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Scattering lengths and effective ranges for He-He
and spin-polarized H-H and D-D scattering
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The modifications of efFective-range theory, necessitated by the long-range nature of interatomic
dispersion and relativistic retardation forces, are discussed. A numerical comparison is given of
parameters describing He- He, He- He, and He- He scattering at very low energies calculated
with several recently published interaction potentials. The efFect of relativistic retardation on these
parameters and on the calculated binding energies of the He- He dimer is shown. It is demonstrated
that all of these quantities are extremely sensitive to the potential. Scattering lengths and effective
ranges for the lowest triplet interactions of H-H and D-D are also reported.
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Theoretical models for atomic collisions at very low
energies are currently of interest because of the rapidly
growing experimental field of ultralow temperature scat-
tering measurements; such experiments contribute to the
exploration of the bulk behavior of bosons in condensed
matter. For example, a recent experiment [1] showed
large cross sections in low-temperature He- He elastic
scattering. The large size of this cross section has its ori-
gin in a shallow well in the interaction potential which
supports a weakly bound state (a dirner) near the contin-
uum; the lighter isotopes He are not bound. The bind-
ing energy is related to the low-energy cross sections and
depends critically on the potential. Because the dimer
is large, the binding is also altered by relativistic retar-
dation [2,3]. A recent low-temperature experiment may
be interpreted as providing direct evidence of the exis-
tence of helium dimers and of the efFect of relativistic
retardation [4].

The efFective range expansion [5] must be modified for
atom-atom collisions because the dispersion and retarda-
tion forces fall ofF with interatomic distance only as fast
as inverse polynomials [6,7]. We present the modifica-
tions appropriate to our calculations below.

Calculation of the He-He interaction potential by
semiempirical and ab initio methods currently attracts
much interest and several recent versions are available
[8—15]. Below we compare calculations of the parameters
for low-energy collisions (scattering lengths and effective
ranges) and of binding energies for some of these po-
tentials and show that there remain fine details of the
He-He interaction, other than retardation, to be deter-
mined before a definitive interpretation can be made of
ultralow-temperature experimental data.

Recently there has been discussion of the calculation of
s-wave scattering of spin-polarized hydrogen [16,17]. We
give an evaluation of the scattering length and efFective
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range that reduces, but not eliminates, uncertainties in
the triplet interaction potential and we also present these
values for deuterium scattering.

The first of the modern He-He interaction potentials
was proposed by Aziz et al. [8]. It is a semiempirical po-
tential of a Hartree-Fock dispersion form in which low-
energy virial data sensitive to the attractive well are fit-
ted. Later Aziz and Slaman [13] constructed an analytic
expression for the ab initio potentials of Liu and McLean
[9] and of Vos et al. [10], but found that it does not en-
able the virials and viscosity to be correctly predicted.
By deepening the well within the error bounds of the
Liu and McLean potential [9] and also introducing ex-
tra analytic flexibility into the upper attractive limb of
the well (from about 5.6ao to 8.0ao, where ao denotes
the Bohr radius) they constructed a compromise ana-
lytic potential which mimics the ab initio calculations
(except around 6ao—7ao) and leads to calculated virials
and room-temperature viscosity within experimental er-
ror. Recently a very accurate large-scale Monte Carlo cal-
culation has been made by Anderson et al. [14]. The com-
promise potential of Aziz and Slaman is in good agree-
ment with it and thus might be considered as the poten-
tial that is most consistent with the ab initio results and
with the virial and transport data [13]. However, the ab
initio calculation and this experimental data do not pro-
vide much information on the short-range repulsive wall.
Nitz et al. [15] have discussed how small-angle scattering
measurements in keV energy ranges [18] can be used to
help evaluate the short-range interaction energies. Their
recommended potential has the same attractive part as
that of Aziz et al. [8], but difFers at short range. We
see below that this modification has a dramatic effect on

He- He scattering at ultralow temperatures.
The potentials we have used are those of Aziz et al. ,

1987 [8], Aziz et al. , 1991 [13], Nitz et al. fitted to the
1987 potential of Aziz et al. [8,15], and Nitz et al. fitted
to the 1991 potential of Aziz et al. [13,15]; we designate
these in the tables by Aziz87, Aziz91, Nitz87, and Nitz91,
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respectively. The retardation was calculated &om accu-
rate polarizabilities [19].

