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Hidden crossings and the separation constant of a hydrogenlike atom in spheroidal coordinates
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Considered as a limiting case of a highly asymmetric two-Coulomb-center problem, the analytic prop-
erties of the eigenvalues of the constant of motion allowing separation of variables for a hydrogenlike
atom in spheroidal coordinates are studied. Calculations of the positions of the branch points of the ei-

genvalues in the complex plane of internuclear separations are performed. It is found that they form

characteristic series whose limiting points can well be predicted by semiclassical quantization conditions.

PACS number(s): 34.20.Cf

It is well known that in the two-Coulomb-center prob-
lem (Z„e,Z2), the properties of the analytically contin-
ued potential-energy curves into the complex plane of in-
ternuclear separations R play an important role in the
adiabatic description of the slow one-electron colliding
systems [1]. The exact degeneracies of the energy eigen-
values in the complex R plane correspond to branch
points of a multivalued analytic function describing the
energies of all states of a given symmetry. The position
(i.e., real and imaginary parts) of a branch point is direct-
ly related to transition probabilities between various adia-
batic states [1]. When the imaginary part of a branch
point is small, the potential-energy curves exhibit sharp
avoided crossings for real values of R, whereas when lo-
cated further away from the real R axis branch points are
usually referred to as "hidden crossings. "

Recent theoretical investigations of the highly asym-
metric systems Z2»Z, [2] have revealed a type of
branch points which form the so-called H series. These
branch points connect the energy surfaces labeled by
(k, q, m) and (k —l, q+l, m) in standard notation of
spheroidal quantum numbers [3]. These singularities are
expected to remain in the limit Z& —+0, Z2=Z, so that
they should show up in the one-center problem of hydro-
genlike atoms with variables separated in spheroidal
coordinates. However, the energies are, in this case (we
use atomic units

~
e

~

=m, =A' = 1 throughout the work),
F.„= Z /(2n —) (n =k+q+m +1 and we assume
m & 0 since it enters all formulas below as m ) and they
do not depend on R, which plays the role of a parameter
defining the coordinate system. Nevertheless, the eigen-
values A,(R) that depend on R are those of the separation
constant [3,4]
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where L is the orbital angular momentum operator and
A, is the z component of the Runge-Lenz vector. Togeth-
er with the Hamiltonian H and L, the operator A forms
the complete set of commuting observables defining the

[n (1 +—1) ][(1+1) —m ]
(21+1)(21+3)
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the corresponding three-diagonal determinant can be ex-
pressed, by using standard methods [3], in terms of con-
tinued fractions. The particularly convenient form of the
secular equation is
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where

3,=1(l +1)—A, , (4)
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For fixed n and m relation (3) is a polynomial equation
with n —m roots: A, k (q =0, 1, . . . , n —m —1;
k =n —m —

q
—1). It can be solved for real as well as

for complex values of R and therefore perform a desired
analytic continuation of the eigenvalues A, k (R) into the
complex R plane.

For small values of ZR, the following result, which can
also be obtained by applying perturbation theory to the
operator A, immediately follows from (3):

states of a hydrogenlike atom with variables separated in
spheroidal coordinates.

The eigenvalues A, kq (R) can be found by diagonalizing
(1), for example, in the spherical basis

~
nlm ) of a hydro-

genlike atom. With the help of matrix elements

(nlm~ A, ~nl+ 1m ) =(nl + 1m~ A, ~nlm )
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where I =q+m is the "united atom" spherical quantum
number. We note that expansion (6) (in all orders) does
not contain any logarithmic terms, as opposed to the
similar expansion in the two-Coulomb-center problem
P].

The case I =n —1 is a trivial one, since then the ei-
genvalues A,pp„, =(n —1)n are R independent. When
m = n —2, the subspace is two dimensional; the two roots
of the quadratic equation (3) define two branches
Rip z(ZR ) aild kpi 2(ZR ) of a double-valued analytic
function of a complex variable ZR with branch points
(points of exact degeneracy of the eigenvalues) located at

ZR =+in(n —1) .
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FIG. 1. ~' series of brnch points ~here ~k~ =~k —~~+
for k =1,2, 3 (open circles) and k ~ ~ (full circles).

In all other cases the search for the points of degenera-
cy in the complex plane of the variable ZR has to be per-
formed by means of numerical solution of the secular
equation (3}. The calculations show that there are indeed
the branch points which connect the eigenvalues Arkq

with A.k, +, . For fixed q and m and a variable k (i.e.,
n) these branch points are grouped in such a way that
they form series which we label as H' and show in Fig.
1. For each of the series we show the first three members
(open circles) corresponding to k = 1, 2, and 3 {or
n =q +m +2, q +m +3, and q +m +4) and .iie limiting
branch point (full circles) toward which the members of
the series converge when k~~ (i.e., n~ao). In the
latter case one has to deal with the infinite continuous
fraction in Eq. (3). The superscript s =0, 1, . . . distin-
guishes between the Hq~ series which appear in different
regions of the ZR plane. Only the first quadrant is ~l.~wn
because the pattern is symmetric with respect to both the
real and imaginary axes. This is the combined conse-
quence of the Schwartz reAection principle of analytic
continuation A.(ZR') =X*(ZR) and the symmetry prop-
erty k( —ZR ) = A,(ZR ).

From the data presented in Fig. 1 the overall structure
and distribution of branch points in complex ZR plane
can be inferred. We note also that the positions of the
branch points define the convergence radii of the united-
atom series expansions, the first two terms of which are
given in Eq. (6).

