other particles. The less &equently mentioned q,
satisfies

(m is the electron mass, —e is the electron chargeand , Ze
is the nuclear charge), and Vli and Vi are momentum-
dependent classical potentials introduced to represent
nonclassical effects

VH = ) v~(r;, p, )

(14)

Note that the constraint potentials Eq. (7) depend
only on the product rp, except for the r prefactor; this
prefactor causes the constraints to scale like the kinetic
energy and enables the minimum-energy configuration,
at which Hq, ——Etot, to satisfy a modi6ed virial theorem

and

1
&p = ) ~8, ,8& Vt (rij &lpij )

2
g

(~Xi)

—&co i = 2(Eq;„+ V~ + VJ ),

which, using

Etot = Eco 1+Ek' ++H+ +P

(15a)

(15b)
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can be rewritten in the usual form [16]

Egoui = 2E)ot (15c)

This relation provides some test of the minimization,
though the condition is also satisfied at any local min-
imum.

The KW formulation is inherently a Hamiltonian de-
scription. That is, p g BL/Br', where L is a Lagrangian
corresponding to H~, (actually it is awkward even to de-
fine this Lagrangian). The variable p is not the usual
kinetic momentum; this is obvious &om the fact that, in
the quasiclassical ground state, r and p both have fixed
(within symmetry operations) nonzero values satisfying
rp (Hh, but nonetheless dr/dt = 0. This seemingly
strange state of affairs is not really a problem for two
reasons: first, the purpose of the constraining potentials
is simply to avoid quantum-mechanically forbidden re-
gions of phase space, and second, p approaches the kinetic
momentum for rp )) (~h. As energy is supplied (by col-
lisions or external fields) the particles move and at most
times are little affected by the constraining potentials.
Still, the constraining potentials provide the vital service
of avoiding rare, but potentially catastrophic, excursions
into regions excluded by quantum mechanics.

We retain the value of the stiffness parameter o, = 5
that was suggested. by KW. Cursory investigations with
other values showed that the qualitative structure is not
sensitive to the value as long as it is not made too small.
The problem with very large values (& 100) is numerical
in nature; encountering the resulting very large deriva-
tives sometimes caused anomalous behavior by a given
minimization routine and such problems may be expected
to become even more troublesome for integration of dy-
namical equations of motion. On the other hand, very
small values (& 1) invalidate the constraint potential;
even for the hydrogen atom, such small values introduce
local minima having energies similar to that of the de-
sired minimum, but with values of rp significantly diQ'er-

ent from g~h (for large n, there exists a relative rnini-
mum with rp 0, but its energy is so high that it is of
no consequence). In the search for the ground states, we
found that the choice o. = 5 accommodates the numeri-
cal minimization by being small. enough to yield a smooth
function, but large enough to eliminate pronounced un-
physical relative minima.

Following KW we choose the value of the Heisenberg
parameter yH to yield the correct binding energy of hy-
drogenic atoms. For o. ~ oo, this value would be y~ ——

1.0, but for finite n needs to be y~ = y~/(1 + 2 )
~2

( 0.9535 for n = 5) to still give the right energy.
Again following KW, we take y&

——2.767, scaled to
yP/(1 + 2 ) ~ ( 2.6382 for n = 5), which

reproduces the Fermi energy of a close-packed nearest-
neighbor electron-gas model.

Another approach, which has not been tried, might
be to choose different yH and y~ for each subject, such
that each has the correct energy (or other properties).
Problems with this alternative approach are that then
the relevant parameters would change as atoms ionized in
dynamical calculations and that the parameters might be

different for atoms or ions with the same number of elec-
trons but different nuclear charges. Besides, as we shall
see, the single pair of parameters given in the preceding
paragraph do an amazing job, at least on the average,
throughout the Periodic Table.

B. Numerical minimization

Vf = Ax —b. (16)

Hence

xmin

but we do not know A or b at the outset. The method
requires analytic evaluation of first derivatives.