The radial part yi(r—) of the lth partial wave describ-
ing scattering satisfies the differential equation

d'yi(r) k2 2I V (r)
dp2 Q2

l(l + 1)
y((r) = 0,

and, asr ~ oo,

y, (0) =0 (2)

where r is the internuclear distance, k = ~&" is the
wave number in terms of the reduced mass p and the
energy of relative motion E, and V(r) is the interaction
potential. The boundary conditions are

kcotgp ————+ —rk +1 2 4 pcy 4k ink+0(k ). (6)4
45~2

The ranges of validity of the expansions (5) and (6) are
much smaller in atom-atom scattering than in electron-
atom scattering because the higher-order terms contain
powers of the reduced mass which rapidly increase. How-
ever, the equations are applicable to cold collisions where
k is small.

For the p wave we cannot make an effective range ex-
pansion for either r or r potentials [6]. However,
we can still find the limiting value of —k tangq for each
of the two potentials from the expressions (69) and (70)
given by Levy and Keller [20]. For the nonretarded po-
tential we have

yi(r) -+ Ai[ji(kr) + tanrlini(kr)], k tanrli ———ai + O(k) + O(k ) (7)

where Ai is an arbitrary normalization factor, ji (kr) and
ni(kr) are the spherical Bessel and Neumann functions,
respectively, and g~ is the phase shift to be determined.

At very small wave numbers the elastic scattering is
dominated by 8-wave scattering and, to a lesser extent,
by p-wave scattering. For short-range potentials the s-
wave phase shift satisfies the effective range expansion
[5]

kcotgp ————+ rk + O(k ),—2 4
G 2

(4)

1 1 2 2 pc6 3kcotgp ————+ —rk — vr k
15~2

k ink+ O(k ).15a h2

From Sec. II of Ref. [7] we find, for the retarded r
potential,

where a is the scattering length and r is the effective
range. It has long been recognized that for the electron-
atom and electron-ion polarization potentials, which fall
ofF as r 4 as r -+ oo, Eq. (4) must be modified [6]. In the
absence of relativistic retardation the potential V(r) of
Eq. (1) has, at large interatomic separations, a leading
dependence —c6r, where c6 is a dispersion coefficient;
when retardation is considered, the leading term in the
long-range potential is —c7r . Hinckelman and Spruch
[7] have presented the modified efFective range expansion
for an r potential which here becomes

and for the retarded potential

k tanili ———ai+ 0(k ) +O(k ink).

Equations (7) and (8) enable us to evaluate the limiting
values of —k tangq for vanishing wave number k, where
a~ is the equivalent of the scattering length; the expres-
sions for the coefficients of the powers of k and of the
logarithmic term are complicated, but these terms can
be eliminated by Richardson extrapolation, to zero k, of
the calculated quantities —k tangq.

The binding energy Eg of a possible bound state with
l = 0 is related to the scattering length and effective
range through Eqs. (5) and (6). Taking the binding en-
ergy as positive (so that the bound state lies at energy

Eb rel—ative to the energy at infinite separation) we de-
fine an imaginary wave number —ie, at which the S ma-
trix, considered as a function of k, is to vanish giving rise
to a bound state [5], such that

+2@Eh

We can substitute k = —i~ into the first two terms of Eqs.
(5) and (6); we cannot depend on the higher-order terms
in their present forms because the analysis in Ref. [7] does
not explicitly contain the analytic continuation &om real
to complex wave number, but the He- He dimer is so
weakly bound that higher-order terms are unimportant
(K is typically 0.01ao or smaller). For both equations
we find

TABLE I. Scattering lengths and effective ranges (A) for He-He.