Another question of general importance which we have
studied is to what extent the semiclassical conditions of
quantization contain the information on analytic proper-
ties of the eigenvalues when analytically continued in the
complex plane of a parameter. We shall restrict ourselves
here to the determination of the limiting branch points of
the Hz series. By using the results of Ref. [5], the semi-
classical quantization condition for determining the ei-
genvalues A, in the limit of k ~ oo (n ~ oo ) is

2(&+a)'"& =~ q+ —+ +) (1—in) )A+a 2 4

1+—ln
2l

m+1

m+1
2

lf
(8)

where a =ZR and

ay= —"(A,+a)'~ K
A, +a (9)

Above, E(z) and E(z) are complete elliptic integrals as
defined in [6]. The quantization condition (8) is uniform
with respect to the passage of the critical point A, =a. A
~~~parison with the exact quantum results for real

dies of ZR is demonstrated in Fig. 2. The overall
agreement is very good, although the behavior in the

clo~e vicinity of the united atom limit is quite different
from (6). The leading terms of the iterative solution of (8)
obtained for small values of ZR are given by
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where l =q+m and p=(m +1)/2. The above function
has an infinite derivative at ZR =0, although the limit it-
self is correct [within the semiclassical substitution
l(1+1' ~(l+ —') ].

When solving Eq. (8) for A, with complex values of
a =ZR, care must be taken to avoid any jumps in mul-
tivalued functions which are present in (8) (i.e., the square
root, logarithms, and elliptic integrals). If this is done
then the set of limiting branch points for the Hq~ series is
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TABLE I. Positions of the limiting branch points (k~ ~ ) for a selection of H» series. Quantum
results, [Re(ZR),Im(ZR)]; semiclassical results, ( Re(ZR), Im(ZR) ).

(m, s)

(0,0) [0.0000, 1.899]
(—0.052, 1.859)

[3.330, 4.776]
{3.283, 4.763)

g =2

[9.265, 7.860]
(9.216, 7.848)

[17.73, 11.09]
(17.69, 11.08)

(0,1) [0.0000, 11.45]
(-0.054, 11.41)

[6.268, 18.41]
(6.219, 18.39)

(2,o) [0.000, 10.43]
(0.623, 10.93)

[6.351, 17.30]
(6.925, 17.62)

[15.38, 24.35]
(15.93, 24.59)

[27.01, 31.60]
(27.55, 31,79)

(2,1) [0.000, 28.16]
(0.609, 28.65)

[9.227, 39,18]
(9.811, 39.54)

in very good agreement with exact quantum results, as
shown in Fig. 3. The worst agreement is for the cases
where q (m. This is understandable since the semiclassi-
cal quantization condition (8) is derived under the as-
sumption q &&m, so that the agreement obtained for
small values of q ~ m is surprisingly good. This is also il-
lustrated in Table I, where a comparison between the
quantum and semiclassical results is given for a number
of typical cases.

Cxenerally, the numerical solution of the semiclassical
equation (8) is more difficult than that of the exact secular
equation which itself does not contain any multivalued
functions. The merit of the semiclassical approach is that
often analytic estimates for the positions of the branch
points can be obtained. An example is given in Ref. [5],
where this is done for the so-called S series in the two-
Coulomb-center problem. Unfortunately, in the present
case of the H series such simple estimates do not seem to
exist. Nevertheless, in the cases of H~p series (which are
the closest to the real R axis) one can derive a transcen-

dental equation which approximately determines the po-
sitions of the limiting branch points. For that purpose
we use the following two empirically [based on numerical
solutions of Eq. (8)] established facts valid in the vicinity
of a branch point: erst, the argument of the elliptic in-
tegral in Eq. (8) is close to one and second, the argument
of the I function, p —I', y, is close to zero, i.e., to the posi-
tion of the pole. If we use the appropriate expansions,
multiply Eq. (8) by 2i, and take the exponent of both
sides, we obtain

16u e '" —iu +u+2ia =0,
where u =(A, +a)' . This equation implicitly defines
u =u (a) [i.e., A, =A(a)]. The quantum number q is ab-
sent from Eq. (11) as a result of taking the exponent of
the original equation (8), but it reappears as a label of
different solutions of Eq. (11). Now we are looking for
the branch points where Eq. (11) has double solutions;
therefore the derivative of (11) with respect to u should
also be zero:
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FIG. 2. Eigenvalues A, „~o(ZR ) for real values of ZR.
Quantum-mechanical calculations, full lines; semiclassical re-
sults, broken lines.

Z Re(R)
FIG. 3. Limiting branch points (k~ 00) for Hq~ series.

Quantum results, full circles; semiclassical results, open circles;
approximate semiclassical results, from Eqs. (11) and (12), open
squares.
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16(4tu +3)u e '" —2iu + 1=0 . (12)

Solving numerically for u from (12) and substituting into
(11) to find a =ZR we obtain a series of branch points
which are shown in Fig. 3 as open squares and are in
good agreement with those obtained by numerical solu-
tion of Eq. (8). In the general case of H' series, one can
impose the condition p t'y—= —s (s =0, 1, . . . ); however,
the results thus obtained, although qualitatively represent
correctly the distribution of branch points, are quantita-
tively less accurate.

In conclusion, let us note that a pattern of branch
points similar to that studied here is expected to be
characteristic of all highly asymmetric (Zz »Z, ) two-
Coulomb-center systems. In this case, of course, there

will also be the branching of the energy eigenvalues
(potential-energy surfaces). In slow collisions the H series
of branch points would be responsible for the transitions
between the quasimolecular states whose united-atom an-
gular momentum quantum numbers differ by one, while
the principal and magnetic quantum numbers are Axed.
These transitions are expected to be relatively weak be-
cause the H series are comparatively distant from the real
R axis.
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