In each iteratioii (starting with Ao equal to the unit
matrix) the function of f is minimized in the direction
of A;V f (x,), where x, is the estimate of x;„and A,
is the estimate of A at the ith iteration, to determine
x,+q. A new approximation A,+q to A is also determined
satisfying

x,+i —x; ——A,+i [Vf (x;+i) —Vf (x,)] .

Though this equation does not uniquely specify A,+~,
the exact choice of A;+q is of some importance. For this
purpose, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm was employed (see [18] for details). A key prop-
erty of the method is the search in conjugate directions
A;Vf(x;); this m'eans that the exact x;„and A of
a quadratic function of n variables will require at most
n iterations [19] —thus the name "quasi-Newton. " Of
course, the actual function is not globally quadratic.

Though the convergence properties are generally good,
the VM BFGS method does not always converge to the
correct global minimum for every choice of xo. Thus
we perturb the solution and carry out the minimization
repeatedly until this result has been confirmed several
times. An efEcient procedure for minimizing the energy

Finding the quasiclassical ground-state configuration
for an ¹lectron atom requires minimization of Eq. (1),
which is a function of 6N variables. Because of the ro-
tational invariances, this reduces to 2 independent vari-
ables for N = 1 (the magnitudes r and p) and 6N —6
independent variables for N & 1. This is a nontrivial
minimization problem for a fairly large number of vari-
ables (e.g. , 222 for N = 38). The main difficulty is in
avoiding (or escaping) local minima which are numerous
in the high-dimensional energy surfaces. All the mini-
mization methods given in Ref. [17] were tried; one of
these methods —the variable-metric (or quasi-Newton)
method —emerged as clearly superior both in speed and
avoiding spurious local minima.

The basic idea of the variable-metric (VM) method is
to iteratively approximate the inverse of the Hessian ma-
trix A, whose components are the second partial deriva-
tives of the function f (x) to be minimized. It is assumed
that the function f (x) can be locally approximated by a
quadratic form so that
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FIG. 1. Total quasiclassical energies
(closed circles) compared with Hartree-Fock
energies [23] (open circles) of neutral atoms.
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of atoms with large numbers of electrons was found to
be starting with the optimized result of a smaller atom
as the initial condition for its core configuration. Usually
this procedure led directly to the optimum configuration
of the next-larger atom. However, in order to allow for
the possibility that addition of the electron might lead
to a new minimum of the N-electron atom in which the
inner electrons are rearranged from that of the (N —I)-

electron atom, additional calculations were done in which
up to six electron con6gurations were randomly changed
in the initial condition. In the results it will be seen that
such rearrangements are unusual, but do occur. Multi-
ple trials and checks of required physical conditions help
con6rm that the found minimum is global, but there can
be no absolute guarantee in general.

For general interest, we mention a quite di8'erent ap-
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tions to the total quasiclassical energies of
neutral atoms. The Coulomb energy is neg-
ative, the others positive. The values were
calculated at every Z though, for clarity, not
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FIG. 3. Total single-electron quasiclassical
energies (negative) for neutral atoms —rl, for
i = 1 to Z [see Eq. (13)]. Upward (down-
ward) -pointing triangles are for o (P) -spin
electrons.
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proach, simulated annealing, which has been successful
in ending global minima of other physical functionals.
Both the standard version [17], adapted to a function of
continuous variables, and the hybrid downhill simplex-
simulated annealing method [20] were tried, but with-
out notable success. With reasonable annealing choices,
the searches were found to be extremely time consum-

ing and to often get stuck in local minima. Success of
this procedure can depend on rearrangement of the in-
dependent variables and whether the independent vari-
ables are changed singly or jointly; several strategies were
tried, but it may well be that a more eKective choice was
missed.
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FIG. 4. Single-electron quasiclassical en-
ergies (negative) for neutral atoms —e, for
i = 1 to Z [see Eq. (12)]. Upward (down-
ward) -pointing triangles are for n (P) -spin
electrons.
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III. RESULTS

Calculations were done on all atoms and singly charged
ions with Z = 1 to 38. The calculations were done
both (i) with the electron coordinates and momenta com-
pletely &ee (except, as permitted by spatial isotropy, the
first vector is placed along the z axis and the second vec-
tor is in the x-z plane) and (ii) with the electrons con-
strained into pairs having r(l ) = —r( ~ and p~~) = —p( ).