Potential

Aziz87 [8]
Aziz91 [13]

Nitz87 [8,15]
Nitz91 [13,15]

He- He

-7.30
-7.15
-8.30
-8.10

Scattering length a
He- He He- He

Without retardation
-18.2 88.4
-17.6 100.
-23.8 46.1
-22.6 49.7

13.3
13.5
12.5
12.6

9.70
9.79
9.14
9.23

EfFective range r
He- He He- He 4He-4He

7.27
7.32
6.90
6.96

Aziz87 [8]
Aziz91 [13]

Nitz87 [8,15]
Nitz91 [13,15]

-7.23
-7.09
-8.22
-8.02

With retardation
-18.0 92.4
-17.4 105.
-23.4 47.1
-22.3 50.9

13.4
13.5
12.5
12.6

9.72
9.81
9.16
9.25

7.29
7.34
6.92
6.97
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TABLE II. Limiting value of —k tanrli as k + 0 (A ) for He-He.

Potential

Aziz87 [8]
Aziz91 [13]

Nitz87 [8,15]
Nitz91 [13,15]

He- He
-24.9
-24.8
-25.5
-25.4

Without retardation
He- He
-30.9
-30.8
-31.9
-31~ 7

He- He
-40.8
-40.6
-42.5
-42.2

He- He
-24.7
-24.6
-25.3
-25.2

With retardation
He- He
-30.7
-30.6
-31.6
-31.5

4 He-4He
-40.5
-40.3
-42.2
-41.9

1 1 2—TK
a 2

(10)

We solved Eq. (1) by Numerov's method for several
small values of the wave number A: and the potentials
listed above and calculated the s-wave and p-wave phase
shifts by fitting the numerical solutions asymptotically
to the boundary conditions (3). We calculated the scat-
tering lengths and efFective ranges from Eqs. (5) and (6)
by Richardson extrapolation for the s waves and the lim-
iting values of k tanrli (for vanishing k) from Eqs. (7)
and (8), also by Richardson extrapolation. The reduced
masses used. were 2748.9432m for He- He, 3135.3481m,
for He- He, and 3648.1498m, for He- He, where m is
the mass of an electron. The values of c6 and c7 used were
1.460 978ao hartree and 479.8634ao hartree, respectively
[19].

We show these calculations in Tables I and II where
a considerable variation with potential is seen in the s-
wave data. These data, except in He- He collisions, are
little afFected by retardation; the choice of potential has a
much greater inHuence. The He- He scattering lengths
are increased by up to 5% by retardation, but the choice
of potential can alter them by a factor of up to 2; the
efFective ranges vary only slightly with retardation. The
p-wave data exhibit less than 1% variation with retar-
dation. They are also less inHuenced by the short-range
modifications to the potential as is expected since a p
wave penetrates to a lesser degree than an s wave.

The large scattering lengths for He-4He collisions con-
tribute to the large cross sections measured by Mester et
al. [1] and they reflect the presence of a weakly bound
state near the edge of the continuum. We calculated the
energies of this state for the various potentials by solv-
ing Eq. (1), but with the eigenvalue condition that its
solution decay as exp( —rr) for large r; using the secant
method we adjusted the binding energies to match for-
ward and trial backward solutions. The binding energies
are shown in Table III. Again there is great variation
with potential. The state is large in spatial extent and,
because v is small, it has considerable probability beyond
the outer classical turning point. Hence it is a good can-
didate for reHecting the inHuence of retardation as has
been noted by Luo et al. [3]; the present calculations

demonstrate up to 10% reduction with retardation. The
short-range modification proposed by Nitz et al. [15] has
the eKect of lowering the bound state into the well which
reduces its extent; we see that the binding energies for
those potentials modified at short range show only about
5% change with retardation. Overall, however, the choice
of potential overwhelms the retardation effect. Our value
agrees with that of Luo et a/. for the 1991 potential of
Aziz et al. [13]. Luo et al. determined the scattering
length Rom the binding energy by using the first term of
Eq. (10). We have calculated the binding energies from
the scattering data &om the same single term formula
and also from both terms, which provides more precise
values [21]. We show these values in Table III; the lead-
ing quadratic d.ependence of Ep on a, implied by Eqs.
(9) and (10), shows why the binding energies are twice
as sensitive to retardation as the scattering lengths. Our
two term calculations agree with the direct evaluations
of the binding energies.