The latter treatment halves the number of variables (for
JV even) and is somewhat akin to the restricted Hartree-
Fock method of quantum mechanics. However, we shall
see that the "correlation" energy defined by this quasi-
classical ansatz differs considerably &om the customary
value. All of the results presented below are for unpaired
electrons, except when the correlation is being discussed.

The total quasiclassical energies are shown in Fig. 1,
where they are compared with the accurate nonrelativis-
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tic Hartree-Fock energies (average energy of configura-
tion). The agreement is remarkably good. In all cases,
the quasiclassical binding is slightly greater than the true
binding energy (except H, where the energies are identi-
cal by design). This direction of the small disagreement
is as expected since the quasiclassical ground state has
no zero-point energy.

It is also of interest to look at the separate terms.
The kinetic, Coulomb, and constraint contributions to

the total energy in the minimum-energy configuration are
shown in Fig. 2. The virial condition Ec „~ ——2Et t is
precisely satisfied. It can be seen that the sum of the
two constraint energies is about 8%%up of the total energy
and is only weakly dependent on Z, decreasing slowly.
At Z ( 35, the Pauli energy, which is zero for H and He,
is smaller than the Heisenberg energy; at higher Z, the
Pauli energy becomes the larger of the two. The frac-
tion of the total energy due to the constraints is approxi-
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mately inversely proportional to the hardness parameter
0!.

The total single-electron energies g, are shown in Fig.
3 and the single-electron energies e; are shown in Fig. 4.
By Koopmans's theorem [21],

(~) @(~) E(~/&) (19)
where the superscript (N) designates the %-electron

atom in its minimum-energy configuration and (N/i) des-

ignates the same configuration except with the ith elec-
tron removed to infinity. Thus the e; give the ionization
potentials in the approximation that no rearrangement
occurs in the aftermath of the ionization. A compari-
son with the actual quasiclassical ionization potentials is

made below.
The quasiclassical shell structure is most easily visu-
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FIG. 8. Pauli constraint parameters
r,~p,~/y~ for electrons of the same spin
(upward-pointing triangles for n, down-
ward-pointing triangles for P) in the
ground-state configurations.
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(a)

a-

{c) 0

alized by examining the magnitudes of the electron dis-
tances r; and momenta p,. relative to the nucleus. The
r; and p, for all the electrons of neutral atoms with
I & Z ( 38 are shown in Figs. 5(a) and 5(b). In these fig-
ures the n and P electrons are distinguished by upward-
and downward-pointing triangles, respectively. A strong
tendency for n and P electrons to pair is evident, but is
not inviolate —the exceptions are not numerical arti-
facts. There is a weaker tendency for the shells, outside

r (ap)

1.0000 0.0000

0.5714
0.5714

0.0000
3.1416

0.3506
0.3673
1.4419

0.0000
2.6567
2.2031

0.2565
0.2565
0.9458
0.9458

0.0000
2.3683
2.7593
1.0666

0.1961
0.1988
0.6736
0.7008
2.0196

0.0000
2.2549
2.8938
1.1318
0.6731

0.1599
0.1599
0.5361
0.5361
1.4800
1.4800

0.0000
2.1806
2.9180
1.1846
0.2338
1.9468

0.1335
0.1344
0.4373
0.4405
1.1068
1.1332
3.0842

0.0000
2.1402
2.9439
1.1921
0.2777
1.9071
2.2428

0.1147
0.1147
0.3718
0.3718
0.9348
0.9348
2.5510
2.5510

0.0000
2.1162
2.9653
1.2014
0.3020
1.8438
2.1970
1.5563

Z
0.0000

Z
0.0000
0.0000

Z
0.0000
0.0000
3.1416

Z
0.0000
0.0000
2.3378
3.4534

Z
0.0000
0.0000
3.1416
3.1416
0.0000

Z
0.0000
0.0000
3.1416
3.1416
0.0000
0.0000

Z
0.0000
0.0000
3.1416
3.1416
0.0000
0.0000
3.1416

Z
0.0000
0.0000
3.2059
3.1295
0.4786
6.1405
4.2811
2.3144

p (a u. )

=1
0.9535

=2
1.6686
1.6686

=3
2.7291
2.5962
0.6716

—4
3.7332
3.7332
1.0256
1.0256

=5
4.8987
4.8261
1.4993
1.3944
0.5121

=6
6.0156
6.0156
1.9150
1.9150
0.7091
0.7091

—7
7.2132
7.1645
2.4004
2.3820
1.0209
0.9524
0.3182

=8
8.4039
8.4039
2.8408
2.8408
1.2168
1.2168
0.3908
0.3908

0.0000 0.0000

0.0000
3.1416

0.0000
0.0000

0.0000
3.1416
3.1416

0.0000
0.0000
0.0000

0.0000
2.5673
3.1416
0.5743

0.0000
0.0000
0.0000
3.1416

0.0000
2.5672
3.1416
0.5743
0.0000

0.0000
0.0000
0.0000
3.1416
0.0000

0.0000
3.1416
3.1416
0.0000
0.0000
3.1416

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
2.9800
3.1416
0.1616
0.0000
2.9800
3.1416

0.0000
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0.0000
3.1416
0.0000
0.0000
0.0000

0.0000
3.1416
3.1416
0.0000
0.0000
3.1416
3.1416
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Spin

TABLE I. Positions and momenta of quasiclassical elec-
trons for minimum-energy configurations of atoms with
1 & Z & 8. Angles are given in radians. The parameters
are yH ——0.9535, y~ ——2.6382, and o. = 5. The positions
and momenta are independently invariant under rigid-body
rotations.

FIG. 9. Perspective plots of quasiclassical electrons in their
ground-state configuration: (a) Z = 5, N = 5, (b) Z = 21,
and N = 21, and (c) Z = 38, N = 38. The vantage point for
the view is x = y = z = 5ao.

These and all other con6gurations —for Z = 1 to 38,
atoms and ions, unpaired and force-paired calculations-
are available electronically. The following procedure can
be used to access the files using the UNIX ftp utility: (1)
ftp t4.la,nl. gov; (2) log in with name anonymous; (3) cd
pub/cohen/quasiclassical; (4) get filename where filename is
atoms. unpair, atoms. pair, or readme —additional informa-
tion is provided in the file readme; (5) quit when finished.
Send electronic-mail inquiries to cohenOlanl. gov
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the first two with two electrons each, to consist of four
electrons. This grouping is somewhat more evident in
Figs. 6(a) and 6(b), which are the results of calculations
in which pairing of n and P electrons was forced. Back
in Fig. 5 a few "broken-symmetry" cases can be spot-
ted where a shell appears to consist of an odd number
of electrons; one of these, Z = 10, confirms the finding
in the original paper of Kirschbaum and Wilets [8]. The
occasional structural reversals seen as Z increases is rem-
iniscent of anomalies occurring in filling the 3d shell of
real transition-metal atoms.

In Fig. 7 the values of r;p, /yH, which prevent clas-
sical collapse into the nucleus via the effective Heisen-
berg potential, are shown for the minimum-energy con-
figurations. The essential role of yH for the first pair
of electrons is clear &om its unit value for these elec-
trons. For more weakly bound electrons, the value
increases —and the constraining potential decreases

exp[ —n(r, p;/yH) ]
—as the roles of electron-electron

Coulomb repulsion and the effective Pauli potential be-
come more important. The analogous values of r;~p;~ /yJ.
for the Pauli potential are shown in Fig. 8. The effect
of the y~ parameter on shell structure is evident by the
increasing number of values close to unity as Z increases.