It is clear &om the results presented above that there
remain uncertainties in the He-He interaction to which
calculated low-temperature phenomena are extremely
sensitive; they outweigh retardation corrections which
are nonetheless important.

Recently Jamieson et al. [16] demonstrated that the
calculated s-wave scattering length for hydrogen atom
scattering through the b 2„+ molecular state is ill-
conditioned to small changes in the fitting of the potential
at interatomic separations between 12ao, where the cur-
rently available ab initio data stops, and 15ao where the
long-range data starts. Tiesinga [17] has shown that if
the energies of Frye et al. [22] are taken as being relative
to the dissociation limit instead of being absolute values
as was assumed by Jamieson et al. , then the long-range
form, valid for interatomic distances greater than 15ao,
matches the ab initio energy more closely at 12ao and,
while the ill-conditioning remains, the uncertainty in the
calculated scattering length is considerably reduced. He
estimated a residual uncertainty of 0.lao.

We recalculated the s-wave scattering length and eKec-
tive range with the adjusted ab initio potential of Frye
et al. in which the (now small) difFerence between the
long-range form and the desired smooth potential in the
interval &om 12ao to 25ao was interpolated by a smooth

TABLE III. Binding energies of He- He (mK) without and with retardation.

Potential
Aziz87 [8]

Aziz91 [13]
Nitz87 [8,15]

Nitz91 [13,15]

Direct
Without

1.693
1.310
6.760
5.745

With
1.544
1.176
6.437
5.447

Eq. (10) (two terms)
Without With

1.69 1.54
1.31 1.18
6.76 6.44
5.75 5.45

Eq. (10) (one term)
Without With

1.55 1.42
1.21 1.09
5.70 5.45
4.91 4.67



BRIEF REPORTS 2629

piecewise continuous Gt. The calculation was performed
in the manner described above. Our scattering length
of 1.212ao agrees with 1.2+ 0.2ao of Tiesinga (the ex-
tra 0.lap uncertainty arising around the potential mini-
mum) .

A more recent calculation of the interaction in the
triplet molecular state has been made by Kolos and Rych-
lewski [23]. It comprises an improved Born-Oppenheimer
potential and an adiabatic correction arising &om the rel-
ative kinetic energy of the nuclei, the kinetic energy of the
electrons, and a mass polarization term. Unfortunately it
is available only over the range &om lap to 8ap although
it does contribute more energy points in the vicinity of
the left limb of the van der Waals minimum. However,
the Born-Oppenheimer potential matches the shifted po-
tential of Frye et al, . around 7ap —8ap, supporting their
suggestion that their energies should be taken relative
to the dissociation limit. The adiabatic corrections are
small beyond 8.0ap. We constructed a potential consist-
ing of the energies of Kolos and Rychlewski &om lap to
8ap matched to the adjusted energies of Frye et al. and
the long-range form as described in the preceding para-
graph. A calculation of the scattering length with this
new potential yielded a value of 1.224ap. We also exam-
ined the effect of retardation using the modified interac-
tion calculated by Marinescu [24]. The results are shown
in Table IV; the reduced masses used were 918.0758m,
for hydrogen and 1835.7415m for deuterium. The value
of cs used was 6.4990aoshartree [25]. The value of cq is
23P2 j4vrn, where P is the static dipole polarizability and
o. is the fine structure constant [2]; the value taken was
1269.748ap hartree.

The adiabatic corrections decreased the scattering

TABLE IV. Scattering lengths and effective ranges (A.) for
H-H and D-D.

Scattering length a
EfFective range r

H-H
0.648
184.

D-D
-4.01
35.5

length (algebraically) by about isa for each species. Re-
tardation also has little effect; the magnitude of the scat-
tering length for hydrogen is increased by about 2sofo

and for deuterium decreased by about is%%. For deu-
terium Gutierrez et al. obtained —3.63 A. for the scat-
tering length and 40.4 A. for the efFective range with an
older potential.

The remaining uncertainty in the hydrogen scatter-
ing length could be greatly reduced by accurate calcu-
lations of the interaction energies at interatomic sepa-
ratioiis out to at least 15ao [16] with more energies be-
ing given around the potential minimum as suggested by
Tiesinga [17].
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