Three-dimensional perspective visualizations of the
quasiclassical atoms with 5, 21, and 38 electrons are
shown in Figs. 9(a)—9(c). The classical snapshot shows a
single set of "point" particles, but, of course, in any ap-
plication the rotational invariance should be taken into
account, e.g. by use of an ensemble of orientations. The
ground-state configurations for 1 ( Z ( 8 are given in
Table I; all are available electronically (see the footnote
in Table I).

Since ionization is one of the the main classes of prob-

lems where the quasiclassical model is expected to be
useful, the ionization potentials are of some importance.
From the accuracy of the total energies we know that the
average of all the ionization potentials is fairly accurate,
but the first ionization potential provides a more strin-
gent test. Independent calculations were performed on
all ions with N = Z —1. The resulting ionization po-
tentials are compared with the accurate values for real
atoms in Fig. 10. On the average they are not too bad,
though there are a few, such as neon, which was already
pointed out for its anomalous triplet shell, that fail more
seriously. A comparison with the single-electron energies
e, is made in Fig. 11. Generally the single-electron ener-
gies provide reasonable approximations to the ionization
potentials, though in some cases they are as much as a
factor of 2 larger —always larger since relaxation can
only lower the energy of the ion.

Finally we look at the energy consequence of electron
pairing. Figure 12 shows the energy difference (per elec-
tron) between calculations done with forced pairing and
with all electrons &ee. Though this would appear to be
conceptually similar to the quantum-mechanical concept
of electron correlation, the quasiclassical energy is zero
for helium and about six times larger than the quantal
value [24] (which is 0.04 a.u. /electron) for Z ) 8. Evi-
dently correlation effects between the point quasiclassical
particles are considerably more important than for diffuse
orbitals.

IV. CONCLUSIONS

We have determined the ground-state configurations
for the Kirschbaum-Wilets quasiclassical atoms having
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FIG. 10. Quasiclassical ionization poten-
tials (closed circles) compared with experi-
mental ionization potentials [22] (open cir-
cles).
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FIG. 11. First quasiclassical ionization po-
tentials (closed circles) compared with small-
est (in magnitude) single-electron energies
(open circles).
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1 ( Z & 38. Still higher Z could be equally well calcu-
lated, though in practice the inner electrons would then
probably be replaced by an effective core potential for
most applications. The model is formulated with an ef-
fective Hamiltonian kom which classical equations of mo-
tion can be determined. The only parameters occurring
in the model are two constants representing the quantum-

mechanical effects of the Heisenberg and Pauli principles
and the associated hardness parameters determining how
abruptly these constraints are implemented. The param-
eters originally suggested by KW [8] were found to be
quite adequate and, for a general model allowing changes
in ionization stage or nuclear charge, it was deemed un-
desirable to fiddle with the parameters of each species to

OAO
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FIG. 12. Quasiclassical "correlation ener-
gies" per electron (see text) of neutral atoms.
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make marginal improvements in the atomic properties.
The total electronic energies are given rather accurately
and the first ionization potentials are about right on the
average, though they do not generally peak at the noble-
gas atoms.

In addition to providing a stable atomic structure, this
quasiclassical model in contrast to the Thomas-Fermi
model —displays a shell structure. However, unlike the
real atomic shells of 2N electrons, the KW quasiclassical
shells generally all contain two or four electrons. Presum-
ably this inadequacy is due to the static (crystalline) na-
ture of the ground state; the effective potentials depend
only on the relative linear momenta, but not on the angu-
lar momenta, which play an essential role in determining
the real shell structure. Of course, angular momentum
will be properly conserved as energy is added (by Geld
or collisions) to the crystalline ground state and it may
be fruitful to consider how its effects could be taken into

account even for the initial state.
In considering refinements of the model, it is important

to keep in mind that the goal is a useful method for prac-
tical calculations of correlated motions in collisions or ex-
ternal fields. Some improvements, e.g. , allowing electrons
to be diffuse, would probably negate the overall utility of
the model. One generalization, which perhaps should be
considered, is taking zero-point energy into account. For
a quasiclassical atom subject to strong excitation, the
zero-point motion is likely negligible, but for near-static
properties it may be essential.
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